blob: 110ddefb7a72e2a32ab416f2a35ed73d709ad153 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/compiler/backend/instruction-selector-unittest.h"
#include "src/codegen/code-factory.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/graph.h"
#include "src/compiler/schedule.h"
#include "src/flags/flags.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/compiler/compiler-test-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
InstructionSelectorTest::InstructionSelectorTest() : rng_(FLAG_random_seed) {}
InstructionSelectorTest::~InstructionSelectorTest() = default;
InstructionSelectorTest::Stream InstructionSelectorTest::StreamBuilder::Build(
InstructionSelector::Features features,
InstructionSelectorTest::StreamBuilderMode mode,
InstructionSelector::SourcePositionMode source_position_mode) {
Schedule* schedule = Export();
if (FLAG_trace_turbo) {
StdoutStream{} << "=== Schedule before instruction selection ==="
<< std::endl
<< *schedule;
}
size_t const node_count = graph()->NodeCount();
EXPECT_NE(0u, node_count);
Linkage linkage(call_descriptor());
InstructionBlocks* instruction_blocks =
InstructionSequence::InstructionBlocksFor(test_->zone(), schedule);
InstructionSequence sequence(test_->isolate(), test_->zone(),
instruction_blocks);
SourcePositionTable source_position_table(graph());
InstructionSelector selector(
test_->zone(), node_count, &linkage, &sequence, schedule,
&source_position_table, nullptr,
InstructionSelector::kEnableSwitchJumpTable, source_position_mode,
features, InstructionSelector::kDisableScheduling,
InstructionSelector::kEnableRootsRelativeAddressing,
PoisoningMitigationLevel::kPoisonAll);
selector.SelectInstructions();
if (FLAG_trace_turbo) {
StdoutStream{} << "=== Code sequence after instruction selection ==="
<< std::endl
<< sequence;
}
Stream s;
s.virtual_registers_ = selector.GetVirtualRegistersForTesting();
// Map virtual registers.
for (Instruction* const instr : sequence) {
if (instr->opcode() < 0) continue;
if (mode == kTargetInstructions) {
switch (instr->arch_opcode()) {
#define CASE(Name) \
case k##Name: \
break;
TARGET_ARCH_OPCODE_LIST(CASE)
#undef CASE
default:
continue;
}
}
if (mode == kAllExceptNopInstructions && instr->arch_opcode() == kArchNop) {
continue;
}
for (size_t i = 0; i < instr->OutputCount(); ++i) {
InstructionOperand* output = instr->OutputAt(i);
EXPECT_NE(InstructionOperand::IMMEDIATE, output->kind());
if (output->IsConstant()) {
int vreg = ConstantOperand::cast(output)->virtual_register();
s.constants_.insert(std::make_pair(vreg, sequence.GetConstant(vreg)));
}
}
for (size_t i = 0; i < instr->InputCount(); ++i) {
InstructionOperand* input = instr->InputAt(i);
EXPECT_NE(InstructionOperand::CONSTANT, input->kind());
if (input->IsImmediate()) {
auto imm = ImmediateOperand::cast(input);
if (imm->type() == ImmediateOperand::INDEXED) {
int index = imm->indexed_value();
s.immediates_.insert(
std::make_pair(index, sequence.GetImmediate(imm)));
}
}
}
s.instructions_.push_back(instr);
}
for (auto i : s.virtual_registers_) {
int const virtual_register = i.second;
if (sequence.IsFP(virtual_register)) {
EXPECT_FALSE(sequence.IsReference(virtual_register));
s.doubles_.insert(virtual_register);
}
if (sequence.IsReference(virtual_register)) {
EXPECT_FALSE(sequence.IsFP(virtual_register));
s.references_.insert(virtual_register);
}
}
for (int i = 0; i < sequence.GetDeoptimizationEntryCount(); i++) {
s.deoptimization_entries_.push_back(
sequence.GetDeoptimizationEntry(i).descriptor());
}
return s;
}
int InstructionSelectorTest::Stream::ToVreg(const Node* node) const {
VirtualRegisters::const_iterator i = virtual_registers_.find(node->id());
CHECK(i != virtual_registers_.end());
return i->second;
}
bool InstructionSelectorTest::Stream::IsFixed(const InstructionOperand* operand,
Register reg) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
if (!unallocated->HasFixedRegisterPolicy()) return false;
return unallocated->fixed_register_index() == reg.code();
}
bool InstructionSelectorTest::Stream::IsSameAsFirst(
const InstructionOperand* operand) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
return unallocated->HasSameAsInputPolicy();
}
bool InstructionSelectorTest::Stream::IsUsedAtStart(
const InstructionOperand* operand) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
return unallocated->IsUsedAtStart();
}
const FrameStateFunctionInfo*
InstructionSelectorTest::StreamBuilder::GetFrameStateFunctionInfo(
int parameter_count, int local_count) {
return common()->CreateFrameStateFunctionInfo(
FrameStateType::kInterpretedFunction, parameter_count, local_count,
Handle<SharedFunctionInfo>());
}
// -----------------------------------------------------------------------------
// Return.
