blob: 5453e08aa5bb9bbdb79a35a38e3ce00cda06194b [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_NODE_MATCHERS_H_
#define V8_COMPILER_NODE_MATCHERS_H_
#include <cmath>
#include "src/base/compiler-specific.h"
#include "src/codegen/external-reference.h"
#include "src/common/globals.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "src/numbers/double.h"
#include "src/objects/heap-object.h"
namespace v8 {
namespace internal {
namespace compiler {
class JSHeapBroker;
// A pattern matcher for nodes.
struct NodeMatcher {
explicit NodeMatcher(Node* node) : node_(node) {}
Node* node() const { return node_; }
const Operator* op() const { return node()->op(); }
IrOpcode::Value opcode() const { return node()->opcode(); }
bool HasProperty(Operator::Property property) const {
return op()->HasProperty(property);
}
Node* InputAt(int index) const { return node()->InputAt(index); }
bool Equals(const Node* node) const { return node_ == node; }
bool IsComparison() const;
#define DEFINE_IS_OPCODE(Opcode) \
bool Is##Opcode() const { return opcode() == IrOpcode::k##Opcode; }
ALL_OP_LIST(DEFINE_IS_OPCODE)
#undef DEFINE_IS_OPCODE
private:
Node* node_;
};
// A pattern matcher for abitrary value constants.
template <typename T, IrOpcode::Value kOpcode>
struct ValueMatcher : public NodeMatcher {
using ValueType = T;
explicit ValueMatcher(Node* node)
: NodeMatcher(node), value_(), has_value_(opcode() == kOpcode) {
if (has_value_) {
value_ = OpParameter<T>(node->op());
}
}
bool HasValue() const { return has_value_; }
const T& Value() const {
DCHECK(HasValue());
return value_;
}
private:
T value_;
bool has_value_;
};
template <>
inline ValueMatcher<uint32_t, IrOpcode::kInt32Constant>::ValueMatcher(
Node* node)
: NodeMatcher(node),
value_(),
has_value_(opcode() == IrOpcode::kInt32Constant) {
if (has_value_) {
value_ = static_cast<uint32_t>(OpParameter<int32_t>(node->op()));
}
}
template <>
inline ValueMatcher<int64_t, IrOpcode::kInt64Constant>::ValueMatcher(Node* node)
: NodeMatcher(node), value_(), has_value_(false) {
if (opcode() == IrOpcode::kInt32Constant) {
value_ = OpParameter<int32_t>(node->op());
has_value_ = true;
} else if (opcode() == IrOpcode::kInt64Constant) {
value_ = OpParameter<int64_t>(node->op());
has_value_ = true;
}
}
template <>
inline ValueMatcher<uint64_t, IrOpcode::kInt64Constant>::ValueMatcher(
Node* node)
: NodeMatcher(node), value_(), has_value_(false) {
if (opcode() == IrOpcode::kInt32Constant) {
value_ = static_cast<uint32_t>(OpParameter<int32_t>(node->op()));
has_value_ = true;
} else if (opcode() == IrOpcode::kInt64Constant) {
value_ = static_cast<uint64_t>(OpParameter<int64_t>(node->op()));
has_value_ = true;
}
}
// A pattern matcher for integer constants.
template <typename T, IrOpcode::Value kOpcode>
struct IntMatcher final : public ValueMatcher<T, kOpcode> {
explicit IntMatcher(Node* node) : ValueMatcher<T, kOpcode>(node) {}
bool Is(const T& value) const {
return this->HasValue() && this->Value() == value;
}
bool IsInRange(const T& low, const T& high) const {
return this->HasValue() && low <= this->Value() && this->Value() <= high;
}
bool IsMultipleOf(T n) const {
return this->HasValue() && (this->Value() % n) == 0;
}
bool IsPowerOf2() const {
return this->HasValue() && this->Value() > 0 &&
(this->Value() & (this->Value() - 1)) == 0;
}
bool IsNegativePowerOf2() const {
return this->HasValue() && this->Value() < 0 &&
((this->Value() == kMinInt) ||
(-this->Value() & (-this->Value() - 1)) == 0);
}
bool IsNegative() const { return this->HasValue() && this->Value() < 0; }
};
using Int32Matcher = IntMatcher<int32_t, IrOpcode::kInt32Constant>;
using Uint32Matcher = IntMatcher<uint32_t, IrOpcode::kInt32Constant>;
using Int64Matcher = IntMatcher<int64_t, IrOpcode::kInt64Constant>;
using Uint64Matcher = IntMatcher<uint64_t, IrOpcode::kInt64Constant>;
#if V8_HOST_ARCH_32_BIT
using IntPtrMatcher = Int32Matcher;
using UintPtrMatcher = Uint32Matcher;
#else
using IntPtrMatcher = Int64Matcher;
using UintPtrMatcher = Uint64Matcher;
#endif
// A pattern matcher for floating point constants.
