blob: 203e1eea37c732ca4e39cb9b3bb76d4f13d4f3a7 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_CODE_ASSEMBLER_H_
#define V8_COMPILER_CODE_ASSEMBLER_H_
#include <initializer_list>
#include <map>
#include <memory>
// Clients of this interface shouldn't depend on lots of compiler internals.
// Do not include anything from src/compiler here!
#include "src/base/macros.h"
#include "src/base/type-traits.h"
#include "src/builtins/builtins.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/machine-type.h"
#include "src/codegen/source-position.h"
#include "src/codegen/tnode.h"
#include "src/heap/heap.h"
#include "src/objects/arguments.h"
#include "src/objects/data-handler.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-array-buffer.h"
#include "src/objects/js-collection.h"
#include "src/objects/js-proxy.h"
#include "src/objects/map.h"
#include "src/objects/maybe-object.h"
#include "src/objects/objects.h"
#include "src/objects/oddball.h"
#include "src/objects/smi.h"
#include "src/objects/tagged-index.h"
#include "src/runtime/runtime.h"
#include "src/utils/allocation.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
// Forward declarations.
class AsmWasmData;
class AsyncGeneratorRequest;
struct AssemblerOptions;
class BigInt;
class CallInterfaceDescriptor;
class Callable;
class Factory;
class InterpreterData;
class Isolate;
class JSAsyncFunctionObject;
class JSAsyncGeneratorObject;
class JSCollator;
class JSCollection;
class JSDateTimeFormat;
class JSDisplayNames;
class JSListFormat;
class JSLocale;
class JSNumberFormat;
class JSPluralRules;
class JSRegExpStringIterator;
class JSRelativeTimeFormat;
class JSSegmentIterator;
class JSSegmenter;
class JSSegments;
class JSV8BreakIterator;
class JSWeakCollection;
class JSFinalizationRegistry;
class JSWeakMap;
class JSWeakRef;
class JSWeakSet;
class ProfileDataFromFile;
class PromiseCapability;
class PromiseFulfillReactionJobTask;
class PromiseReaction;
class PromiseReactionJobTask;
class PromiseRejectReactionJobTask;
class Zone;
#define MAKE_FORWARD_DECLARATION(Name) class Name;
TORQUE_DEFINED_CLASS_LIST(MAKE_FORWARD_DECLARATION)
#undef MAKE_FORWARD_DECLARATION
template <typename T>
class Signature;
#define ENUM_ELEMENT(Name) k##Name,
#define ENUM_STRUCT_ELEMENT(NAME, Name, name) k##Name,
enum class ObjectType {
ENUM_ELEMENT(Object) //
ENUM_ELEMENT(Smi) //
ENUM_ELEMENT(TaggedIndex) //
ENUM_ELEMENT(HeapObject) //
OBJECT_TYPE_LIST(ENUM_ELEMENT) //
HEAP_OBJECT_TYPE_LIST(ENUM_ELEMENT) //
STRUCT_LIST(ENUM_STRUCT_ELEMENT) //
};
#undef ENUM_ELEMENT
#undef ENUM_STRUCT_ELEMENT
enum class CheckBounds { kAlways, kDebugOnly };
inline bool NeedsBoundsCheck(CheckBounds check_bounds) {
switch (check_bounds) {
case CheckBounds::kAlways:
return true;
case CheckBounds::kDebugOnly:
return DEBUG_BOOL;
}
}
enum class StoreToObjectWriteBarrier { kNone, kMap, kFull };
class AccessCheckNeeded;
class BigIntBase;
class BigIntWrapper;
class ClassBoilerplate;
class BooleanWrapper;
class CompilationCacheTable;
class Constructor;
class Filler;
class FunctionTemplateRareData;
class HeapNumber;
class InternalizedString;
class JSArgumentsObject;
class JSArrayBufferView;
class JSContextExtensionObject;
class JSError;
class JSSloppyArgumentsObject;
class MapCache;
class NativeContext;
class NumberWrapper;
class ScriptWrapper;
class SloppyArgumentsElements;
class StringWrapper;
class SymbolWrapper;
class Undetectable;
class UniqueName;
class WasmCapiFunctionData;
class WasmExceptionObject;
class WasmExceptionPackage;
class WasmExceptionTag;
class WasmExportedFunctionData;
class WasmGlobalObject;
class WasmIndirectFunctionTable;
class WasmJSFunctionData;
class WasmMemoryObject;
class WasmModuleObject;
class WasmTableObject;
template <class T>
struct ObjectTypeOf {};
#define OBJECT_TYPE_CASE(Name) \
template <> \
struct ObjectTypeOf<Name> { \
static const ObjectType value = ObjectType::k##Name; \
};
#define OBJECT_TYPE_STRUCT_CASE(NAME, Name, name) \
template <> \
struct ObjectTypeOf<Name> { \
static const ObjectType value = ObjectType::k##Name; \
};
#define OBJECT_TYPE_TEMPLATE_CASE(Name) \
template <class... Args> \
struct ObjectTypeOf<Name<Args...>> { \
static const ObjectType value = ObjectType::k##Name; \
};
OBJECT_TYPE_CASE(Object)
OBJECT_TYPE_CASE(Smi)
OBJECT_TYPE_CASE(TaggedIndex)
OBJECT_TYPE_CASE(HeapObject)
OBJECT_TYPE_LIST(OBJECT_TYPE_CASE)
HEAP_OBJECT_ORDINARY_TYPE_LIST(OBJECT_TYPE_CASE)
STRUCT_LIST(OBJECT_TYPE_STRUCT_CASE)
HEAP_OBJECT_TEMPLATE_TYPE_LIST(OBJECT_TYPE_TEMPLATE_CASE)
#undef OBJECT_TYPE_CASE
#undef OBJECT_TYPE_STRUCT_CASE
#undef OBJECT_TYPE_TEMPLATE_CASE
// {raw_value} must be a tagged Object.
// {raw_type} must be a tagged Smi.
// {raw_location} must be a tagged String.
// Returns a tagged Smi.
Address CheckObjectType(Address raw_value, Address raw_type,
Address raw_location);
namespace compiler {
class CallDescriptor;
class CodeAssemblerLabel;
class CodeAssemblerVariable;
template <class T>
class TypedCodeAssemblerVariable;
class CodeAssemblerState;
class JSGraph;
class Node;
class RawMachineAssembler;
class RawMachineLabel;
class SourcePositionTable;
using CodeAssemblerVariableList = ZoneVector<CodeAssemblerVariable*>;
using CodeAssemblerCallback = std::function<void()>;
template <class... Types>
class CodeAssemblerParameterizedLabel;
// This macro alias allows to use PairT<T1, T2> as a macro argument.
