blob: 42055e7073c00ccd3a5ab3c648390dfb13b80f1d [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Review notes:
//
// - The use of macros in these inline functions may seem superfluous
// but it is absolutely needed to make sure gcc generates optimal
// code. gcc is not happy when attempting to inline too deep.
//
#ifndef V8_OBJECTS_INL_H_
#define V8_OBJECTS_INL_H_
#include "src/objects.h"
#include "src/base/bits.h"
#include "src/base/tsan.h"
#include "src/builtins/builtins.h"
#include "src/conversions.h"
#include "src/double.h"
#include "src/handles-inl.h"
#include "src/heap/factory.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/keys.h"
#include "src/lookup-inl.h" // TODO(jkummerow): Drop.
#include "src/objects/bigint.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/heap-object.h"
#include "src/objects/js-proxy-inl.h" // TODO(jkummerow): Drop.
#include "src/objects/literal-objects.h"
#include "src/objects/oddball.h"
#include "src/objects/regexp-match-info.h"
#include "src/objects/scope-info.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/slots-inl.h"
#include "src/objects/smi-inl.h"
#include "src/objects/templates.h"
#include "src/property-details.h"
#include "src/property.h"
#include "src/v8memory.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
PropertyDetails::PropertyDetails(Smi smi) { value_ = smi->value(); }
Smi PropertyDetails::AsSmi() const {
// Ensure the upper 2 bits have the same value by sign extending it. This is
// necessary to be able to use the 31st bit of the property details.
int value = value_ << 1;
return Smi::FromInt(value >> 1);
}
int PropertyDetails::field_width_in_words() const {
DCHECK_EQ(location(), kField);
if (!FLAG_unbox_double_fields) return 1;
if (kDoubleSize == kTaggedSize) return 1;
return representation().IsDouble() ? kDoubleSize / kTaggedSize : 1;
}
bool HeapObject::IsSloppyArgumentsElements() const {
return IsFixedArrayExact();
}
bool HeapObject::IsJSSloppyArgumentsObject() const {
return IsJSArgumentsObject();
}
bool HeapObject::IsJSGeneratorObject() const {
return map()->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
IsJSAsyncFunctionObject() || IsJSAsyncGeneratorObject();
}
bool HeapObject::IsDataHandler() const {
return IsLoadHandler() || IsStoreHandler();
}
bool HeapObject::IsClassBoilerplate() const { return IsFixedArrayExact(); }
#define IS_TYPE_FUNCTION_DEF(type_) \
bool Object::Is##type_() const { \
return IsHeapObject() && HeapObject::cast(*this)->Is##type_(); \
}
HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DEF)
#undef IS_TYPE_FUNCTION_DEF
#define IS_TYPE_FUNCTION_DEF(Type, Value) \
bool Object::Is##Type(Isolate* isolate) const { \
return Is##Type(ReadOnlyRoots(isolate->heap())); \
} \
bool Object::Is##Type(ReadOnlyRoots roots) const { \
return *this == roots.Value(); \
} \
bool Object::Is##Type() const { \
return IsHeapObject() && HeapObject::cast(*this)->Is##Type(); \
} \
bool HeapObject::Is##Type(Isolate* isolate) const { \
return Object::Is##Type(isolate); \
} \
bool HeapObject::Is##Type(ReadOnlyRoots roots) const { \
return Object::Is##Type(roots); \
} \
bool HeapObject::Is##Type() const { return Is##Type(GetReadOnlyRoots()); }
ODDBALL_LIST(IS_TYPE_FUNCTION_DEF)
#undef IS_TYPE_FUNCTION_DEF
bool Object::IsNullOrUndefined(Isolate* isolate) const {
return IsNullOrUndefined(ReadOnlyRoots(isolate));
}
bool Object::IsNullOrUndefined(ReadOnlyRoots roots) const {
return IsNull(roots) || IsUndefined(roots);
}
bool Object::IsNullOrUndefined() const {
return IsHeapObject() && HeapObject::cast(*this)->IsNullOrUndefined();
}
bool Object::IsZero() const { return *this == Smi::zero(); }
bool Object::IsNoSharedNameSentinel() const {
return *this == SharedFunctionInfo::kNoSharedNameSentinel;
}
bool HeapObject::IsNullOrUndefined(Isolate* isolate) const {
return Object::IsNullOrUndefined(isolate);
}