template <typename T, IrOpcode::Value kOpcode>
struct FloatMatcher final : public ValueMatcher<T, kOpcode> {
explicit FloatMatcher(Node* node) : ValueMatcher<T, kOpcode>(node) {}
bool Is(const T& value) const {
return this->HasValue() && this->Value() == value;
}
bool IsInRange(const T& low, const T& high) const {
return this->HasValue() && low <= this->Value() && this->Value() <= high;
}
bool IsMinusZero() const {
return this->Is(0.0) && std::signbit(this->Value());
}
bool IsNegative() const { return this->HasValue() && this->Value() < 0.0; }
bool IsNaN() const { return this->HasValue() && std::isnan(this->Value()); }
bool IsZero() const { return this->Is(0.0) && !std::signbit(this->Value()); }
bool IsNormal() const {
return this->HasValue() && std::isnormal(this->Value());
}
bool IsInteger() const {
return this->HasValue() && std::nearbyint(this->Value()) == this->Value();
}
bool IsPositiveOrNegativePowerOf2() const {
if (!this->HasValue() || (this->Value() == 0.0)) {
return false;
}
Double value = Double(this->Value());
return !value.IsInfinite() && base::bits::IsPowerOfTwo(value.Significand());
}
};
using Float32Matcher = FloatMatcher<float, IrOpcode::kFloat32Constant>;
using Float64Matcher = FloatMatcher<double, IrOpcode::kFloat64Constant>;
using NumberMatcher = FloatMatcher<double, IrOpcode::kNumberConstant>;
// A pattern matcher for heap object constants.
struct HeapObjectMatcher final
: public ValueMatcher<Handle<HeapObject>, IrOpcode::kHeapConstant> {
explicit HeapObjectMatcher(Node* node)
: ValueMatcher<Handle<HeapObject>, IrOpcode::kHeapConstant>(node) {}
bool Is(Handle<HeapObject> const& value) const {
return this->HasValue() && this->Value().address() == value.address();
}
HeapObjectRef Ref(JSHeapBroker* broker) const {
return HeapObjectRef(broker, this->Value());
}
};
// A pattern matcher for external reference constants.
struct ExternalReferenceMatcher final
: public ValueMatcher<ExternalReference, IrOpcode::kExternalConstant> {
explicit ExternalReferenceMatcher(Node* node)
: ValueMatcher<ExternalReference, IrOpcode::kExternalConstant>(node) {}
bool Is(const ExternalReference& value) const {
return this->HasValue() && this->Value() == value;
}
};
// For shorter pattern matching code, this struct matches the inputs to
// machine-level load operations.
template <typename Object>
struct LoadMatcher : public NodeMatcher {
explicit LoadMatcher(Node* node)
: NodeMatcher(node), object_(InputAt(0)), index_(InputAt(1)) {}
using ObjectMatcher = Object;
Object const& object() const { return object_; }
IntPtrMatcher const& index() const { return index_; }
private:
Object const object_;
IntPtrMatcher const index_;
};
// For shorter pattern matching code, this struct matches both the left and
// right hand sides of a binary operation and can put constants on the right
// if they appear on the left hand side of a commutative operation.
template <typename Left, typename Right>
struct BinopMatcher : public NodeMatcher {
explicit BinopMatcher(Node* node)
: NodeMatcher(node), left_(InputAt(0)), right_(InputAt(1)) {
if (HasProperty(Operator::kCommutative)) PutConstantOnRight();
}
BinopMatcher(Node* node, bool allow_input_swap)
: NodeMatcher(node), left_(InputAt(0)), right_(InputAt(1)) {
if (allow_input_swap) PutConstantOnRight();
}
using LeftMatcher = Left;
using RightMatcher = Right;
const Left& left() const { return left_; }
const Right& right() const { return right_; }
bool IsFoldable() const { return left().HasValue() && right().HasValue(); }
bool LeftEqualsRight() const { return left().node() == right().node(); }
protected:
void SwapInputs() {
std::swap(left_, right_);
// TODO(tebbi): This modification should notify the reducers using
// BinopMatcher. Alternatively, all reducers (especially value numbering)
// could ignore the ordering for commutative binops.