#define PAIR_TYPE(T1, T2) PairT<T1, T2>
#define CODE_ASSEMBLER_COMPARE_BINARY_OP_LIST(V) \
V(Float32Equal, BoolT, Float32T, Float32T) \
V(Float32LessThan, BoolT, Float32T, Float32T) \
V(Float32LessThanOrEqual, BoolT, Float32T, Float32T) \
V(Float32GreaterThan, BoolT, Float32T, Float32T) \
V(Float32GreaterThanOrEqual, BoolT, Float32T, Float32T) \
V(Float64Equal, BoolT, Float64T, Float64T) \
V(Float64NotEqual, BoolT, Float64T, Float64T) \
V(Float64LessThan, BoolT, Float64T, Float64T) \
V(Float64LessThanOrEqual, BoolT, Float64T, Float64T) \
V(Float64GreaterThan, BoolT, Float64T, Float64T) \
V(Float64GreaterThanOrEqual, BoolT, Float64T, Float64T) \
/* Use Word32Equal if you need Int32Equal */ \
V(Int32GreaterThan, BoolT, Word32T, Word32T) \
V(Int32GreaterThanOrEqual, BoolT, Word32T, Word32T) \
V(Int32LessThan, BoolT, Word32T, Word32T) \
V(Int32LessThanOrEqual, BoolT, Word32T, Word32T) \
/* Use WordEqual if you need IntPtrEqual */ \
V(IntPtrLessThan, BoolT, WordT, WordT) \
V(IntPtrLessThanOrEqual, BoolT, WordT, WordT) \
V(IntPtrGreaterThan, BoolT, WordT, WordT) \
V(IntPtrGreaterThanOrEqual, BoolT, WordT, WordT) \
/* Use Word32Equal if you need Uint32Equal */ \
V(Uint32LessThan, BoolT, Word32T, Word32T) \
V(Uint32LessThanOrEqual, BoolT, Word32T, Word32T) \
V(Uint32GreaterThan, BoolT, Word32T, Word32T) \
V(Uint32GreaterThanOrEqual, BoolT, Word32T, Word32T) \
/* Use WordEqual if you need UintPtrEqual */ \
V(UintPtrLessThan, BoolT, WordT, WordT) \
V(UintPtrLessThanOrEqual, BoolT, WordT, WordT) \
V(UintPtrGreaterThan, BoolT, WordT, WordT) \
V(UintPtrGreaterThanOrEqual, BoolT, WordT, WordT)
#define CODE_ASSEMBLER_BINARY_OP_LIST(V) \
CODE_ASSEMBLER_COMPARE_BINARY_OP_LIST(V) \
V(Float64Add, Float64T, Float64T, Float64T) \
V(Float64Sub, Float64T, Float64T, Float64T) \
V(Float64Mul, Float64T, Float64T, Float64T) \
V(Float64Div, Float64T, Float64T, Float64T) \
V(Float64Mod, Float64T, Float64T, Float64T) \
V(Float64Atan2, Float64T, Float64T, Float64T) \
V(Float64Pow, Float64T, Float64T, Float64T) \
V(Float64Max, Float64T, Float64T, Float64T) \
V(Float64Min, Float64T, Float64T, Float64T) \
V(Float64InsertLowWord32, Float64T, Float64T, Word32T) \
V(Float64InsertHighWord32, Float64T, Float64T, Word32T) \
V(IntPtrAdd, WordT, WordT, WordT) \
V(IntPtrSub, WordT, WordT, WordT) \
V(IntPtrMul, WordT, WordT, WordT) \
V(IntPtrDiv, IntPtrT, IntPtrT, IntPtrT) \
V(IntPtrAddWithOverflow, PAIR_TYPE(IntPtrT, BoolT), IntPtrT, IntPtrT) \
V(IntPtrSubWithOverflow, PAIR_TYPE(IntPtrT, BoolT), IntPtrT, IntPtrT) \
V(Int32Add, Word32T, Word32T, Word32T) \
V(Int32AddWithOverflow, PAIR_TYPE(Int32T, BoolT), Int32T, Int32T) \
V(Int32Sub, Word32T, Word32T, Word32T) \
V(Int32SubWithOverflow, PAIR_TYPE(Int32T, BoolT), Int32T, Int32T) \
V(Int32Mul, Word32T, Word32T, Word32T) \
V(Int32MulWithOverflow, PAIR_TYPE(Int32T, BoolT), Int32T, Int32T) \
V(Int32Div, Int32T, Int32T, Int32T) \
V(Int32Mod, Int32T, Int32T, Int32T) \
V(WordOr, WordT, WordT, WordT) \
V(WordAnd, WordT, WordT, WordT) \
V(WordXor, WordT, WordT, WordT) \
V(WordRor, WordT, WordT, IntegralT) \
V(WordShl, WordT, WordT, IntegralT) \
V(WordShr, WordT, WordT, IntegralT) \
V(WordSar, WordT, WordT, IntegralT) \
V(WordSarShiftOutZeros, WordT, WordT, IntegralT) \
V(Word32Or, Word32T, Word32T, Word32T) \
V(Word32And, Word32T, Word32T, Word32T) \
V(Word32Xor, Word32T, Word32T, Word32T) \
V(Word32Ror, Word32T, Word32T, Word32T) \
V(Word32Shl, Word32T, Word32T, Word32T) \
V(Word32Shr, Word32T, Word32T, Word32T) \
V(Word32Sar, Word32T, Word32T, Word32T) \
V(Word32SarShiftOutZeros, Word32T, Word32T, Word32T) \
V(Word64And, Word64T, Word64T, Word64T) \
V(Word64Or, Word64T, Word64T, Word64T) \
V(Word64Xor, Word64T, Word64T, Word64T) \
V(Word64Ror, Word64T, Word64T, Word64T) \
V(Word64Shl, Word64T, Word64T, Word64T) \
V(Word64Shr, Word64T, Word64T, Word64T) \
V(Word64Sar, Word64T, Word64T, Word64T)
TNode<Float64T> Float64Add(TNode<Float64T> a, TNode<Float64T> b);
#define CODE_ASSEMBLER_UNARY_OP_LIST(V) \
V(Float64Abs, Float64T, Float64T) \
V(Float64Acos, Float64T, Float64T) \
V(Float64Acosh, Float64T, Float64T) \
V(Float64Asin, Float64T, Float64T) \
V(Float64Asinh, Float64T, Float64T) \
V(Float64Atan, Float64T, Float64T) \
V(Float64Atanh, Float64T, Float64T) \
V(Float64Cos, Float64T, Float64T) \
V(Float64Cosh, Float64T, Float64T) \
V(Float64Exp, Float64T, Float64T) \
V(Float64Expm1, Float64T, Float64T) \
V(Float64Log, Float64T, Float64T) \
V(Float64Log1p, Float64T, Float64T) \
V(Float64Log2, Float64T, Float64T) \
V(Float64Log10, Float64T, Float64T) \
V(Float64Cbrt, Float64T, Float64T) \
V(Float64Neg, Float64T, Float64T) \
V(Float64Sin, Float64T, Float64T) \
V(Float64Sinh, Float64T, Float64T) \
V(Float64Sqrt, Float64T, Float64T) \
V(Float64Tan, Float64T, Float64T) \
V(Float64Tanh, Float64T, Float64T) \
V(Float64ExtractLowWord32, Uint32T, Float64T) \
V(Float64ExtractHighWord32, Uint32T, Float64T) \
V(BitcastTaggedToWord, IntPtrT, Object) \
V(BitcastTaggedToWordForTagAndSmiBits, IntPtrT, AnyTaggedT) \
V(BitcastMaybeObjectToWord, IntPtrT, MaybeObject) \
V(BitcastWordToTagged, Object, WordT) \
V(BitcastWordToTaggedSigned, Smi, WordT) \
V(TruncateFloat64ToFloat32, Float32T, Float64T) \
V(TruncateFloat64ToWord32, Uint32T, Float64T) \
V(TruncateInt64ToInt32, Int32T, Int64T) \
V(ChangeFloat32ToFloat64, Float64T, Float32T) \
V(ChangeFloat64ToUint32, Uint32T, Float64T) \
V(ChangeFloat64ToUint64, Uint64T, Float64T) \
V(ChangeInt32ToFloat64, Float64T, Int32T) \
V(ChangeInt32ToInt64, Int64T, Int32T) \
V(ChangeUint32ToFloat64, Float64T, Word32T) \
V(ChangeUint32ToUint64, Uint64T, Word32T) \
V(BitcastInt32ToFloat32, Float32T, Word32T) \
V(BitcastFloat32ToInt32, Uint32T, Float32T) \
V(RoundFloat64ToInt32, Int32T, Float64T) \
V(RoundInt32ToFloat32, Float32T, Int32T) \
V(Float64SilenceNaN, Float64T, Float64T) \
V(Float64RoundDown, Float64T, Float64T) \
V(Float64RoundUp, Float64T, Float64T) \
V(Float64RoundTiesEven, Float64T, Float64T) \
V(Float64RoundTruncate, Float64T, Float64T) \
V(Word32Clz, Int32T, Word32T) \
V(Word32BitwiseNot, Word32T, Word32T) \
V(WordNot, WordT, WordT) \
V(Int32AbsWithOverflow, PAIR_TYPE(Int32T, BoolT), Int32T) \
V(Int64AbsWithOverflow, PAIR_TYPE(Int64T, BoolT), Int64T) \
V(IntPtrAbsWithOverflow, PAIR_TYPE(IntPtrT, BoolT), IntPtrT) \
V(Word32BinaryNot, BoolT, Word32T) \
V(StackPointerGreaterThan, BoolT, WordT)
// A "public" interface used by components outside of compiler directory to
// create code objects with TurboFan's backend. This class is mostly a thin
// shim around the RawMachineAssembler, and its primary job is to ensure that
// the innards of the RawMachineAssembler and other compiler implementation
// details don't leak outside of the the compiler directory..
