blob: 41047aee7ba805ed13f7b80fa87a8cde39e79270 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/context-serializer.h"
#include "src/snapshot/startup-serializer.h"
#include "src/api/api-inl.h"
#include "src/execution/microtask-queue.h"
#include "src/heap/combined-heap.h"
#include "src/numbers/math-random.h"
#include "src/objects/objects-inl.h"
#include "src/objects/slots.h"
namespace v8 {
namespace internal {
namespace {
// During serialization, puts the native context into a state understood by the
// serializer (e.g. by clearing lists of Code objects). After serialization,
// the original state is restored.
class SanitizeNativeContextScope final {
public:
SanitizeNativeContextScope(Isolate* isolate, NativeContext native_context,
bool allow_active_isolate_for_testing,
const DisallowHeapAllocation& no_gc)
: isolate_(isolate),
native_context_(native_context),
microtask_queue_(native_context.microtask_queue()),
optimized_code_list_(native_context.OptimizedCodeListHead()),
deoptimized_code_list_(native_context.DeoptimizedCodeListHead()) {
#ifdef DEBUG
if (!allow_active_isolate_for_testing) {
// Microtasks.
DCHECK_EQ(0, microtask_queue_->size());
DCHECK(!microtask_queue_->HasMicrotasksSuppressions());
DCHECK_EQ(0, microtask_queue_->GetMicrotasksScopeDepth());
DCHECK(microtask_queue_->DebugMicrotasksScopeDepthIsZero());
// Code lists.
DCHECK(optimized_code_list_.IsUndefined(isolate));
DCHECK(deoptimized_code_list_.IsUndefined(isolate));
}
#endif
Object undefined = ReadOnlyRoots(isolate).undefined_value();
native_context.set_microtask_queue(isolate, nullptr);
native_context.SetOptimizedCodeListHead(undefined);
native_context.SetDeoptimizedCodeListHead(undefined);
}
~SanitizeNativeContextScope() {
// Restore saved fields.
native_context_.SetDeoptimizedCodeListHead(optimized_code_list_);
native_context_.SetOptimizedCodeListHead(deoptimized_code_list_);
native_context_.set_microtask_queue(isolate_, microtask_queue_);
}
private:
Isolate* isolate_;
NativeContext native_context_;
MicrotaskQueue* const microtask_queue_;
const Object optimized_code_list_;
const Object deoptimized_code_list_;
};
} // namespace
ContextSerializer::ContextSerializer(
Isolate* isolate, Snapshot::SerializerFlags flags,
StartupSerializer* startup_serializer,
v8::SerializeEmbedderFieldsCallback callback)
: Serializer(isolate, flags),
startup_serializer_(startup_serializer),
serialize_embedder_fields_(callback),
can_be_rehashed_(true) {
InitializeCodeAddressMap();
allocator()->UseCustomChunkSize(FLAG_serialization_chunk_size);
}
ContextSerializer::~ContextSerializer() {
OutputStatistics("ContextSerializer");
}
void ContextSerializer::Serialize(Context* o,
const DisallowHeapAllocation& no_gc) {
context_ = *o;
DCHECK(context_.IsNativeContext());
// Upon deserialization, references to the global proxy and its map will be
// replaced.
reference_map()->AddAttachedReference(
reinterpret_cast<void*>(context_.global_proxy().ptr()));
reference_map()->AddAttachedReference(
reinterpret_cast<void*>(context_.global_proxy().map().ptr()));
// The bootstrap snapshot has a code-stub context. When serializing the
// context snapshot, it is chained into the weak context list on the isolate
// and it's next context pointer may point to the code-stub context. Clear
// it before serializing, it will get re-added to the context list
// explicitly when it's loaded.
// TODO(v8:10416): These mutations should not observably affect the running
// context.
context_.set(Context::NEXT_CONTEXT_LINK,
ReadOnlyRoots(isolate()).undefined_value());
DCHECK(!context_.global_object().IsUndefined());
// Reset math random cache to get fresh random numbers.