node()->ReplaceInput(0, left().node());
node()->ReplaceInput(1, right().node());
}
private:
void PutConstantOnRight() {
if (left().HasValue() && !right().HasValue()) {
SwapInputs();
}
}
Left left_;
Right right_;
};
using Int32BinopMatcher = BinopMatcher<Int32Matcher, Int32Matcher>;
using Uint32BinopMatcher = BinopMatcher<Uint32Matcher, Uint32Matcher>;
using Int64BinopMatcher = BinopMatcher<Int64Matcher, Int64Matcher>;
using Uint64BinopMatcher = BinopMatcher<Uint64Matcher, Uint64Matcher>;
using IntPtrBinopMatcher = BinopMatcher<IntPtrMatcher, IntPtrMatcher>;
using UintPtrBinopMatcher = BinopMatcher<UintPtrMatcher, UintPtrMatcher>;
using Float32BinopMatcher = BinopMatcher<Float32Matcher, Float32Matcher>;
using Float64BinopMatcher = BinopMatcher<Float64Matcher, Float64Matcher>;
using NumberBinopMatcher = BinopMatcher<NumberMatcher, NumberMatcher>;
using HeapObjectBinopMatcher =
BinopMatcher<HeapObjectMatcher, HeapObjectMatcher>;
template <class BinopMatcher, IrOpcode::Value kMulOpcode,
IrOpcode::Value kShiftOpcode>
struct ScaleMatcher {
explicit ScaleMatcher(Node* node, bool allow_power_of_two_plus_one = false)
: scale_(-1), power_of_two_plus_one_(false) {
if (node->InputCount() < 2) return;
BinopMatcher m(node);
if (node->opcode() == kShiftOpcode) {
if (m.right().HasValue()) {
typename BinopMatcher::RightMatcher::ValueType value =
m.right().Value();
if (value >= 0 && value <= 3) {
scale_ = static_cast<int>(value);
}
}
} else if (node->opcode() == kMulOpcode) {
if (m.right().HasValue()) {
typename BinopMatcher::RightMatcher::ValueType value =
m.right().Value();
if (value == 1) {
scale_ = 0;
} else if (value == 2) {
scale_ = 1;
} else if (value == 4) {
scale_ = 2;
} else if (value == 8) {
scale_ = 3;
} else if (allow_power_of_two_plus_one) {
if (value == 3) {
scale_ = 1;
power_of_two_plus_one_ = true;
} else if (value == 5) {
scale_ = 2;
power_of_two_plus_one_ = true;
} else if (value == 9) {
scale_ = 3;
power_of_two_plus_one_ = true;
}
}
}
}
}
bool matches() const { return scale_ != -1; }
int scale() const { return scale_; }
bool power_of_two_plus_one() const { return power_of_two_plus_one_; }
private:
int scale_;
bool power_of_two_plus_one_;
};
using Int32ScaleMatcher =
ScaleMatcher<Int32BinopMatcher, IrOpcode::kInt32Mul, IrOpcode::kWord32Shl>;
using Int64ScaleMatcher =
ScaleMatcher<Int64BinopMatcher, IrOpcode::kInt64Mul, IrOpcode::kWord64Shl>;
template <class BinopMatcher, IrOpcode::Value AddOpcode,
IrOpcode::Value SubOpcode, IrOpcode::Value kMulOpcode,
IrOpcode::Value kShiftOpcode>
struct AddMatcher : public BinopMatcher {
static const IrOpcode::Value kAddOpcode = AddOpcode;
static const IrOpcode::Value kSubOpcode = SubOpcode;
using Matcher = ScaleMatcher<BinopMatcher, kMulOpcode, kShiftOpcode>;
AddMatcher(Node* node, bool allow_input_swap)
: BinopMatcher(node, allow_input_swap),
scale_(-1),
power_of_two_plus_one_(false) {
Initialize(node, allow_input_swap);
}
explicit AddMatcher(Node* node)
: BinopMatcher(node, node->op()->HasProperty(Operator::kCommutative)),
scale_(-1),
power_of_two_plus_one_(false) {
Initialize(node, node->op()->HasProperty(Operator::kCommutative));
}
bool HasIndexInput() const { return scale_ != -1; }
Node* IndexInput() const {
DCHECK(HasIndexInput());
return this->left().node()->InputAt(0);
}
int scale() const {
DCHECK(HasIndexInput());
return scale_;
}
bool power_of_two_plus_one() const { return power_of_two_plus_one_; }
private:
void Initialize(Node* node, bool allow_input_swap) {
Matcher left_matcher(this->left().node(), true);
if (left_matcher.matches()) {
scale_ = left_matcher.scale();
power_of_two_plus_one_ = left_matcher.power_of_two_plus_one();
return;
}
if (!allow_input_swap) {
return;
}
Matcher right_matcher(this->right().node(), true);