//
// V8 components that need to generate low-level code using this interface
// should include this header--and this header only--from the compiler
// directory (this is actually enforced). Since all interesting data
// structures are forward declared, it's not possible for clients to peek
// inside the compiler internals.
//
// In addition to providing isolation between TurboFan and code generation
// clients, CodeAssembler also provides an abstraction for creating variables
// and enhanced Label functionality to merge variable values along paths where
// they have differing values, including loops.
//
// The CodeAssembler itself is stateless (and instances are expected to be
// temporary-scoped and short-lived); all its state is encapsulated into
// a CodeAssemblerState instance.
class V8_EXPORT_PRIVATE CodeAssembler {
public:
explicit CodeAssembler(CodeAssemblerState* state) : state_(state) {}
~CodeAssembler();
static Handle<Code> GenerateCode(CodeAssemblerState* state,
const AssemblerOptions& options,
const ProfileDataFromFile* profile_data);
bool Is64() const;
bool Is32() const;
bool IsFloat64RoundUpSupported() const;
bool IsFloat64RoundDownSupported() const;
bool IsFloat64RoundTiesEvenSupported() const;
bool IsFloat64RoundTruncateSupported() const;
bool IsInt32AbsWithOverflowSupported() const;
bool IsInt64AbsWithOverflowSupported() const;
bool IsIntPtrAbsWithOverflowSupported() const;
// Shortened aliases for use in CodeAssembler subclasses.
using Label = CodeAssemblerLabel;
template <class T>
using TVariable = TypedCodeAssemblerVariable<T>;
using VariableList = CodeAssemblerVariableList;
// ===========================================================================
// Base Assembler
// ===========================================================================
template <class PreviousType, bool FromTyped>
class CheckedNode {
public:
#ifdef DEBUG
CheckedNode(Node* node, CodeAssembler* code_assembler, const char* location)
: node_(node), code_assembler_(code_assembler), location_(location) {}
#else
CheckedNode(compiler::Node* node, CodeAssembler*, const char*)
: node_(node) {}
#endif
template <class A>
operator TNode<A>() {
static_assert(
!std::is_same<A, MaybeObject>::value,
"Can't cast to MaybeObject, use explicit conversion functions. ");
static_assert(types_have_common_values<A, PreviousType>::value,
"Incompatible types: this cast can never succeed.");
static_assert(std::is_convertible<TNode<A>, TNode<Object>>::value,
"Coercion to untagged values cannot be "
"checked.");
static_assert(
!FromTyped ||
!std::is_convertible<TNode<PreviousType>, TNode<A>>::value,
"Unnecessary CAST: types are convertible.");
#ifdef DEBUG
if (FLAG_debug_code) {
if (std::is_same<PreviousType, MaybeObject>::value) {
code_assembler_->GenerateCheckMaybeObjectIsObject(node_, location_);
}
TNode<ExternalReference> function = code_assembler_->ExternalConstant(
ExternalReference::check_object_type());
code_assembler_->CallCFunction(
function, MachineType::AnyTagged(),
std::make_pair(MachineType::AnyTagged(), node_),
std::make_pair(MachineType::TaggedSigned(),
code_assembler_->SmiConstant(
static_cast<int>(ObjectTypeOf<A>::value))),
std::make_pair(MachineType::AnyTagged(),
code_assembler_->StringConstant(location_)));
}
#endif
return TNode<A>::UncheckedCast(node_);
}
template <class A>
operator SloppyTNode<A>() {
return implicit_cast<TNode<A>>(*this);
}
Node* node() const { return node_; }
private:
Node* node_;
#ifdef DEBUG
CodeAssembler* code_assembler_;
const char* location_;
#endif
};
template <class T>
TNode<T> UncheckedCast(Node* value) {
return TNode<T>::UncheckedCast(value);
}
template <class T, class U>
TNode<T> UncheckedCast(TNode<U> value) {
static_assert(types_have_common_values<T, U>::value,
"Incompatible types: this cast can never succeed.");
return TNode<T>::UncheckedCast(value);
}
// ReinterpretCast<T>(v) has the power to cast even when the type of v is
// unrelated to T. Use with care.
template <class T>
TNode<T> ReinterpretCast(Node* value) {
return TNode<T>::UncheckedCast(value);
}
CheckedNode<Object, false> Cast(Node* value, const char* location = "") {
return {value, this, location};
}
template <class T>
CheckedNode<T, true> Cast(TNode<T> value, const char* location = "") {
return {value, this, location};
}
#ifdef DEBUG
#define STRINGIFY(x) #x
#define TO_STRING_LITERAL(x) STRINGIFY(x)
#define CAST(x) \
Cast(x, "CAST(" #x ") at " __FILE__ ":" TO_STRING_LITERAL(__LINE__))
#define TORQUE_CAST(x) \
ca_.Cast(x, "CAST(" #x ") at " __FILE__ ":" TO_STRING_LITERAL(__LINE__))
#else
#define CAST(x) Cast(x)
#define TORQUE_CAST(x) ca_.Cast(x)
#endif
#ifdef DEBUG
void GenerateCheckMaybeObjectIsObject(Node* node, const char* location);
#endif
// Constants.