bool HeapObject::IsNullOrUndefined(ReadOnlyRoots roots) const {
return Object::IsNullOrUndefined(roots);
}
bool HeapObject::IsNullOrUndefined() const {
return IsNullOrUndefined(GetReadOnlyRoots());
}
bool HeapObject::IsUniqueName() const {
return IsInternalizedString() || IsSymbol();
}
bool HeapObject::IsFunction() const {
STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
return map()->instance_type() >= FIRST_FUNCTION_TYPE;
}
bool HeapObject::IsCallable() const { return map()->is_callable(); }
bool HeapObject::IsConstructor() const { return map()->is_constructor(); }
bool HeapObject::IsModuleInfo() const {
return map() == GetReadOnlyRoots().module_info_map();
}
bool HeapObject::IsTemplateInfo() const {
return IsObjectTemplateInfo() || IsFunctionTemplateInfo();
}
bool HeapObject::IsConsString() const {
if (!IsString()) return false;
return StringShape(String::cast(*this)).IsCons();
}
bool HeapObject::IsThinString() const {
if (!IsString()) return false;
return StringShape(String::cast(*this)).IsThin();
}
bool HeapObject::IsSlicedString() const {
if (!IsString()) return false;
return StringShape(String::cast(*this)).IsSliced();
}
bool HeapObject::IsSeqString() const {
if (!IsString()) return false;
return StringShape(String::cast(*this)).IsSequential();
}
bool HeapObject::IsSeqOneByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(*this)).IsSequential() &&
String::cast(*this)->IsOneByteRepresentation();
}
bool HeapObject::IsSeqTwoByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(*this)).IsSequential() &&
String::cast(*this)->IsTwoByteRepresentation();
}
bool HeapObject::IsExternalString() const {
if (!IsString()) return false;
return StringShape(String::cast(*this)).IsExternal();
}
bool HeapObject::IsExternalOneByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(*this)).IsExternal() &&
String::cast(*this)->IsOneByteRepresentation();
}
bool HeapObject::IsExternalTwoByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(*this)).IsExternal() &&
String::cast(*this)->IsTwoByteRepresentation();
}
bool Object::IsNumber() const { return IsSmi() || IsHeapNumber(); }
bool Object::IsNumeric() const { return IsNumber() || IsBigInt(); }
bool HeapObject::IsFiller() const {
InstanceType instance_type = map()->instance_type();
return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE;
}
bool HeapObject::IsJSWeakCollection() const {
return IsJSWeakMap() || IsJSWeakSet();
}
bool HeapObject::IsJSCollection() const { return IsJSMap() || IsJSSet(); }
bool HeapObject::IsPromiseReactionJobTask() const {
return IsPromiseFulfillReactionJobTask() || IsPromiseRejectReactionJobTask();
}
bool HeapObject::IsFrameArray() const { return IsFixedArrayExact(); }
bool HeapObject::IsArrayList() const {
return map() == GetReadOnlyRoots().array_list_map() ||
*this == GetReadOnlyRoots().empty_fixed_array();
}
bool HeapObject::IsRegExpMatchInfo() const { return IsFixedArrayExact(); }
bool Object::IsLayoutDescriptor() const { return IsSmi() || IsByteArray(); }
bool HeapObject::IsDeoptimizationData() const {
// Must be a fixed array.
if (!IsFixedArrayExact()) return false;
// There's no sure way to detect the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can
// check that the length is zero or else the fixed size plus a multiple of
// the entry size.
int length = FixedArray::cast(*this)->length();
if (length == 0) return true;
length -= DeoptimizationData::kFirstDeoptEntryIndex;
return length >= 0 && length % DeoptimizationData::kDeoptEntrySize == 0;
}
bool HeapObject::IsHandlerTable() const {
if (!IsFixedArrayExact()) return false;
// There's actually no way to see the difference between a fixed array and
// a handler table array.
return true;
}
bool HeapObject::IsTemplateList() const {
if (!IsFixedArrayExact()) return false;
// There's actually no way to see the difference between a fixed array and
// a template list.