if (right_matcher.matches()) {
scale_ = right_matcher.scale();
power_of_two_plus_one_ = right_matcher.power_of_two_plus_one();
this->SwapInputs();
return;
}
if ((this->left().opcode() != kSubOpcode &&
this->left().opcode() != kAddOpcode) &&
(this->right().opcode() == kAddOpcode ||
this->right().opcode() == kSubOpcode)) {
this->SwapInputs();
}
}
int scale_;
bool power_of_two_plus_one_;
};
using Int32AddMatcher =
AddMatcher<Int32BinopMatcher, IrOpcode::kInt32Add, IrOpcode::kInt32Sub,
IrOpcode::kInt32Mul, IrOpcode::kWord32Shl>;
using Int64AddMatcher =
AddMatcher<Int64BinopMatcher, IrOpcode::kInt64Add, IrOpcode::kInt64Sub,
IrOpcode::kInt64Mul, IrOpcode::kWord64Shl>;
enum DisplacementMode { kPositiveDisplacement, kNegativeDisplacement };
enum class AddressOption : uint8_t {
kAllowNone = 0u,
kAllowInputSwap = 1u << 0,
kAllowScale = 1u << 1,
kAllowAll = kAllowInputSwap | kAllowScale
};
using AddressOptions = base::Flags<AddressOption, uint8_t>;
DEFINE_OPERATORS_FOR_FLAGS(AddressOptions)
template <class AddMatcher>
struct BaseWithIndexAndDisplacementMatcher {
BaseWithIndexAndDisplacementMatcher(Node* node, AddressOptions options)
: matches_(false),
index_(nullptr),
scale_(0),
base_(nullptr),
displacement_(nullptr),
displacement_mode_(kPositiveDisplacement) {
Initialize(node, options);
}
explicit BaseWithIndexAndDisplacementMatcher(Node* node)
: matches_(false),
index_(nullptr),
scale_(0),
base_(nullptr),
displacement_(nullptr),
displacement_mode_(kPositiveDisplacement) {
Initialize(node, AddressOption::kAllowScale |
(node->op()->HasProperty(Operator::kCommutative)
? AddressOption::kAllowInputSwap
: AddressOption::kAllowNone));
}
bool matches() const { return matches_; }
Node* index() const { return index_; }
int scale() const { return scale_; }
Node* base() const { return base_; }
Node* displacement() const { return displacement_; }
DisplacementMode displacement_mode() const { return displacement_mode_; }
private:
bool matches_;
Node* index_;
int scale_;
Node* base_;
Node* displacement_;
DisplacementMode displacement_mode_;
void Initialize(Node* node, AddressOptions options) {
// The BaseWithIndexAndDisplacementMatcher canonicalizes the order of
// displacements and scale factors that are used as inputs, so instead of
// enumerating all possible patterns by brute force, checking for node
// clusters using the following templates in the following order suffices to
// find all of the interesting cases (S = index * scale, B = base input, D =
// displacement input):
// (S + (B + D))
// (S + (B + B))
// (S + D)
// (S + B)
// ((S + D) + B)
// ((S + B) + D)
// ((B + D) + B)
// ((B + B) + D)
// (B + D)
// (B + B)
if (node->InputCount() < 2) return;
AddMatcher m(node, options & AddressOption::kAllowInputSwap);
Node* left = m.left().node();
Node* right = m.right().node();
Node* displacement = nullptr;
Node* base = nullptr;
Node* index = nullptr;
Node* scale_expression = nullptr;
bool power_of_two_plus_one = false;
DisplacementMode displacement_mode = kPositiveDisplacement;
int scale = 0;
if (m.HasIndexInput() && OwnedByAddressingOperand(left)) {
index = m.IndexInput();
scale = m.scale();
scale_expression = left;
power_of_two_plus_one = m.power_of_two_plus_one();
bool match_found = false;
if (right->opcode() == AddMatcher::kSubOpcode &&
OwnedByAddressingOperand(right)) {
AddMatcher right_matcher(right);
if (right_matcher.right().HasValue()) {
// (S + (B - D))
base = right_matcher.left().node();
displacement = right_matcher.right().node();
displacement_mode = kNegativeDisplacement;
match_found = true;
}
}
if (!match_found) {
if (right->opcode() == AddMatcher::kAddOpcode &&
OwnedByAddressingOperand(right)) {
AddMatcher right_matcher(right);