TNode<Int32T> Int32Constant(int32_t value);
TNode<Int64T> Int64Constant(int64_t value);
TNode<IntPtrT> IntPtrConstant(intptr_t value);
TNode<Uint32T> Uint32Constant(uint32_t value) {
return Unsigned(Int32Constant(bit_cast<int32_t>(value)));
}
TNode<UintPtrT> UintPtrConstant(uintptr_t value) {
return Unsigned(IntPtrConstant(bit_cast<intptr_t>(value)));
}
TNode<TaggedIndex> TaggedIndexConstant(intptr_t value);
TNode<RawPtrT> PointerConstant(void* value) {
return ReinterpretCast<RawPtrT>(IntPtrConstant(bit_cast<intptr_t>(value)));
}
TNode<Number> NumberConstant(double value);
TNode<Smi> SmiConstant(Smi value);
TNode<Smi> SmiConstant(int value);
template <typename E,
typename = typename std::enable_if<std::is_enum<E>::value>::type>
TNode<Smi> SmiConstant(E value) {
STATIC_ASSERT(sizeof(E) <= sizeof(int));
return SmiConstant(static_cast<int>(value));
}
TNode<HeapObject> UntypedHeapConstant(Handle<HeapObject> object);
template <class Type>
TNode<Type> HeapConstant(Handle<Type> object) {
return UncheckedCast<Type>(UntypedHeapConstant(object));
}
TNode<String> StringConstant(const char* str);
TNode<Oddball> BooleanConstant(bool value);
TNode<ExternalReference> ExternalConstant(ExternalReference address);
TNode<Float32T> Float32Constant(double value);
TNode<Float64T> Float64Constant(double value);
TNode<BoolT> Int32TrueConstant() {
return ReinterpretCast<BoolT>(Int32Constant(1));
}
TNode<BoolT> Int32FalseConstant() {
return ReinterpretCast<BoolT>(Int32Constant(0));
}
TNode<BoolT> BoolConstant(bool value) {
return value ? Int32TrueConstant() : Int32FalseConstant();
}
bool ToInt32Constant(Node* node, int32_t* out_value);
bool ToInt64Constant(Node* node, int64_t* out_value);
bool ToIntPtrConstant(Node* node, intptr_t* out_value);
bool ToSmiConstant(Node* node, Smi* out_value);
bool IsUndefinedConstant(TNode<Object> node);
bool IsNullConstant(TNode<Object> node);
TNode<Int32T> Signed(TNode<Word32T> x) { return UncheckedCast<Int32T>(x); }
TNode<IntPtrT> Signed(TNode<WordT> x) { return UncheckedCast<IntPtrT>(x); }
TNode<Uint32T> Unsigned(TNode<Word32T> x) {
return UncheckedCast<Uint32T>(x);
}
TNode<UintPtrT> Unsigned(TNode<WordT> x) {
return UncheckedCast<UintPtrT>(x);
}
static constexpr int kTargetParameterIndex = -1;
Node* Parameter(int value);
TNode<Context> GetJSContextParameter();
void Return(TNode<Object> value);
void Return(TNode<Object> value1, TNode<Object> value2);
void Return(TNode<Object> value1, TNode<Object> value2, TNode<Object> value3);
void Return(TNode<Int32T> value);
void Return(TNode<Uint32T> value);
void Return(TNode<WordT> value);
void Return(TNode<Float32T> value);
void Return(TNode<Float64T> value);
void Return(TNode<WordT> value1, TNode<WordT> value2);
void PopAndReturn(Node* pop, Node* value);
void ReturnIf(TNode<BoolT> condition, TNode<Object> value);
void AbortCSAAssert(Node* message);
void DebugBreak();
void Unreachable();
void Comment(const char* msg) {
if (!FLAG_code_comments) return;
Comment(std::string(msg));
}
void Comment(std::string msg);
template <class... Args>
void Comment(Args&&... args) {
if (!FLAG_code_comments) return;
std::ostringstream s;
USE((s << std::forward<Args>(args))...);
Comment(s.str());
}
void StaticAssert(TNode<BoolT> value,
const char* source = "unknown position");
// The following methods refer to source positions in CSA or Torque code
// compiled during mksnapshot, not JS compiled at runtime.
void SetSourcePosition(const char* file, int line);
void PushSourcePosition();
void PopSourcePosition();
class SourcePositionScope {
public:
explicit SourcePositionScope(CodeAssembler* ca) : ca_(ca) {
ca->PushSourcePosition();
}
~SourcePositionScope() { ca_->PopSourcePosition(); }
private:
CodeAssembler* ca_;
};
const std::vector<FileAndLine>& GetMacroSourcePositionStack() const;
void Bind(Label* label);
#if DEBUG
void Bind(Label* label, AssemblerDebugInfo debug_info);
#endif // DEBUG
void Goto(Label* label);
void GotoIf(TNode<IntegralT> condition, Label* true_label);
void GotoIfNot(TNode<IntegralT> condition, Label* false_label);
void Branch(TNode<IntegralT> condition, Label* true_label,
Label* false_label);
template <class T>
TNode<T> Uninitialized() {
return {};
}
template <class... T>
void Bind(CodeAssemblerParameterizedLabel<T...>* label, TNode<T>*... phis) {
Bind(label->plain_label());
label->CreatePhis(phis...);
}
template <class... T, class... Args>
void Branch(TNode<BoolT> condition,
CodeAssemblerParameterizedLabel<T...>* if_true,
CodeAssemblerParameterizedLabel<T...>* if_false, Args... args) {
if_true->AddInputs(args...);
if_false->AddInputs(args...);
Branch(condition, if_true->plain_label(), if_false->plain_label());
}
template <class... T, class... U>
void Branch(TNode<BoolT> condition,
CodeAssemblerParameterizedLabel<T...>* if_true,
std::vector<Node*> args_true,
CodeAssemblerParameterizedLabel<U...>* if_false,
std::vector<Node*> args_false) {
if_true->AddInputsVector(std::move(args_true));
if_false->AddInputsVector(std::move(args_false));
Branch(condition, if_true->plain_label(), if_false->plain_label());
}
template <class... T, class... Args>
void Goto(CodeAssemblerParameterizedLabel<T...>* label, Args... args) {
label->AddInputs(args...);
Goto(label->plain_label());
}
void Branch(TNode<BoolT> condition, const std::function<void()>& true_body,
const std::function<void()>& false_body);
void Branch(TNode<BoolT> condition, Label* true_label,
const std::function<void()>& false_body);
void Branch(TNode<BoolT> condition, const std::function<void()>& true_body,
Label* false_label);
void Switch(Node* index, Label* default_label, const int32_t* case_values,
Label** case_labels, size_t case_count);
// Access to the frame pointer
TNode<RawPtrT> LoadFramePointer();
TNode<RawPtrT> LoadParentFramePointer();
// Poison |value| on speculative paths.
TNode<Object> TaggedPoisonOnSpeculation(TNode<Object> value);
TNode<WordT> WordPoisonOnSpeculation(TNode<WordT> value);
// Load raw memory location.
Node* Load(MachineType type, Node* base,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
template <class Type>
TNode<Type> Load(MachineType type, TNode<RawPtr<Type>> base) {
DCHECK(
IsSubtype(type.representation(), MachineRepresentationOf<Type>::value));
return UncheckedCast<Type>(Load(type, static_cast<Node*>(base)));
}
Node* Load(MachineType type, Node* base, Node* offset,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
template <class Type>
TNode<Type> Load(Node* base,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
return UncheckedCast<Type>(
Load(MachineTypeOf<Type>::value, base, needs_poisoning));
}
template <class Type>
TNode<Type> Load(Node* base, SloppyTNode<WordT> offset,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
return UncheckedCast<Type>(
Load(MachineTypeOf<Type>::value, base, offset, needs_poisoning));
}
Node* AtomicLoad(MachineType type, Node* base, Node* offset);
// Load uncompressed tagged value from (most likely off JS heap) memory
// location.
TNode<Object> LoadFullTagged(
Node* base, LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
TNode<Object> LoadFullTagged(
Node* base, Node* offset,
LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
Node* LoadFromObject(MachineType type, TNode<HeapObject> object,
TNode<IntPtrT> offset);
// Load a value from the root array.
TNode<Object> LoadRoot(RootIndex root_index);
// Store value to raw memory location.
Node* Store(Node* base, Node* value);
Node* Store(Node* base, Node* offset, Node* value);
Node* StoreEphemeronKey(Node* base, Node* offset, Node* value);
Node* StoreNoWriteBarrier(MachineRepresentation rep, Node* base, Node* value);
Node* StoreNoWriteBarrier(MachineRepresentation rep, Node* base, Node* offset,
Node* value);
Node* UnsafeStoreNoWriteBarrier(MachineRepresentation rep, Node* base,
Node* value);
Node* UnsafeStoreNoWriteBarrier(MachineRepresentation rep, Node* base,
Node* offset, Node* value);
// Stores uncompressed tagged value to (most likely off JS heap) memory
// location without write barrier.
Node* StoreFullTaggedNoWriteBarrier(Node* base, Node* tagged_value);
Node* StoreFullTaggedNoWriteBarrier(Node* base, Node* offset,
Node* tagged_value);
// Optimized memory operations that map to Turbofan simplified nodes.