MathRandom::ResetContext(context_);
SanitizeNativeContextScope sanitize_native_context(
isolate(), context_.native_context(), allow_active_isolate_for_testing(),
no_gc);
VisitRootPointer(Root::kStartupObjectCache, nullptr, FullObjectSlot(o));
SerializeDeferredObjects();
// Add section for embedder-serialized embedder fields.
if (!embedder_fields_sink_.data()->empty()) {
sink_.Put(kEmbedderFieldsData, "embedder fields data");
sink_.Append(embedder_fields_sink_);
sink_.Put(kSynchronize, "Finished with embedder fields data");
}
Pad();
}
void ContextSerializer::SerializeObject(HeapObject obj) {
DCHECK(!ObjectIsBytecodeHandler(obj)); // Only referenced in dispatch table.
if (!allow_active_isolate_for_testing()) {
// When serializing a snapshot intended for real use, we should not end up
// at another native context.
// But in test scenarios there is no way to avoid this. Since we only
// serialize a single context in these cases, and this context does not
// have to be executable, we can simply ignore this.
DCHECK_IMPLIES(obj.IsNativeContext(), obj == context_);
}
if (SerializeHotObject(obj)) return;
if (SerializeRoot(obj)) return;
if (SerializeBackReference(obj)) return;
if (startup_serializer_->SerializeUsingReadOnlyObjectCache(&sink_, obj)) {
return;
}
if (ShouldBeInTheStartupObjectCache(obj)) {
startup_serializer_->SerializeUsingStartupObjectCache(&sink_, obj);
return;
}
// Pointers from the context snapshot to the objects in the startup snapshot
// should go through the root array or through the startup object cache.
// If this is not the case you may have to add something to the root array.
DCHECK(!startup_serializer_->ReferenceMapContains(obj));
// All the internalized strings that the context snapshot needs should be
// either in the root table or in the startup object cache.
DCHECK(!obj.IsInternalizedString());
// Function and object templates are not context specific.
DCHECK(!obj.IsTemplateInfo());
// Clear literal boilerplates and feedback.
if (obj.IsFeedbackVector()) FeedbackVector::cast(obj).ClearSlots(isolate());
// Clear InterruptBudget when serializing FeedbackCell.
if (obj.IsFeedbackCell()) {
FeedbackCell::cast(obj).SetInitialInterruptBudget();
}
if (SerializeJSObjectWithEmbedderFields(obj)) {
return;
}
if (obj.IsJSFunction()) {
// Unconditionally reset the JSFunction to its SFI's code, since we can't
// serialize optimized code anyway.
JSFunction closure = JSFunction::cast(obj);
closure.ResetIfBytecodeFlushed();
if (closure.is_compiled()) closure.set_code(closure.shared().GetCode());
}
CheckRehashability(obj);
// Object has not yet been serialized. Serialize it here.
ObjectSerializer serializer(this, obj, &sink_);
serializer.Serialize();
}
bool ContextSerializer::ShouldBeInTheStartupObjectCache(HeapObject o) {
// Scripts should be referred only through shared function infos. We can't
// allow them to be part of the context snapshot because they contain a
// unique ID, and deserializing several context snapshots containing script
// would cause dupes.
DCHECK(!o.IsScript());
return o.IsName() || o.IsSharedFunctionInfo() || o.IsHeapNumber() ||
o.IsCode() || o.IsScopeInfo() || o.IsAccessorInfo() ||
o.IsTemplateInfo() || o.IsClassPositions() ||
o.map() == ReadOnlyRoots(startup_serializer_->isolate())
.fixed_cow_array_map();
}
namespace {
bool DataIsEmpty(const StartupData& data) { return data.raw_size == 0; }
} // anonymous namespace
bool ContextSerializer::SerializeJSObjectWithEmbedderFields(Object obj) {
if (!obj.IsJSObject()) return false;
JSObject js_obj = JSObject::cast(obj);
int embedder_fields_count = js_obj.GetEmbedderFieldCount();
if (embedder_fields_count == 0) return false;
CHECK_GT(embedder_fields_count, 0);
DCHECK(!js_obj.NeedsRehashing());
DisallowHeapAllocation no_gc;
DisallowJavascriptExecution no_js(isolate());
DisallowCompilation no_compile(isolate());
HandleScope scope(isolate());
Handle<JSObject> obj_handle(js_obj, isolate());
v8::Local<v8::Object> api_obj = v8::Utils::ToLocal(obj_handle);
std::vector<EmbedderDataSlot::RawData> original_embedder_values;
std::vector<StartupData> serialized_data;
// 1) Iterate embedder fields. Hold onto the original value of the fields.