TARGET_TEST_F(InstructionSelectorTest, ReturnFloat32Constant) {
const float kValue = 4.2f;
StreamBuilder m(this, MachineType::Float32());
m.Return(m.Float32Constant(kValue));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_FLOAT_EQ(kValue, s.ToFloat32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(2U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnParameter) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
m.Return(m.Parameter(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(2U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnZero) {
StreamBuilder m(this, MachineType::Int32());
m.Return(m.Int32Constant(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_EQ(0, s.ToInt32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(2U, s[1]->InputCount());
}
// -----------------------------------------------------------------------------
// Conversions.
TARGET_TEST_F(InstructionSelectorTest, TruncateFloat64ToWord32WithParameter) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Float64());
m.Return(m.TruncateFloat64ToWord32(m.Parameter(0)));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
EXPECT_EQ(kArchTruncateDoubleToI, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
EXPECT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArchRet, s[2]->arch_opcode());
}
// -----------------------------------------------------------------------------
// Parameters.
TARGET_TEST_F(InstructionSelectorTest, DoubleParameter) {
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsDouble(param));
}
TARGET_TEST_F(InstructionSelectorTest, ReferenceParameter) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged());
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsReference(param));
}
// -----------------------------------------------------------------------------
// FinishRegion.
TARGET_TEST_F(InstructionSelectorTest, FinishRegion) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged());
Node* param = m.Parameter(0);
Node* finish =
m.AddNode(m.common()->FinishRegion(), param, m.graph()->start());
m.Return(finish);
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
ASSERT_TRUE(s[0]->Output()->IsUnallocated());
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[0]->Output()));
EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[1]->InputAt(1)));
EXPECT_TRUE(s.IsReference(finish));
}
// -----------------------------------------------------------------------------
// Phi.
typedef InstructionSelectorTestWithParam<MachineType>
InstructionSelectorPhiTest;
TARGET_TEST_P(InstructionSelectorPhiTest, Doubleness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
RawMachineLabel a, b, c;
m.Branch(m.Int32Constant(0), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type.representation(), param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param0));
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param1));
}
TARGET_TEST_P(InstructionSelectorPhiTest, Referenceness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
RawMachineLabel a, b, c;
m.Branch(m.Int32Constant(1), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type.representation(), param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsReference(phi), s.IsReference(param0));
EXPECT_EQ(s.IsReference(phi), s.IsReference(param1));
}
INSTANTIATE_TEST_SUITE_P(
InstructionSelectorTest, InstructionSelectorPhiTest,
::testing::Values(MachineType::Float64(), MachineType::Int8(),
MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(),
MachineType::Uint32(), MachineType::Int64(),
MachineType::Uint64(), MachineType::Pointer(),
MachineType::AnyTagged()));
// -----------------------------------------------------------------------------
// ValueEffect.