TNode<HeapObject> OptimizedAllocate(TNode<IntPtrT> size,
AllocationType allocation,
AllowLargeObjects allow_large_objects);
void StoreToObject(MachineRepresentation rep, TNode<HeapObject> object,
TNode<IntPtrT> offset, Node* value,
StoreToObjectWriteBarrier write_barrier);
void OptimizedStoreField(MachineRepresentation rep, TNode<HeapObject> object,
int offset, Node* value);
void OptimizedStoreFieldAssertNoWriteBarrier(MachineRepresentation rep,
TNode<HeapObject> object,
int offset, Node* value);
void OptimizedStoreFieldUnsafeNoWriteBarrier(MachineRepresentation rep,
TNode<HeapObject> object,
int offset, Node* value);
void OptimizedStoreMap(TNode<HeapObject> object, TNode<Map>);
// {value_high} is used for 64-bit stores on 32-bit platforms, must be
// nullptr in other cases.
Node* AtomicStore(MachineRepresentation rep, Node* base, Node* offset,
Node* value, Node* value_high = nullptr);
// Exchange value at raw memory location
Node* AtomicExchange(MachineType type, Node* base, Node* offset, Node* value,
Node* value_high = nullptr);
// Compare and Exchange value at raw memory location
Node* AtomicCompareExchange(MachineType type, Node* base, Node* offset,
Node* old_value, Node* new_value,
Node* old_value_high = nullptr,
Node* new_value_high = nullptr);
Node* AtomicAdd(MachineType type, Node* base, Node* offset, Node* value,
Node* value_high = nullptr);
Node* AtomicSub(MachineType type, Node* base, Node* offset, Node* value,
Node* value_high = nullptr);
Node* AtomicAnd(MachineType type, Node* base, Node* offset, Node* value,
Node* value_high = nullptr);
Node* AtomicOr(MachineType type, Node* base, Node* offset, Node* value,
Node* value_high = nullptr);
Node* AtomicXor(MachineType type, Node* base, Node* offset, Node* value,
Node* value_high = nullptr);
// Store a value to the root array.
Node* StoreRoot(RootIndex root_index, Node* value);
// Basic arithmetic operations.
#define DECLARE_CODE_ASSEMBLER_BINARY_OP(name, ResType, Arg1Type, Arg2Type) \
TNode<ResType> name(SloppyTNode<Arg1Type> a, SloppyTNode<Arg2Type> b);
CODE_ASSEMBLER_BINARY_OP_LIST(DECLARE_CODE_ASSEMBLER_BINARY_OP)
#undef DECLARE_CODE_ASSEMBLER_BINARY_OP
TNode<UintPtrT> WordShr(TNode<UintPtrT> left, TNode<IntegralT> right) {
return Unsigned(
WordShr(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<IntPtrT> WordSar(TNode<IntPtrT> left, TNode<IntegralT> right) {
return Signed(WordSar(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<IntPtrT> WordShl(TNode<IntPtrT> left, TNode<IntegralT> right) {
return Signed(WordShl(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<UintPtrT> WordShl(TNode<UintPtrT> left, TNode<IntegralT> right) {
return Unsigned(
WordShl(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Int32T> Word32Shl(TNode<Int32T> left, TNode<Int32T> right) {
return Signed(
Word32Shl(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Uint32T> Word32Shl(TNode<Uint32T> left, TNode<Uint32T> right) {
return Unsigned(
Word32Shl(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Uint32T> Word32Shr(TNode<Uint32T> left, TNode<Uint32T> right) {
return Unsigned(
Word32Shr(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Int32T> Word32Sar(TNode<Int32T> left, TNode<Int32T> right) {
return Signed(
Word32Sar(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<IntPtrT> WordAnd(TNode<IntPtrT> left, TNode<IntPtrT> right) {
return Signed(WordAnd(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<UintPtrT> WordAnd(TNode<UintPtrT> left, TNode<UintPtrT> right) {
return Unsigned(
WordAnd(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Int32T> Word32And(TNode<Int32T> left, TNode<Int32T> right) {
return Signed(
Word32And(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Uint32T> Word32And(TNode<Uint32T> left, TNode<Uint32T> right) {
return Unsigned(
Word32And(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Int32T> Word32Or(TNode<Int32T> left, TNode<Int32T> right) {
return Signed(
Word32Or(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Uint32T> Word32Or(TNode<Uint32T> left, TNode<Uint32T> right) {
return Unsigned(
Word32Or(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<BoolT> IntPtrEqual(TNode<WordT> left, TNode<WordT> right);
TNode<BoolT> WordEqual(TNode<WordT> left, TNode<WordT> right);
TNode<BoolT> WordNotEqual(TNode<WordT> left, TNode<WordT> right);
TNode<BoolT> Word32Equal(TNode<Word32T> left, TNode<Word32T> right);
TNode<BoolT> Word32NotEqual(TNode<Word32T> left, TNode<Word32T> right);
TNode<BoolT> Word64Equal(TNode<Word64T> left, TNode<Word64T> right);
TNode<BoolT> Word64NotEqual(TNode<Word64T> left, TNode<Word64T> right);
TNode<BoolT> Word32Or(TNode<BoolT> left, TNode<BoolT> right) {
return UncheckedCast<BoolT>(
Word32Or(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<BoolT> Word32And(TNode<BoolT> left, TNode<BoolT> right) {
return UncheckedCast<BoolT>(
Word32And(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Int32T> Int32Add(TNode<Int32T> left, TNode<Int32T> right) {
return Signed(
Int32Add(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Uint32T> Uint32Add(TNode<Uint32T> left, TNode<Uint32T> right) {
return Unsigned(
Int32Add(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Int32T> Int32Sub(TNode<Int32T> left, TNode<Int32T> right) {
return Signed(
Int32Sub(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<Int32T> Int32Mul(TNode<Int32T> left, TNode<Int32T> right) {
return Signed(
Int32Mul(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<IntPtrT> IntPtrAdd(TNode<IntPtrT> left, TNode<IntPtrT> right) {
return Signed(
IntPtrAdd(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<IntPtrT> IntPtrSub(TNode<IntPtrT> left, TNode<IntPtrT> right) {
return Signed(
IntPtrSub(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<IntPtrT> IntPtrMul(TNode<IntPtrT> left, TNode<IntPtrT> right) {
return Signed(
IntPtrMul(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<UintPtrT> UintPtrAdd(TNode<UintPtrT> left, TNode<UintPtrT> right) {
return Unsigned(
IntPtrAdd(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<UintPtrT> UintPtrSub(TNode<UintPtrT> left, TNode<UintPtrT> right) {
return Unsigned(
IntPtrSub(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<RawPtrT> RawPtrAdd(TNode<RawPtrT> left, TNode<IntPtrT> right) {
return ReinterpretCast<RawPtrT>(IntPtrAdd(left, right));
}
TNode<RawPtrT> RawPtrSub(TNode<RawPtrT> left, TNode<IntPtrT> right) {
return ReinterpretCast<RawPtrT>(IntPtrSub(left, right));
}
TNode<IntPtrT> RawPtrSub(TNode<RawPtrT> left, TNode<RawPtrT> right) {
return Signed(
IntPtrSub(static_cast<Node*>(left), static_cast<Node*>(right)));
}
TNode<WordT> WordShl(SloppyTNode<WordT> value, int shift);
TNode<WordT> WordShr(SloppyTNode<WordT> value, int shift);
TNode<WordT> WordSar(SloppyTNode<WordT> value, int shift);
TNode<IntPtrT> WordShr(TNode<IntPtrT> value, int shift) {
return UncheckedCast<IntPtrT>(WordShr(static_cast<Node*>(value), shift));
}
TNode<IntPtrT> WordSar(TNode<IntPtrT> value, int shift) {
return UncheckedCast<IntPtrT>(WordSar(static_cast<Node*>(value), shift));
}
TNode<Word32T> Word32Shr(SloppyTNode<Word32T> value, int shift);
TNode<Word32T> Word32Sar(SloppyTNode<Word32T> value, int shift);
// Unary
#define DECLARE_CODE_ASSEMBLER_UNARY_OP(name, ResType, ArgType) \
TNode<ResType> name(SloppyTNode<ArgType> a);
CODE_ASSEMBLER_UNARY_OP_LIST(DECLARE_CODE_ASSEMBLER_UNARY_OP)
#undef DECLARE_CODE_ASSEMBLER_UNARY_OP
template <class Dummy = void>
TNode<IntPtrT> BitcastTaggedToWord(TNode<Smi> node) {
static_assert(sizeof(Dummy) < 0,
"Should use BitcastTaggedToWordForTagAndSmiBits instead.");
}
// Changes a double to an inptr_t for pointer arithmetic outside of Smi range.