if (FixedArray::cast(*this)->length() < 1) return false;
return true;
}
bool HeapObject::IsDependentCode() const {
if (!IsWeakFixedArray()) return false;
// There's actually no way to see the difference between a weak fixed array
// and a dependent codes array.
return true;
}
bool HeapObject::IsAbstractCode() const {
return IsBytecodeArray() || IsCode();
}
bool HeapObject::IsStringWrapper() const {
return IsJSValue() && JSValue::cast(*this)->value()->IsString();
}
bool HeapObject::IsBooleanWrapper() const {
return IsJSValue() && JSValue::cast(*this)->value()->IsBoolean();
}
bool HeapObject::IsScriptWrapper() const {
return IsJSValue() && JSValue::cast(*this)->value()->IsScript();
}
bool HeapObject::IsNumberWrapper() const {
return IsJSValue() && JSValue::cast(*this)->value()->IsNumber();
}
bool HeapObject::IsBigIntWrapper() const {
return IsJSValue() && JSValue::cast(*this)->value()->IsBigInt();
}
bool HeapObject::IsSymbolWrapper() const {
return IsJSValue() && JSValue::cast(*this)->value()->IsSymbol();
}
bool HeapObject::IsJSArrayBufferView() const {
return IsJSDataView() || IsJSTypedArray();
}
bool HeapObject::IsStringSet() const { return IsHashTable(); }
bool HeapObject::IsObjectHashSet() const { return IsHashTable(); }
bool HeapObject::IsCompilationCacheTable() const { return IsHashTable(); }
bool HeapObject::IsMapCache() const { return IsHashTable(); }
bool HeapObject::IsObjectHashTable() const { return IsHashTable(); }
bool Object::IsHashTableBase() const { return IsHashTable(); }
bool Object::IsSmallOrderedHashTable() const {
return IsSmallOrderedHashSet() || IsSmallOrderedHashMap() ||
IsSmallOrderedNameDictionary();
}
bool Object::IsPrimitive() const {
return IsSmi() || HeapObject::cast(*this)->map()->IsPrimitiveMap();
}
// static
Maybe<bool> Object::IsArray(Handle<Object> object) {
if (object->IsSmi()) return Just(false);
Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
if (heap_object->IsJSArray()) return Just(true);
if (!heap_object->IsJSProxy()) return Just(false);
return JSProxy::IsArray(Handle<JSProxy>::cast(object));
}
bool HeapObject::IsUndetectable() const { return map()->is_undetectable(); }
bool HeapObject::IsAccessCheckNeeded() const {
if (IsJSGlobalProxy()) {
const JSGlobalProxy proxy = JSGlobalProxy::cast(*this);
JSGlobalObject global = proxy->GetIsolate()->context()->global_object();
return proxy->IsDetachedFrom(global);
}
return map()->is_access_check_needed();
}
bool HeapObject::IsStruct() const {
switch (map()->instance_type()) {
#define MAKE_STRUCT_CASE(TYPE, Name, name) \
case TYPE: \
return true;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
// It is hard to include ALLOCATION_SITE_TYPE in STRUCT_LIST because
// that macro is used for many things and AllocationSite needs a few
// special cases.
case ALLOCATION_SITE_TYPE:
return true;
case LOAD_HANDLER_TYPE:
case STORE_HANDLER_TYPE:
return true;
case FEEDBACK_CELL_TYPE:
return true;
case CALL_HANDLER_INFO_TYPE:
return true;
default:
return false;
}
}
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
bool Object::Is##Name() const { \
return IsHeapObject() && HeapObject::cast(*this)->Is##Name(); \
} \
TYPE_CHECKER(Name)
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
#undef MAKE_STRUCT_PREDICATE
double Object::Number() const {
DCHECK(IsNumber());
return IsSmi() ? static_cast<double>(Smi(this->ptr())->value())
: HeapNumber::unchecked_cast(*this)->value();
}
// static
bool Object::SameNumberValue(double value1, double value2) {
// SameNumberValue(NaN, NaN) is true.
if (value1 != value2) {
return std::isnan(value1) && std::isnan(value2);
}
// SameNumberValue(0.0, -0.0) is false.