TARGET_TEST_F(InstructionSelectorTest, ValueEffect) {
StreamBuilder m1(this, MachineType::Int32(), MachineType::Pointer());
Node* p1 = m1.Parameter(0);
m1.Return(m1.Load(MachineType::Int32(), p1, m1.Int32Constant(0)));
Stream s1 = m1.Build(kAllInstructions);
StreamBuilder m2(this, MachineType::Int32(), MachineType::Pointer());
Node* p2 = m2.Parameter(0);
m2.Return(m2.AddNode(
m2.machine()->Load(MachineType::Int32()), p2, m2.Int32Constant(0),
m2.AddNode(m2.common()->BeginRegion(RegionObservability::kObservable),
m2.graph()->start())));
Stream s2 = m2.Build(kAllInstructions);
EXPECT_LE(3U, s1.size());
ASSERT_EQ(s1.size(), s2.size());
TRACED_FORRANGE(size_t, i, 0, s1.size() - 1) {
const Instruction* i1 = s1[i];
const Instruction* i2 = s2[i];
EXPECT_EQ(i1->arch_opcode(), i2->arch_opcode());
EXPECT_EQ(i1->InputCount(), i2->InputCount());
EXPECT_EQ(i1->OutputCount(), i2->OutputCount());
}
}
// -----------------------------------------------------------------------------
// Calls with deoptimization.
TARGET_TEST_F(InstructionSelectorTest, CallJSFunctionWithDeopt) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(),
MachineType::AnyTagged(), MachineType::AnyTagged());
BailoutId bailout_id(42);
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Parameter(2);
ZoneVector<MachineType> int32_type(1, MachineType::Int32(), zone());
ZoneVector<MachineType> empty_types(zone());
auto call_descriptor = Linkage::GetJSCallDescriptor(
zone(), false, 1,
CallDescriptor::kNeedsFrameState | CallDescriptor::kCanUseRoots);
// Build frame state for the state before the call.
Node* parameters = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(1));
Node* locals = m.AddNode(
m.common()->TypedStateValues(&empty_types, SparseInputMask::Dense()));
Node* stack = m.AddNode(
m.common()->TypedStateValues(&empty_types, SparseInputMask::Dense()));
Node* context_sentinel = m.Int32Constant(0);
Node* state_node = m.AddNode(
m.common()->FrameState(bailout_id, OutputFrameStateCombine::PokeAt(0),
m.GetFrameStateFunctionInfo(1, 0)),
parameters, locals, stack, context_sentinel, function_node,
m.UndefinedConstant());
// Build the call.
Node* nodes[] = {function_node, receiver, m.UndefinedConstant(),
m.Int32Constant(1), context, state_node};
Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallJSFunction;
index++) {
}
// Now we should have two instructions: call and return.
ASSERT_EQ(index + 2, s.size());
EXPECT_EQ(kArchCallJSFunction, s[index++]->arch_opcode());
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
// TODO(jarin) Check deoptimization table.
}
TARGET_TEST_F(InstructionSelectorTest, CallStubWithDeopt) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(),
MachineType::AnyTagged(), MachineType::AnyTagged());
BailoutId bailout_id_before(42);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(1); // Context is ignored.
ZoneVector<MachineType> int32_type(1, MachineType::Int32(), zone());
ZoneVector<MachineType> float64_type(1, MachineType::Float64(), zone());
ZoneVector<MachineType> tagged_type(1, MachineType::AnyTagged(), zone());
Callable callable = Builtins::CallableFor(isolate(), Builtins::kToObject);
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), callable.descriptor(), 1, CallDescriptor::kNeedsFrameState,
Operator::kNoProperties);
// Build frame state for the state before the call.
Node* parameters = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(43));
Node* locals = m.AddNode(
m.common()->TypedStateValues(&float64_type, SparseInputMask::Dense()),
m.Float64Constant(0.5));
Node* stack = m.AddNode(
m.common()->TypedStateValues(&tagged_type, SparseInputMask::Dense()),
m.UndefinedConstant());
Node* context_sentinel = m.Int32Constant(0);
Node* state_node =
m.AddNode(m.common()->FrameState(bailout_id_before,
OutputFrameStateCombine::PokeAt(0),
m.GetFrameStateFunctionInfo(1, 1)),
parameters, locals, stack, context_sentinel, function_node,
m.UndefinedConstant());
// Build the call.
Node* stub_code = m.HeapConstant(callable.code());
Node* nodes[] = {stub_code, function_node, receiver, context, state_node};
Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have two instructions: call, return.
ASSERT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 + // Poison index
6 + // Frame state deopt id + one input for each value in frame state.
1 + // Function.
1; // Context.
ASSERT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(2));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(1u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(4)));
EXPECT_EQ(0, s.ToInt32(call_instr->InputAt(5))); // This should be a context.