// Assumes that the double can be exactly represented as an int.
TNode<IntPtrT> ChangeFloat64ToIntPtr(TNode<Float64T> value);
TNode<UintPtrT> ChangeFloat64ToUintPtr(TNode<Float64T> value);
// Same in the opposite direction.
TNode<Float64T> ChangeUintPtrToFloat64(TNode<UintPtrT> value);
// Changes an intptr_t to a double, e.g. for storing an element index
// outside Smi range in a HeapNumber. Lossless on 32-bit,
// rounds on 64-bit (which doesn't affect valid element indices).
TNode<Float64T> RoundIntPtrToFloat64(Node* value);
// No-op on 32-bit, otherwise zero extend.
TNode<UintPtrT> ChangeUint32ToWord(TNode<Word32T> value);
// No-op on 32-bit, otherwise sign extend.
TNode<IntPtrT> ChangeInt32ToIntPtr(TNode<Word32T> value);
// Truncates a float to a 32-bit integer. If the float is outside of 32-bit
// range, make sure that overflow detection is easy. In particular, return
// int_min instead of int_max on arm platforms by using parameter
// kSetOverflowToMin.
TNode<Int32T> TruncateFloat32ToInt32(SloppyTNode<Float32T> value);
// No-op that guarantees that the value is kept alive till this point even
// if GC happens.
Node* Retain(Node* value);
// Projections
Node* Projection(int index, Node* value);
template <int index, class T1, class T2>
TNode<typename std::tuple_element<index, std::tuple<T1, T2>>::type>
Projection(TNode<PairT<T1, T2>> value) {
return UncheckedCast<
typename std::tuple_element<index, std::tuple<T1, T2>>::type>(
Projection(index, value));
}
// Calls
template <class... TArgs>
TNode<Object> CallRuntime(Runtime::FunctionId function, TNode<Object> context,
TArgs... args) {
return CallRuntimeImpl(function, context,
{implicit_cast<TNode<Object>>(args)...});
}
template <class... TArgs>
void TailCallRuntime(Runtime::FunctionId function, TNode<Object> context,
TArgs... args) {
int argc = static_cast<int>(sizeof...(args));
TNode<Int32T> arity = Int32Constant(argc);
return TailCallRuntimeImpl(function, arity, context,
{implicit_cast<TNode<Object>>(args)...});
}
template <class... TArgs>
void TailCallRuntime(Runtime::FunctionId function, TNode<Int32T> arity,
TNode<Object> context, TArgs... args) {
return TailCallRuntimeImpl(function, arity, context,
{implicit_cast<TNode<Object>>(args)...});
}
//
// If context passed to CallStub is nullptr, it won't be passed to the stub.
//
template <class T = Object, class... TArgs>
TNode<T> CallStub(Callable const& callable, TNode<Object> context,
TArgs... args) {
TNode<Code> target = HeapConstant(callable.code());
return CallStub<T>(callable.descriptor(), target, context, args...);
}
template <class T = Object, class... TArgs>
TNode<T> CallStub(const CallInterfaceDescriptor& descriptor,
TNode<Code> target, TNode<Object> context, TArgs... args) {
return UncheckedCast<T>(CallStubR(StubCallMode::kCallCodeObject, descriptor,
1, target, context, args...));
}
template <class... TArgs>
Node* CallStubR(StubCallMode call_mode,
const CallInterfaceDescriptor& descriptor, size_t result_size,
TNode<Object> target, TNode<Object> context, TArgs... args) {
return CallStubRImpl(call_mode, descriptor, result_size, target, context,
{args...});
}
Node* CallStubN(StubCallMode call_mode,
const CallInterfaceDescriptor& descriptor, size_t result_size,
int input_count, Node* const* inputs);
template <class T = Object, class... TArgs>
TNode<T> CallBuiltinPointer(const CallInterfaceDescriptor& descriptor,
TNode<BuiltinPtr> target, TNode<Object> context,
TArgs... args) {
return UncheckedCast<T>(CallStubR(StubCallMode::kCallBuiltinPointer,
descriptor, 1, target, context, args...));
}
template <class... TArgs>
void TailCallStub(Callable const& callable, TNode<Object> context,
TArgs... args) {
TNode<Code> target = HeapConstant(callable.code());
TailCallStub(callable.descriptor(), target, context, args...);
}
template <class... TArgs>
void TailCallStub(const CallInterfaceDescriptor& descriptor,
TNode<Code> target, TNode<Object> context, TArgs... args) {
TailCallStubImpl(descriptor, target, context, {args...});
}
template <class... TArgs>
void TailCallBytecodeDispatch(const CallInterfaceDescriptor& descriptor,
TNode<RawPtrT> target, TArgs... args);
template <class... TArgs>
void TailCallStubThenBytecodeDispatch(
const CallInterfaceDescriptor& descriptor, Node* target, Node* context,
TArgs... args) {
TailCallStubThenBytecodeDispatchImpl(descriptor, target, context,
{args...});
}
// Tailcalls to the given code object with JSCall linkage. The JS arguments
// (including receiver) are supposed to be already on the stack.
// This is a building block for implementing trampoline stubs that are
// installed instead of code objects with JSCall linkage.
// Note that no arguments adaption is going on here - all the JavaScript
// arguments are left on the stack unmodified. Therefore, this tail call can
// only be used after arguments adaptation has been performed already.
void TailCallJSCode(TNode<Code> code, TNode<Context> context,
TNode<JSFunction> function, TNode<Object> new_target,
TNode<Int32T> arg_count);
template <class... TArgs>
TNode<Object> CallJS(Callable const& callable, Node* context, Node* function,
Node* receiver, TArgs... args) {
int argc = static_cast<int>(sizeof...(args));
TNode<Int32T> arity = Int32Constant(argc);
TNode<Code> target = HeapConstant(callable.code());
return CAST(CallJSStubImpl(callable.descriptor(), target, CAST(context),
CAST(function), TNode<Object>(), arity,
{receiver, args...}));
}
template <class... TArgs>
Node* ConstructJSWithTarget(Callable const& callable, Node* context,
Node* function, Node* new_target, TArgs... args) {
int argc = static_cast<int>(sizeof...(args));
TNode<Int32T> arity = Int32Constant(argc);
TNode<Object> receiver = LoadRoot(RootIndex::kUndefinedValue);
TNode<Code> target = HeapConstant(callable.code());
return CallJSStubImpl(callable.descriptor(), target, CAST(context),
CAST(function), CAST(new_target), arity,
{receiver, args...});
}
template <class... TArgs>
Node* ConstructJS(Callable const& callable, Node* context, Node* new_target,
TArgs... args) {
return ConstructJSWithTarget(callable, context, new_target, new_target,
args...);
}
Node* CallCFunctionN(Signature<MachineType>* signature, int input_count,
Node* const* inputs);
// Type representing C function argument with type info.