return (std::signbit(value1) == std::signbit(value2));
}
bool Object::IsNaN() const {
return this->IsHeapNumber() && std::isnan(HeapNumber::cast(*this)->value());
}
bool Object::IsMinusZero() const {
return this->IsHeapNumber() &&
i::IsMinusZero(HeapNumber::cast(*this)->value());
}
OBJECT_CONSTRUCTORS_IMPL(RegExpMatchInfo, FixedArray)
OBJECT_CONSTRUCTORS_IMPL(ScopeInfo, FixedArray)
OBJECT_CONSTRUCTORS_IMPL(BigIntBase, HeapObject)
OBJECT_CONSTRUCTORS_IMPL(BigInt, BigIntBase)
OBJECT_CONSTRUCTORS_IMPL(FreshlyAllocatedBigInt, BigIntBase)
// ------------------------------------
// Cast operations
CAST_ACCESSOR(BigInt)
CAST_ACCESSOR(RegExpMatchInfo)
CAST_ACCESSOR(ScopeInfo)
bool Object::HasValidElements() {
// Dictionary is covered under FixedArray.
return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase();
}
bool Object::FilterKey(PropertyFilter filter) {
DCHECK(!IsPropertyCell());
if (filter == PRIVATE_NAMES_ONLY) {
if (!IsSymbol()) return true;
return !Symbol::cast(*this)->is_private_name();
} else if (IsSymbol()) {
if (filter & SKIP_SYMBOLS) return true;
if (Symbol::cast(*this)->is_private()) return true;
} else {
if (filter & SKIP_STRINGS) return true;
}
return false;
}
Representation Object::OptimalRepresentation() {
if (!FLAG_track_fields) return Representation::Tagged();
if (IsSmi()) {
return Representation::Smi();
} else if (FLAG_track_double_fields && IsHeapNumber()) {
return Representation::Double();
} else if (FLAG_track_computed_fields && IsUninitialized()) {
return Representation::None();
} else if (FLAG_track_heap_object_fields) {
DCHECK(IsHeapObject());
return Representation::HeapObject();
} else {
return Representation::Tagged();
}
}
ElementsKind Object::OptimalElementsKind() {
if (IsSmi()) return PACKED_SMI_ELEMENTS;
if (IsNumber()) return PACKED_DOUBLE_ELEMENTS;
return PACKED_ELEMENTS;
}
bool Object::FitsRepresentation(Representation representation) {
if (FLAG_track_fields && representation.IsSmi()) {
return IsSmi();
} else if (FLAG_track_double_fields && representation.IsDouble()) {
return IsMutableHeapNumber() || IsNumber();
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
return IsHeapObject();
} else if (FLAG_track_fields && representation.IsNone()) {
return false;
}
return true;
}
bool Object::ToUint32(uint32_t* value) const {
if (IsSmi()) {
int num = Smi::ToInt(*this);
if (num < 0) return false;
*value = static_cast<uint32_t>(num);
return true;
}
if (IsHeapNumber()) {
double num = HeapNumber::cast(*this)->value();
return DoubleToUint32IfEqualToSelf(num, value);
}
return false;
}
// static
MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
Handle<Object> object,
const char* method_name) {
if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
return ToObjectImpl(isolate, object, method_name);
}
// static
MaybeHandle<Name> Object::ToName(Isolate* isolate, Handle<Object> input) {
if (input->IsName()) return Handle<Name>::cast(input);
return ConvertToName(isolate, input);
}
// static
MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate,
Handle<Object> value) {
if (value->IsSmi() || HeapObject::cast(*value)->IsName()) return value;
return ConvertToPropertyKey(isolate, value);
}
// static
MaybeHandle<Object> Object::ToPrimitive(Handle<Object> input,
ToPrimitiveHint hint) {
if (input->IsPrimitive()) return input;
return JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), hint);
}
// static
MaybeHandle<Object> Object::ToNumber(Isolate* isolate, Handle<Object> input) {
if (input->IsNumber()) return input; // Shortcut.
return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber);
}
// static
MaybeHandle<Object> Object::ToNumeric(Isolate* isolate, Handle<Object> input) {
if (input->IsNumber() || input->IsBigInt()) return input; // Shortcut.