// Ignore references to heap objects since these are to be handled by the
// serializer. For aligned pointers, call the serialize callback. Hold
// onto the result.
for (int i = 0; i < embedder_fields_count; i++) {
EmbedderDataSlot embedder_data_slot(js_obj, i);
original_embedder_values.emplace_back(
embedder_data_slot.load_raw(isolate(), no_gc));
Object object = embedder_data_slot.load_tagged();
if (object.IsHeapObject()) {
DCHECK(IsValidHeapObject(isolate()->heap(), HeapObject::cast(object)));
serialized_data.push_back({nullptr, 0});
} else {
// If no serializer is provided and the field was empty, we serialize it
// by default to nullptr.
if (serialize_embedder_fields_.callback == nullptr &&
object == Smi::zero()) {
serialized_data.push_back({nullptr, 0});
} else {
DCHECK_NOT_NULL(serialize_embedder_fields_.callback);
StartupData data = serialize_embedder_fields_.callback(
api_obj, i, serialize_embedder_fields_.data);
serialized_data.push_back(data);
}
}
}
// 2) Embedder fields for which the embedder callback produced non-zero
// serialized data should be considered aligned pointers to objects owned
// by the embedder. Clear these memory addresses to avoid non-determism
// in the snapshot. This is done separately to step 1 to no not interleave
// with embedder callbacks.
for (int i = 0; i < embedder_fields_count; i++) {
if (!DataIsEmpty(serialized_data[i])) {
EmbedderDataSlot(js_obj, i).store_raw(isolate(), kNullAddress, no_gc);
}
}
// 3) Serialize the object. References from embedder fields to heap objects or
// smis are serialized regularly.
ObjectSerializer(this, js_obj, &sink_).Serialize();
// 4) Obtain back reference for the serialized object.
SerializerReference reference =
reference_map()->LookupReference(reinterpret_cast<void*>(js_obj.ptr()));
DCHECK(reference.is_back_reference());
// 5) Write data returned by the embedder callbacks into a separate sink,
// headed by the back reference. Restore the original embedder fields.
for (int i = 0; i < embedder_fields_count; i++) {
StartupData data = serialized_data[i];
if (DataIsEmpty(data)) continue;
// Restore original values from cleared fields.
EmbedderDataSlot(js_obj, i).store_raw(isolate(),
original_embedder_values[i], no_gc);
embedder_fields_sink_.Put(kNewObject + static_cast<int>(reference.space()),
"embedder field holder");
embedder_fields_sink_.PutInt(reference.chunk_index(), "BackRefChunkIndex");
embedder_fields_sink_.PutInt(reference.chunk_offset(),
"BackRefChunkOffset");
embedder_fields_sink_.PutInt(i, "embedder field index");
embedder_fields_sink_.PutInt(data.raw_size, "embedder fields data size");
embedder_fields_sink_.PutRaw(reinterpret_cast<const byte*>(data.data),
data.raw_size, "embedder fields data");
delete[] data.data;
}
// 6) The content of the separate sink is appended eventually to the default
// sink. The ensures that during deserialization, we call the deserializer
// callback at the end, and can guarantee that the deserialized objects are
// in a consistent state. See ContextSerializer::Serialize.
return true;
}
void ContextSerializer::CheckRehashability(HeapObject obj) {
if (!can_be_rehashed_) return;
if (!obj.NeedsRehashing()) return;
if (obj.CanBeRehashed()) return;
can_be_rehashed_ = false;
}
} // namespace internal
} // namespace v8