using CFunctionArg = std::pair<MachineType, Node*>;
// Call to a C function.
template <class... CArgs>
Node* CallCFunction(Node* function, MachineType return_type, CArgs... cargs) {
static_assert(v8::internal::conjunction<
std::is_convertible<CArgs, CFunctionArg>...>::value,
"invalid argument types");
return CallCFunction(function, return_type, {cargs...});
}
// Call to a C function without a function discriptor on AIX.
template <class... CArgs>
Node* CallCFunctionWithoutFunctionDescriptor(Node* function,
MachineType return_type,
CArgs... cargs) {
static_assert(v8::internal::conjunction<
std::is_convertible<CArgs, CFunctionArg>...>::value,
"invalid argument types");
return CallCFunctionWithoutFunctionDescriptor(function, return_type,
{cargs...});
}
// Call to a C function, while saving/restoring caller registers.
template <class... CArgs>
Node* CallCFunctionWithCallerSavedRegisters(Node* function,
MachineType return_type,
SaveFPRegsMode mode,
CArgs... cargs) {
static_assert(v8::internal::conjunction<
std::is_convertible<CArgs, CFunctionArg>...>::value,
"invalid argument types");
return CallCFunctionWithCallerSavedRegisters(function, return_type, mode,
{cargs...});
}
// Helpers which delegate to RawMachineAssembler.
Factory* factory() const;
Isolate* isolate() const;
Zone* zone() const;
CodeAssemblerState* state() { return state_; }
void BreakOnNode(int node_id);
bool UnalignedLoadSupported(MachineRepresentation rep) const;
bool UnalignedStoreSupported(MachineRepresentation rep) const;
bool IsExceptionHandlerActive() const;
protected:
void RegisterCallGenerationCallbacks(
const CodeAssemblerCallback& call_prologue,
const CodeAssemblerCallback& call_epilogue);
void UnregisterCallGenerationCallbacks();
bool Word32ShiftIsSafe() const;
PoisoningMitigationLevel poisoning_level() const;
bool IsJSFunctionCall() const;
private:
void HandleException(Node* result);
Node* CallCFunction(Node* function, MachineType return_type,
std::initializer_list<CFunctionArg> args);
Node* CallCFunctionWithoutFunctionDescriptor(
Node* function, MachineType return_type,
std::initializer_list<CFunctionArg> args);
Node* CallCFunctionWithCallerSavedRegisters(
Node* function, MachineType return_type, SaveFPRegsMode mode,
std::initializer_list<CFunctionArg> args);
TNode<Object> CallRuntimeImpl(Runtime::FunctionId function,
TNode<Object> context,
std::initializer_list<TNode<Object>> args);
void TailCallRuntimeImpl(Runtime::FunctionId function, TNode<Int32T> arity,
TNode<Object> context,
std::initializer_list<TNode<Object>> args);
void TailCallStubImpl(const CallInterfaceDescriptor& descriptor,
TNode<Code> target, TNode<Object> context,
std::initializer_list<Node*> args);
void TailCallStubThenBytecodeDispatchImpl(
const CallInterfaceDescriptor& descriptor, Node* target, Node* context,
std::initializer_list<Node*> args);
Node* CallStubRImpl(StubCallMode call_mode,
const CallInterfaceDescriptor& descriptor,
size_t result_size, TNode<Object> target,
TNode<Object> context, std::initializer_list<Node*> args);
Node* CallJSStubImpl(const CallInterfaceDescriptor& descriptor,
TNode<Object> target, TNode<Object> context,
TNode<Object> function, TNode<Object> new_target,
TNode<Int32T> arity, std::initializer_list<Node*> args);
// These two don't have definitions and are here only for catching use cases
// where the cast is not necessary.
TNode<Int32T> Signed(TNode<Int32T> x);
TNode<Uint32T> Unsigned(TNode<Uint32T> x);
RawMachineAssembler* raw_assembler() const;
JSGraph* jsgraph() const;
// Calls respective callback registered in the state.
void CallPrologue();
void CallEpilogue();
CodeAssemblerState* state_;
DISALLOW_COPY_AND_ASSIGN(CodeAssembler);
};
// TODO(solanes, v8:6949): this class should be merged into
// TypedCodeAssemblerVariable. It's required to be separate for
// CodeAssemblerVariableLists.
class V8_EXPORT_PRIVATE CodeAssemblerVariable {
public:
Node* value() const;
MachineRepresentation rep() const;
bool IsBound() const;
protected:
explicit CodeAssemblerVariable(CodeAssembler* assembler,
MachineRepresentation rep);
CodeAssemblerVariable(CodeAssembler* assembler, MachineRepresentation rep,
Node* initial_value);
#if DEBUG
CodeAssemblerVariable(CodeAssembler* assembler, AssemblerDebugInfo debug_info,
MachineRepresentation rep);
CodeAssemblerVariable(CodeAssembler* assembler, AssemblerDebugInfo debug_info,
MachineRepresentation rep, Node* initial_value);
#endif // DEBUG
~CodeAssemblerVariable();
void Bind(Node* value);
private:
class Impl;
friend class CodeAssemblerLabel;
friend class CodeAssemblerState;
friend std::ostream& operator<<(std::ostream&, const Impl&);
friend std::ostream& operator<<(std::ostream&, const CodeAssemblerVariable&);
struct ImplComparator {
bool operator()(const CodeAssemblerVariable::Impl* a,
const CodeAssemblerVariable::Impl* b) const;
};
Impl* impl_;
CodeAssemblerState* state_;
DISALLOW_COPY_AND_ASSIGN(CodeAssemblerVariable);
};
std::ostream& operator<<(std::ostream&, const CodeAssemblerVariable&);
std::ostream& operator<<(std::ostream&, const CodeAssemblerVariable::Impl&);
template <class T>
class TypedCodeAssemblerVariable : public CodeAssemblerVariable {
public:
TypedCodeAssemblerVariable(TNode<T> initial_value, CodeAssembler* assembler)
: CodeAssemblerVariable(assembler, PhiMachineRepresentationOf<T>,
initial_value) {}
explicit TypedCodeAssemblerVariable(CodeAssembler* assembler)
: CodeAssemblerVariable(assembler, PhiMachineRepresentationOf<T>) {}
#if DEBUG
TypedCodeAssemblerVariable(AssemblerDebugInfo debug_info,
CodeAssembler* assembler)
: CodeAssemblerVariable(assembler, debug_info,
PhiMachineRepresentationOf<T>) {}
TypedCodeAssemblerVariable(AssemblerDebugInfo debug_info,
TNode<T> initial_value, CodeAssembler* assembler)
: CodeAssemblerVariable(assembler, debug_info,
PhiMachineRepresentationOf<T>, initial_value) {}
#endif // DEBUG
TNode<T> value() const {
return TNode<T>::UncheckedCast(CodeAssemblerVariable::value());
}
void operator=(TNode<T> value) { Bind(value); }
void operator=(const TypedCodeAssemblerVariable<T>& variable) {
Bind(variable.value());
}
private:
using CodeAssemblerVariable::Bind;
};
class V8_EXPORT_PRIVATE CodeAssemblerLabel {
public:
enum Type { kDeferred, kNonDeferred };
explicit CodeAssemblerLabel(
CodeAssembler* assembler,
CodeAssemblerLabel::Type type = CodeAssemblerLabel::kNonDeferred)
: CodeAssemblerLabel(assembler, 0, nullptr, type) {}
CodeAssemblerLabel(
CodeAssembler* assembler,
const CodeAssemblerVariableList& merged_variables,
CodeAssemblerLabel::Type type = CodeAssemblerLabel::kNonDeferred)
: CodeAssemblerLabel(assembler, merged_variables.size(),
&(merged_variables[0]), type) {}
CodeAssemblerLabel(
CodeAssembler* assembler, size_t count,
CodeAssemblerVariable* const* vars,
CodeAssemblerLabel::Type type = CodeAssemblerLabel::kNonDeferred);
CodeAssemblerLabel(
CodeAssembler* assembler,
std::initializer_list<CodeAssemblerVariable*> vars,
CodeAssemblerLabel::Type type = CodeAssemblerLabel::kNonDeferred)
: CodeAssemblerLabel(assembler, vars.size(), vars.begin(), type) {}
CodeAssemblerLabel(
CodeAssembler* assembler, CodeAssemblerVariable* merged_variable,
CodeAssemblerLabel::Type type = CodeAssemblerLabel::kNonDeferred)
: CodeAssemblerLabel(assembler, 1, &merged_variable, type) {}
~CodeAssemblerLabel();
inline bool is_bound() const { return bound_; }
inline bool is_used() const { return merge_count_ != 0; }
private:
friend class CodeAssembler;
void Bind();
#if DEBUG
void Bind(AssemblerDebugInfo debug_info);
#endif // DEBUG
void UpdateVariablesAfterBind();
void MergeVariables();
bool bound_;
size_t merge_count_;
CodeAssemblerState* state_;
RawMachineLabel* label_;
// Map of variables that need to be merged to their phi nodes (or placeholders
// for those phis).