return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumeric);
}
// static
MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) {
if (input->IsSmi()) return input;
return ConvertToInteger(isolate, input);
}
// static
MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) {
if (input->IsSmi()) return input;
return ConvertToInt32(isolate, input);
}
// static
MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) {
if (input->IsSmi()) return handle(Smi::cast(*input)->ToUint32Smi(), isolate);
return ConvertToUint32(isolate, input);
}
// static
MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) {
if (input->IsString()) return Handle<String>::cast(input);
return ConvertToString(isolate, input);
}
// static
MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) {
if (input->IsSmi()) {
int value = std::max(Smi::ToInt(*input), 0);
return handle(Smi::FromInt(value), isolate);
}
return ConvertToLength(isolate, input);
}
// static
MaybeHandle<Object> Object::ToIndex(Isolate* isolate, Handle<Object> input,
MessageTemplate error_index) {
if (input->IsSmi() && Smi::ToInt(*input) >= 0) return input;
return ConvertToIndex(isolate, input, error_index);
}
MaybeHandle<Object> Object::GetProperty(Isolate* isolate, Handle<Object> object,
Handle<Name> name) {
LookupIterator it(isolate, object, name);
if (!it.IsFound()) return it.factory()->undefined_value();
return GetProperty(&it);
}
MaybeHandle<Object> Object::GetElement(Isolate* isolate, Handle<Object> object,
uint32_t index) {
LookupIterator it(isolate, object, index);
if (!it.IsFound()) return it.factory()->undefined_value();
return GetProperty(&it);
}
MaybeHandle<Object> Object::SetElement(Isolate* isolate, Handle<Object> object,
uint32_t index, Handle<Object> value,
ShouldThrow should_throw) {
LookupIterator it(isolate, object, index);
MAYBE_RETURN_NULL(
SetProperty(&it, value, StoreOrigin::kMaybeKeyed, Just(should_throw)));
return value;
}
ObjectSlot HeapObject::RawField(int byte_offset) const {
return ObjectSlot(FIELD_ADDR(*this, byte_offset));
}
MaybeObjectSlot HeapObject::RawMaybeWeakField(int byte_offset) const {
return MaybeObjectSlot(FIELD_ADDR(*this, byte_offset));
}
MapWord MapWord::FromMap(const Map map) { return MapWord(map.ptr()); }
Map MapWord::ToMap() const { return Map::unchecked_cast(Object(value_)); }
bool MapWord::IsForwardingAddress() const { return HAS_SMI_TAG(value_); }
MapWord MapWord::FromForwardingAddress(HeapObject object) {
return MapWord(object->ptr() - kHeapObjectTag);
}
HeapObject MapWord::ToForwardingAddress() {
DCHECK(IsForwardingAddress());
return HeapObject::FromAddress(value_);
}
#ifdef VERIFY_HEAP
void HeapObject::VerifyObjectField(Isolate* isolate, int offset) {
VerifyPointer(isolate, READ_FIELD(*this, offset));
STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size);
}
void HeapObject::VerifyMaybeObjectField(Isolate* isolate, int offset) {
MaybeObject::VerifyMaybeObjectPointer(isolate,
READ_WEAK_FIELD(*this, offset));
STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size);
}
void HeapObject::VerifySmiField(int offset) {
CHECK(READ_FIELD(*this, offset)->IsSmi());
STATIC_ASSERT(!COMPRESS_POINTERS_BOOL || kTaggedSize == kInt32Size);
}
#endif
ReadOnlyRoots HeapObject::GetReadOnlyRoots() const {
return ReadOnlyHeap::GetReadOnlyRoots(*this);
}
Map HeapObject::map() const { return map_word().ToMap(); }
void HeapObject::set_map(Map value) {
if (!value.is_null()) {
#ifdef VERIFY_HEAP
GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value);
#endif
}
set_map_word(MapWord::FromMap(value));
if (!value.is_null()) {
// TODO(1600) We are passing kNullAddress as a slot because maps can never
// be on an evacuation candidate.
MarkingBarrier(*this, ObjectSlot(kNullAddress), value);
}
}
Map HeapObject::synchronized_map() const {
return synchronized_map_word().ToMap();
}
void HeapObject::synchronized_set_map(Map value) {
if (!value.is_null()) {
#ifdef VERIFY_HEAP
GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value);
#endif
}
synchronized_set_map_word(MapWord::FromMap(value));
if (!value.is_null()) {
// TODO(1600) We are passing kNullAddress as a slot because maps can never
// be on an evacuation candidate.