// We inserted 0 here.
EXPECT_EQ(0.5, s.ToFloat64(call_instr->InputAt(6)));
EXPECT_TRUE(s.ToHeapObject(call_instr->InputAt(7))->IsUndefined(isolate()));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(8)));
// Context.
EXPECT_EQ(s.ToVreg(context), s.ToVreg(call_instr->InputAt(9)));
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
TARGET_TEST_F(InstructionSelectorTest, CallStubWithDeoptRecursiveFrameState) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(),
MachineType::AnyTagged(), MachineType::AnyTagged());
BailoutId bailout_id_before(42);
BailoutId bailout_id_parent(62);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(66);
Node* context2 = m.Int32Constant(46);
ZoneVector<MachineType> int32_type(1, MachineType::Int32(), zone());
ZoneVector<MachineType> int32x2_type(2, MachineType::Int32(), zone());
ZoneVector<MachineType> float64_type(1, MachineType::Float64(), zone());
Callable callable = Builtins::CallableFor(isolate(), Builtins::kToObject);
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), callable.descriptor(), 1, CallDescriptor::kNeedsFrameState,
Operator::kNoProperties);
// Build frame state for the state before the call.
Node* parameters = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(63));
Node* locals = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(64));
Node* stack = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(65));
Node* frame_state_parent = m.AddNode(
m.common()->FrameState(bailout_id_parent,
OutputFrameStateCombine::Ignore(),
m.GetFrameStateFunctionInfo(1, 1)),
parameters, locals, stack, context, function_node, m.UndefinedConstant());
Node* parameters2 = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(43));
Node* locals2 = m.AddNode(
m.common()->TypedStateValues(&float64_type, SparseInputMask::Dense()),
m.Float64Constant(0.25));
Node* stack2 = m.AddNode(
m.common()->TypedStateValues(&int32x2_type, SparseInputMask::Dense()),
m.Int32Constant(44), m.Int32Constant(45));
Node* state_node =
m.AddNode(m.common()->FrameState(bailout_id_before,
OutputFrameStateCombine::PokeAt(0),
m.GetFrameStateFunctionInfo(1, 1)),
parameters2, locals2, stack2, context2, function_node,
frame_state_parent);
// Build the call.
Node* stub_code = m.HeapConstant(callable.code());
Node* nodes[] = {stub_code, function_node, receiver, context2, state_node};
Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have three instructions: call, return.
EXPECT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 + // Poison index.
1 + // Frame state deopt id
6 + // One input for each value in frame state + context.
5 + // One input for each value in the parent frame state + context.
1 + // Function.
1; // Context.
EXPECT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(2));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
FrameStateDescriptor* desc_before_outer = desc_before->outer_state();
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(1u, desc_before_outer->parameters_count());
EXPECT_EQ(1u, desc_before_outer->locals_count());
EXPECT_EQ(1u, desc_before_outer->stack_count());
// Values from parent environment.
EXPECT_EQ(63, s.ToInt32(call_instr->InputAt(4)));
// Context:
EXPECT_EQ(66, s.ToInt32(call_instr->InputAt(5)));
EXPECT_EQ(64, s.ToInt32(call_instr->InputAt(6)));
EXPECT_EQ(65, s.ToInt32(call_instr->InputAt(7)));
// Values from the nested frame.
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(2u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(9)));
EXPECT_EQ(46, s.ToInt32(call_instr->InputAt(10)));
EXPECT_EQ(0.25, s.ToFloat64(call_instr->InputAt(11)));
EXPECT_EQ(44, s.ToInt32(call_instr->InputAt(12)));
EXPECT_EQ(45, s.ToInt32(call_instr->InputAt(13)));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(14)));
// Context.
EXPECT_EQ(s.ToVreg(context2), s.ToVreg(call_instr->InputAt(15)));
// Continuation.