if (right_matcher.right().HasValue()) {
// (S + (B + D))
base = right_matcher.left().node();
displacement = right_matcher.right().node();
} else {
// (S + (B + B))
base = right;
}
} else if (m.right().HasValue()) {
// (S + D)
displacement = right;
} else {
// (S + B)
base = right;
}
}
} else {
bool match_found = false;
if (left->opcode() == AddMatcher::kSubOpcode &&
OwnedByAddressingOperand(left)) {
AddMatcher left_matcher(left);
Node* left_left = left_matcher.left().node();
Node* left_right = left_matcher.right().node();
if (left_matcher.right().HasValue()) {
if (left_matcher.HasIndexInput() && left_left->OwnedBy(left)) {
// ((S - D) + B)
index = left_matcher.IndexInput();
scale = left_matcher.scale();
scale_expression = left_left;
power_of_two_plus_one = left_matcher.power_of_two_plus_one();
displacement = left_right;
displacement_mode = kNegativeDisplacement;
base = right;
} else {
// ((B - D) + B)
index = left_left;
displacement = left_right;
displacement_mode = kNegativeDisplacement;
base = right;
}
match_found = true;
}
}
if (!match_found) {
if (left->opcode() == AddMatcher::kAddOpcode &&
OwnedByAddressingOperand(left)) {
AddMatcher left_matcher(left);
Node* left_left = left_matcher.left().node();
Node* left_right = left_matcher.right().node();
if (left_matcher.HasIndexInput() && left_left->OwnedBy(left)) {
if (left_matcher.right().HasValue()) {
// ((S + D) + B)
index = left_matcher.IndexInput();
scale = left_matcher.scale();
scale_expression = left_left;
power_of_two_plus_one = left_matcher.power_of_two_plus_one();
displacement = left_right;
base = right;
} else if (m.right().HasValue()) {
if (left->OwnedBy(node)) {
// ((S + B) + D)
index = left_matcher.IndexInput();
scale = left_matcher.scale();
scale_expression = left_left;
power_of_two_plus_one = left_matcher.power_of_two_plus_one();
base = left_right;
displacement = right;
} else {
// (B + D)
base = left;
displacement = right;
}
} else {
// (B + B)
index = left;
base = right;
}
} else {
if (left_matcher.right().HasValue()) {
// ((B + D) + B)
index = left_left;
displacement = left_right;
base = right;
} else if (m.right().HasValue()) {
if (left->OwnedBy(node)) {
// ((B + B) + D)
index = left_left;
base = left_right;
displacement = right;
} else {
// (B + D)
base = left;
displacement = right;
}
} else {
// (B + B)
index = left;
base = right;
}
}
} else {
if (m.right().HasValue()) {
// (B + D)
base = left;
displacement = right;
} else {
// (B + B)
base = left;
index = right;
}
}
}
}
int64_t value = 0;
if (displacement != nullptr) {
switch (displacement->opcode()) {
case IrOpcode::kInt32Constant: {
value = OpParameter<int32_t>(displacement->op());
break;
}
case IrOpcode::kInt64Constant: {
value = OpParameter<int64_t>(displacement->op());
break;
}
default:
UNREACHABLE();
break;
}
if (value == 0) {
displacement = nullptr;
}
}
if (power_of_two_plus_one) {
if (base != nullptr) {
// If the scale requires explicitly using the index as the base, but a
// base is already part of the match, then the (1 << N + 1) scale factor
// can't be folded into the match and the entire index * scale
// calculation must be computed separately.
index = scale_expression;
scale = 0;
} else {
base = index;
}
}
if (!(options & AddressOption::kAllowScale) && scale != 0) {
index = scale_expression;
scale = 0;
}
base_ = base;
displacement_ = displacement;
displacement_mode_ = displacement_mode;
index_ = index;
scale_ = scale;
matches_ = true;
}
static bool OwnedByAddressingOperand(Node* node) {
for (auto use : node->use_edges()) {
Node* from = use.from();
switch (from->opcode()) {
case IrOpcode::kLoad:
case IrOpcode::kPoisonedLoad:
case IrOpcode::kProtectedLoad:
case IrOpcode::kInt32Add:
case IrOpcode::kInt64Add:
// Skip addressing uses.