MarkingBarrier(*this, ObjectSlot(kNullAddress), value);
}
}
// Unsafe accessor omitting write barrier.
void HeapObject::set_map_no_write_barrier(Map value) {
if (!value.is_null()) {
#ifdef VERIFY_HEAP
GetHeapFromWritableObject(*this)->VerifyObjectLayoutChange(*this, value);
#endif
}
set_map_word(MapWord::FromMap(value));
}
void HeapObject::set_map_after_allocation(Map value, WriteBarrierMode mode) {
set_map_word(MapWord::FromMap(value));
if (mode != SKIP_WRITE_BARRIER) {
DCHECK(!value.is_null());
// TODO(1600) We are passing kNullAddress as a slot because maps can never
// be on an evacuation candidate.
MarkingBarrier(*this, ObjectSlot(kNullAddress), value);
}
}
MapWordSlot HeapObject::map_slot() const {
return MapWordSlot(FIELD_ADDR(*this, kMapOffset));
}
MapWord HeapObject::map_word() const {
return MapWord(map_slot().Relaxed_Load().ptr());
}
void HeapObject::set_map_word(MapWord map_word) {
map_slot().Relaxed_Store(Object(map_word.value_));
}
MapWord HeapObject::synchronized_map_word() const {
return MapWord(map_slot().Acquire_Load().ptr());
}
void HeapObject::synchronized_set_map_word(MapWord map_word) {
map_slot().Release_Store(Object(map_word.value_));
}
int HeapObject::Size() const { return SizeFromMap(map()); }
inline bool IsSpecialReceiverInstanceType(InstanceType instance_type) {
return instance_type <= LAST_SPECIAL_RECEIVER_TYPE;
}
// This should be in objects/map-inl.h, but can't, because of a cyclic
// dependency.
bool Map::IsSpecialReceiverMap() const {
bool result = IsSpecialReceiverInstanceType(instance_type());
DCHECK_IMPLIES(!result,
!has_named_interceptor() && !is_access_check_needed());
return result;
}
inline bool IsCustomElementsReceiverInstanceType(InstanceType instance_type) {
return instance_type <= LAST_CUSTOM_ELEMENTS_RECEIVER;
}
// This should be in objects/map-inl.h, but can't, because of a cyclic
// dependency.
bool Map::IsCustomElementsReceiverMap() const {
return IsCustomElementsReceiverInstanceType(instance_type());
}
bool Object::ToArrayLength(uint32_t* index) const {
return Object::ToUint32(index);
}
bool Object::ToArrayIndex(uint32_t* index) const {
return Object::ToUint32(index) && *index != kMaxUInt32;
}
bool Object::GetHeapObjectIfStrong(HeapObject* result) const {
return GetHeapObject(result);
}
bool Object::GetHeapObject(HeapObject* result) const {
if (!IsHeapObject()) return false;
*result = HeapObject::cast(*this);
return true;
}
HeapObject Object::GetHeapObject() const {
DCHECK(IsHeapObject());
return HeapObject::cast(*this);
}
int RegExpMatchInfo::NumberOfCaptureRegisters() {
DCHECK_GE(length(), kLastMatchOverhead);
Object obj = get(kNumberOfCapturesIndex);
return Smi::ToInt(obj);
}
void RegExpMatchInfo::SetNumberOfCaptureRegisters(int value) {
DCHECK_GE(length(), kLastMatchOverhead);
set(kNumberOfCapturesIndex, Smi::FromInt(value));
}
String RegExpMatchInfo::LastSubject() {
DCHECK_GE(length(), kLastMatchOverhead);
return String::cast(get(kLastSubjectIndex));
}
void RegExpMatchInfo::SetLastSubject(String value) {
DCHECK_GE(length(), kLastMatchOverhead);
set(kLastSubjectIndex, value);
}
Object RegExpMatchInfo::LastInput() {
DCHECK_GE(length(), kLastMatchOverhead);
return get(kLastInputIndex);
}
void RegExpMatchInfo::SetLastInput(Object value) {
DCHECK_GE(length(), kLastMatchOverhead);
set(kLastInputIndex, value);
}
int RegExpMatchInfo::Capture(int i) {
DCHECK_LT(i, NumberOfCaptureRegisters());
Object obj = get(kFirstCaptureIndex + i);
return Smi::ToInt(obj);
}
void RegExpMatchInfo::SetCapture(int i, int value) {
DCHECK_LT(i, NumberOfCaptureRegisters());
set(kFirstCaptureIndex + i, Smi::FromInt(value));
}
WriteBarrierMode HeapObject::GetWriteBarrierMode(
const DisallowHeapAllocation& promise) {
return GetWriteBarrierModeForObject(*this, &promise);
}
// static
AllocationAlignment HeapObject::RequiredAlignment(Map map) {
#ifdef V8_COMPRESS_POINTERS
// TODO(ishell, v8:8875): Consider using aligned allocations once the
// allocation alignment inconsistency is fixed. For now we keep using
// unaligned access since both x64 and arm64 architectures (where pointer
// compression is supported) allow unaligned access to doubles and full words.