std::map<CodeAssemblerVariable::Impl*, Node*,
CodeAssemblerVariable::ImplComparator>
variable_phis_;
// Map of variables to the list of value nodes that have been added from each
// merge path in their order of merging.
std::map<CodeAssemblerVariable::Impl*, std::vector<Node*>,
CodeAssemblerVariable::ImplComparator>
variable_merges_;
// Cannot be copied because the destructor explicitly call the destructor of
// the underlying {RawMachineLabel}, hence only one pointer can point to it.
DISALLOW_COPY_AND_ASSIGN(CodeAssemblerLabel);
};
class CodeAssemblerParameterizedLabelBase {
public:
bool is_used() const { return plain_label_.is_used(); }
explicit CodeAssemblerParameterizedLabelBase(CodeAssembler* assembler,
size_t arity,
CodeAssemblerLabel::Type type)
: state_(assembler->state()),
phi_inputs_(arity),
plain_label_(assembler, type) {}
protected:
CodeAssemblerLabel* plain_label() { return &plain_label_; }
void AddInputs(std::vector<Node*> inputs);
Node* CreatePhi(MachineRepresentation rep, const std::vector<Node*>& inputs);
const std::vector<Node*>& CreatePhis(
std::vector<MachineRepresentation> representations);
private:
CodeAssemblerState* state_;
std::vector<std::vector<Node*>> phi_inputs_;
std::vector<Node*> phi_nodes_;
CodeAssemblerLabel plain_label_;
};
template <class... Types>
class CodeAssemblerParameterizedLabel
: public CodeAssemblerParameterizedLabelBase {
public:
static constexpr size_t kArity = sizeof...(Types);
explicit CodeAssemblerParameterizedLabel(CodeAssembler* assembler,
CodeAssemblerLabel::Type type)
: CodeAssemblerParameterizedLabelBase(assembler, kArity, type) {}
private:
friend class CodeAssembler;
void AddInputsVector(std::vector<Node*> inputs) {
CodeAssemblerParameterizedLabelBase::AddInputs(std::move(inputs));
}
void AddInputs(TNode<Types>... inputs) {
CodeAssemblerParameterizedLabelBase::AddInputs(
std::vector<Node*>{inputs...});
}
void CreatePhis(TNode<Types>*... results) {
const std::vector<Node*>& phi_nodes =
CodeAssemblerParameterizedLabelBase::CreatePhis(
{PhiMachineRepresentationOf<Types>...});
auto it = phi_nodes.begin();
USE(it);
ITERATE_PACK(AssignPhi(results, *(it++)));
}
template <class T>
static void AssignPhi(TNode<T>* result, Node* phi) {
if (phi != nullptr) *result = TNode<T>::UncheckedCast(phi);
}
};
using CodeAssemblerExceptionHandlerLabel =
CodeAssemblerParameterizedLabel<Object>;
class V8_EXPORT_PRIVATE CodeAssemblerState {
public:
// Create with CallStub linkage.
// |result_size| specifies the number of results returned by the stub.
// TODO(rmcilroy): move result_size to the CallInterfaceDescriptor.
CodeAssemblerState(Isolate* isolate, Zone* zone,
const CallInterfaceDescriptor& descriptor, CodeKind kind,
const char* name, PoisoningMitigationLevel poisoning_level,
int32_t builtin_index = Builtins::kNoBuiltinId);
// Create with JSCall linkage.
CodeAssemblerState(Isolate* isolate, Zone* zone, int parameter_count,
CodeKind kind, const char* name,
PoisoningMitigationLevel poisoning_level,
int32_t builtin_index = Builtins::kNoBuiltinId);
~CodeAssemblerState();
const char* name() const { return name_; }
int parameter_count() const;
#if DEBUG
void PrintCurrentBlock(std::ostream& os);
#endif // DEBUG
bool InsideBlock();
void SetInitialDebugInformation(const char* msg, const char* file, int line);
private:
friend class CodeAssembler;
friend class CodeAssemblerLabel;
friend class CodeAssemblerVariable;
friend class CodeAssemblerTester;
friend class CodeAssemblerParameterizedLabelBase;
friend class ScopedExceptionHandler;
CodeAssemblerState(Isolate* isolate, Zone* zone,
CallDescriptor* call_descriptor, CodeKind kind,
const char* name, PoisoningMitigationLevel poisoning_level,
int32_t builtin_index);
void PushExceptionHandler(CodeAssemblerExceptionHandlerLabel* label);
void PopExceptionHandler();
std::unique_ptr<RawMachineAssembler> raw_assembler_;
CodeKind kind_;
const char* name_;
int32_t builtin_index_;
bool code_generated_;
ZoneSet<CodeAssemblerVariable::Impl*, CodeAssemblerVariable::ImplComparator>
variables_;
CodeAssemblerCallback call_prologue_;
CodeAssemblerCallback call_epilogue_;
std::vector<CodeAssemblerExceptionHandlerLabel*> exception_handler_labels_;
using VariableId = uint32_t;
VariableId next_variable_id_ = 0;
JSGraph* jsgraph_;
// Only used by CodeStubAssembler builtins.
std::vector<FileAndLine> macro_call_stack_;
VariableId NextVariableId() { return next_variable_id_++; }
DISALLOW_COPY_AND_ASSIGN(CodeAssemblerState);
};
class V8_EXPORT_PRIVATE ScopedExceptionHandler {
public:
ScopedExceptionHandler(CodeAssembler* assembler,
CodeAssemblerExceptionHandlerLabel* label);
// Use this constructor for compatability/ports of old CSA code only. New code
// should use the CodeAssemblerExceptionHandlerLabel version.
ScopedExceptionHandler(CodeAssembler* assembler, CodeAssemblerLabel* label,
TypedCodeAssemblerVariable<Object>* exception);
~ScopedExceptionHandler();
private:
bool has_handler_;
CodeAssembler* assembler_;
CodeAssemblerLabel* compatibility_label_;
std::unique_ptr<CodeAssemblerExceptionHandlerLabel> label_;
TypedCodeAssemblerVariable<Object>* exception_;
};
} // namespace compiler
#if defined(V8_HOST_ARCH_32_BIT)
#define BINT_IS_SMI
using BInt = Smi;
#elif defined(V8_HOST_ARCH_64_BIT)
#define BINT_IS_INTPTR
using BInt = IntPtrT;
#else
#error Unknown architecture.
#endif
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_CODE_ASSEMBLER_H_