break;
case IrOpcode::kStore:
case IrOpcode::kProtectedStore:
// If the stored value is this node, it is not an addressing use.
if (from->InputAt(2) == node) return false;
// Otherwise it is used as an address and skipped.
break;
default:
// Non-addressing use found.
return false;
}
}
return true;
}
};
using BaseWithIndexAndDisplacement32Matcher =
BaseWithIndexAndDisplacementMatcher<Int32AddMatcher>;
using BaseWithIndexAndDisplacement64Matcher =
BaseWithIndexAndDisplacementMatcher<Int64AddMatcher>;
struct V8_EXPORT_PRIVATE BranchMatcher : public NON_EXPORTED_BASE(NodeMatcher) {
explicit BranchMatcher(Node* branch);
bool Matched() const { return if_true_ && if_false_; }
Node* Branch() const { return node(); }
Node* IfTrue() const { return if_true_; }
Node* IfFalse() const { return if_false_; }
private:
Node* if_true_;
Node* if_false_;
};
struct V8_EXPORT_PRIVATE DiamondMatcher
: public NON_EXPORTED_BASE(NodeMatcher) {
explicit DiamondMatcher(Node* merge);
bool Matched() const { return branch_; }
bool IfProjectionsAreOwned() const {
return if_true_->OwnedBy(node()) && if_false_->OwnedBy(node());
}
Node* Branch() const { return branch_; }
Node* IfTrue() const { return if_true_; }
Node* IfFalse() const { return if_false_; }
Node* Merge() const { return node(); }
Node* TrueInputOf(Node* phi) const {
DCHECK(IrOpcode::IsPhiOpcode(phi->opcode()));
DCHECK_EQ(3, phi->InputCount());
DCHECK_EQ(Merge(), phi->InputAt(2));
return phi->InputAt(if_true_ == Merge()->InputAt(0) ? 0 : 1);
}
Node* FalseInputOf(Node* phi) const {
DCHECK(IrOpcode::IsPhiOpcode(phi->opcode()));
DCHECK_EQ(3, phi->InputCount());
DCHECK_EQ(Merge(), phi->InputAt(2));
return phi->InputAt(if_true_ == Merge()->InputAt(0) ? 1 : 0);
}
private:
Node* branch_;
Node* if_true_;
Node* if_false_;
};
template <class BinopMatcher, IrOpcode::Value expected_opcode>
struct WasmStackCheckMatcher {
explicit WasmStackCheckMatcher(Node* compare) : compare_(compare) {}
bool Matched() {
if (compare_->opcode() != expected_opcode) return false;
BinopMatcher m(compare_);
return MatchedInternal(m.left(), m.right());
}
private:
bool MatchedInternal(const typename BinopMatcher::LeftMatcher& l,
const typename BinopMatcher::RightMatcher& r) {
// In wasm, the stack check is performed by loading the value given by
// the address of a field stored in the instance object. That object is
// passed as a parameter.
if (l.IsLoad() && r.IsLoadStackPointer()) {
LoadMatcher<LoadMatcher<NodeMatcher>> mleft(l.node());
if (mleft.object().IsLoad() && mleft.index().Is(0) &&
mleft.object().object().IsParameter()) {
return true;
}
}
return false;
}
Node* compare_;
};
template <class BinopMatcher, IrOpcode::Value expected_opcode>
struct StackCheckMatcher {
StackCheckMatcher(Isolate* isolate, Node* compare)
: isolate_(isolate), compare_(compare) {
DCHECK_NOT_NULL(isolate);
}
bool Matched() {
// TODO(jgruber): Ideally, we could be more flexible here and also match the
// same pattern with switched operands (i.e.: left is LoadStackPointer and
// right is the js_stack_limit load). But to be correct in all cases, we'd
// then have to invert the outcome of the stack check comparison.
if (compare_->opcode() != expected_opcode) return false;
BinopMatcher m(compare_);
return MatchedInternal(m.left(), m.right());
}
private:
bool MatchedInternal(const typename BinopMatcher::LeftMatcher& l,
const typename BinopMatcher::RightMatcher& r) {
if (l.IsLoad() && r.IsLoadStackPointer()) {
LoadMatcher<ExternalReferenceMatcher> mleft(l.node());
ExternalReference js_stack_limit =
ExternalReference::address_of_stack_limit(isolate_);
if (mleft.object().Is(js_stack_limit) && mleft.index().Is(0)) return true;
}
return false;
}
Isolate* isolate_;
Node* compare_;
};
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_NODE_MATCHERS_H_