#endif // V8_COMPRESS_POINTERS
#ifdef V8_HOST_ARCH_32_BIT
int instance_type = map->instance_type();
if (instance_type == FIXED_FLOAT64_ARRAY_TYPE ||
instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
return kDoubleAligned;
}
if (instance_type == HEAP_NUMBER_TYPE) return kDoubleUnaligned;
#endif // V8_HOST_ARCH_32_BIT
return kWordAligned;
}
Address HeapObject::GetFieldAddress(int field_offset) const {
return FIELD_ADDR(*this, field_offset);
}
// static
Maybe<bool> Object::GreaterThan(Isolate* isolate, Handle<Object> x,
Handle<Object> y) {
Maybe<ComparisonResult> result = Compare(isolate, x, y);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kGreaterThan:
return Just(true);
case ComparisonResult::kLessThan:
case ComparisonResult::kEqual:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
// static
Maybe<bool> Object::GreaterThanOrEqual(Isolate* isolate, Handle<Object> x,
Handle<Object> y) {
Maybe<ComparisonResult> result = Compare(isolate, x, y);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kEqual:
case ComparisonResult::kGreaterThan:
return Just(true);
case ComparisonResult::kLessThan:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
// static
Maybe<bool> Object::LessThan(Isolate* isolate, Handle<Object> x,
Handle<Object> y) {
Maybe<ComparisonResult> result = Compare(isolate, x, y);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kLessThan:
return Just(true);
case ComparisonResult::kEqual:
case ComparisonResult::kGreaterThan:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
// static
Maybe<bool> Object::LessThanOrEqual(Isolate* isolate, Handle<Object> x,
Handle<Object> y) {
Maybe<ComparisonResult> result = Compare(isolate, x, y);
if (result.IsJust()) {
switch (result.FromJust()) {
case ComparisonResult::kEqual:
case ComparisonResult::kLessThan:
return Just(true);
case ComparisonResult::kGreaterThan:
case ComparisonResult::kUndefined:
return Just(false);
}
}
return Nothing<bool>();
}
MaybeHandle<Object> Object::GetPropertyOrElement(Isolate* isolate,
Handle<Object> object,
Handle<Name> name) {
LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name);
return GetProperty(&it);
}
MaybeHandle<Object> Object::SetPropertyOrElement(
Isolate* isolate, Handle<Object> object, Handle<Name> name,
Handle<Object> value, Maybe<ShouldThrow> should_throw,
StoreOrigin store_origin) {
LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name);
MAYBE_RETURN_NULL(SetProperty(&it, value, store_origin, should_throw));
return value;
}
MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> receiver,
Handle<Name> name,
Handle<JSReceiver> holder) {
LookupIterator it = LookupIterator::PropertyOrElement(holder->GetIsolate(),
receiver, name, holder);
return GetProperty(&it);
}
// static
Object Object::GetSimpleHash(Object object) {
DisallowHeapAllocation no_gc;
if (object->IsSmi()) {
uint32_t hash = ComputeUnseededHash(Smi::ToInt(object));
return Smi::FromInt(hash & Smi::kMaxValue);
}
if (object->IsHeapNumber()) {
double num = HeapNumber::cast(object)->value();
if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue);
// Use ComputeUnseededHash for all values in Signed32 range, including -0,
// which is considered equal to 0 because collections use SameValueZero.
uint32_t hash;
// Check range before conversion to avoid undefined behavior.
if (num >= kMinInt && num <= kMaxInt && FastI2D(FastD2I(num)) == num) {
hash = ComputeUnseededHash(FastD2I(num));
} else {
hash = ComputeLongHash(double_to_uint64(num));
}
return Smi::FromInt(hash & Smi::kMaxValue);
}
if (object->IsName()) {
uint32_t hash = Name::cast(object)->Hash();
return Smi::FromInt(hash);
}
if (object->IsOddball()) {
uint32_t hash = Oddball::cast(object)->to_string()->Hash();
return Smi::FromInt(hash);
}
if (object->IsBigInt()) {
uint32_t hash = BigInt::cast(object)->Hash();
return Smi::FromInt(hash & Smi::kMaxValue);
}
if (object->IsSharedFunctionInfo()) {
uint32_t hash = SharedFunctionInfo::cast(object)->Hash();
return Smi::FromInt(hash & Smi::kMaxValue);
}
DCHECK(object->IsJSReceiver());
return object;
}
Object Object::GetHash() {
DisallowHeapAllocation no_gc;
Object hash = GetSimpleHash(*this);
if (hash->IsSmi()) return hash;
DCHECK(IsJSReceiver());
JSReceiver receiver = JSReceiver::cast(*this);
return receiver->GetIdentityHash();
}
Handle<Object> ObjectHashTableShape::AsHandle(Handle<Object> key) {
return key;
}
Relocatable::Relocatable(Isolate* isolate) {
isolate_ = isolate;
prev_ = isolate->relocatable_top();
isolate->set_relocatable_top(this);
}
Relocatable::~Relocatable() {
DCHECK_EQ(isolate_->relocatable_top(), this);
isolate_->set_relocatable_top(prev_);
}
// Predictably converts HeapObject or Address to uint32 by calculating
// offset of the address in respective MemoryChunk.
static inline uint32_t ObjectAddressForHashing(Address object) {
uint32_t value = static_cast<uint32_t>(object);
return value & kPageAlignmentMask;
}
static inline Handle<Object> MakeEntryPair(Isolate* isolate, uint32_t index,
Handle<Object> value) {
Handle<Object> key = isolate->factory()->Uint32ToString(index);
Handle<FixedArray> entry_storage =
isolate->factory()->NewUninitializedFixedArray(2);
{
entry_storage->set(0, *key, SKIP_WRITE_BARRIER);
entry_storage->set(1, *value, SKIP_WRITE_BARRIER);
}
return isolate->factory()->NewJSArrayWithElements(entry_storage,
PACKED_ELEMENTS, 2);
}
static inline Handle<Object> MakeEntryPair(Isolate* isolate, Handle<Object> key,
Handle<Object> value) {
Handle<FixedArray> entry_storage =
isolate->factory()->NewUninitializedFixedArray(2);
{
entry_storage->set(0, *key, SKIP_WRITE_BARRIER);
entry_storage->set(1, *value, SKIP_WRITE_BARRIER);
}
return isolate->factory()->NewJSArrayWithElements(entry_storage,
PACKED_ELEMENTS, 2);
}
bool ScopeInfo::IsAsmModule() const {
return IsAsmModuleField::decode(Flags());
}
bool ScopeInfo::HasSimpleParameters() const {
return HasSimpleParametersField::decode(Flags());
}
#define FIELD_ACCESSORS(name) \
void ScopeInfo::Set##name(int value) { set(k##name, Smi::FromInt(value)); } \
int ScopeInfo::name() const { \
if (length() > 0) { \
return Smi::ToInt(get(k##name)); \
} else { \
return 0; \
} \
}
FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS)
#undef FIELD_ACCESSORS
FreshlyAllocatedBigInt FreshlyAllocatedBigInt::cast(Object object) {
SLOW_DCHECK(object->IsBigInt());
return FreshlyAllocatedBigInt(object->ptr());
}
} // namespace internal
} // namespace v8
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_INL_H_