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
// Helper to make calls to private InstructionSelector shuffle functions.
class InstructionSelectorShuffleTest : public ::testing::Test {
public:
using Shuffle = std::array<uint8_t, kSimd128Size>;
struct TestShuffle {
Shuffle non_canonical;
Shuffle canonical;
bool needs_swap;
bool is_swizzle;
};
// Call testing members in InstructionSelector.
static void CanonicalizeShuffle(bool inputs_equal, Shuffle* shuffle,
bool* needs_swap, bool* is_swizzle) {
InstructionSelector::CanonicalizeShuffleForTesting(
inputs_equal, &(*shuffle)[0], needs_swap, is_swizzle);
}
static bool TryMatchIdentity(const Shuffle& shuffle) {
return InstructionSelector::TryMatchIdentityForTesting(&shuffle[0]);
}
template <int LANES>
static bool TryMatchDup(const Shuffle& shuffle, int* index) {
return InstructionSelector::TryMatchDupForTesting<LANES>(&shuffle[0],
index);
}
static bool TryMatch32x4Shuffle(const Shuffle& shuffle,
uint8_t* shuffle32x4) {
return InstructionSelector::TryMatch32x4ShuffleForTesting(&shuffle[0],
shuffle32x4);
}
static bool TryMatch16x8Shuffle(const Shuffle& shuffle,
uint8_t* shuffle16x8) {
return InstructionSelector::TryMatch16x8ShuffleForTesting(&shuffle[0],
shuffle16x8);
}
static bool TryMatchConcat(const Shuffle& shuffle, uint8_t* offset) {
return InstructionSelector::TryMatchConcatForTesting(&shuffle[0], offset);
}
static bool TryMatchBlend(const Shuffle& shuffle) {
return InstructionSelector::TryMatchBlendForTesting(&shuffle[0]);
}
};
bool operator==(const InstructionSelectorShuffleTest::Shuffle& a,
const InstructionSelectorShuffleTest::Shuffle& b) {
for (int i = 0; i < kSimd128Size; ++i) {
if (a[i] != b[i]) return false;
}
return true;
}
TEST_F(InstructionSelectorShuffleTest, CanonicalizeShuffle) {
const bool kInputsEqual = true;
const bool kNeedsSwap = true;
const bool kIsSwizzle = true;
bool needs_swap;
bool is_swizzle;
// Test canonicalization driven by input shuffle.
TestShuffle test_shuffles[] = {
// Identity is canonical.
{{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
!kNeedsSwap,
kIsSwizzle},
// Non-canonical identity requires a swap.
{{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}},
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
kNeedsSwap,
kIsSwizzle},
// General shuffle, canonical is unchanged.
{{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}},
{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}},
!kNeedsSwap,
!kIsSwizzle},
// Non-canonical shuffle requires a swap.
{{{16, 0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7}},
{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}},
kNeedsSwap,
!kIsSwizzle},
};
for (size_t i = 0; i < arraysize(test_shuffles); ++i) {
Shuffle shuffle = test_shuffles[i].non_canonical;
CanonicalizeShuffle(!kInputsEqual, &shuffle, &needs_swap, &is_swizzle);
EXPECT_EQ(shuffle, test_shuffles[i].canonical);
EXPECT_EQ(needs_swap, test_shuffles[i].needs_swap);
EXPECT_EQ(is_swizzle, test_shuffles[i].is_swizzle);
}
// Test canonicalization when inputs are equal (explicit swizzle).
TestShuffle test_swizzles[] = {
// Identity is canonical.
{{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
!kNeedsSwap,
kIsSwizzle},
// Non-canonical identity requires a swap.
{{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}},
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}},
!kNeedsSwap,
kIsSwizzle},
// Canonicalized to swizzle.
{{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}},
{{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}},
!kNeedsSwap,
kIsSwizzle},
// Canonicalized to swizzle.
{{{16, 0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7}},
{{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}},
!kNeedsSwap,
kIsSwizzle},
};
for (size_t i = 0; i < arraysize(test_swizzles); ++i) {
Shuffle shuffle = test_swizzles[i].non_canonical;
CanonicalizeShuffle(kInputsEqual, &shuffle, &needs_swap, &is_swizzle);
EXPECT_EQ(shuffle, test_swizzles[i].canonical);
EXPECT_EQ(needs_swap, test_swizzles[i].needs_swap);
EXPECT_EQ(is_swizzle, test_swizzles[i].is_swizzle);
}
}
TEST_F(InstructionSelectorShuffleTest, TryMatchIdentity) {
// Match shuffle that returns first source operand.
EXPECT_TRUE(TryMatchIdentity(
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}));
// The non-canonicalized identity shuffle doesn't match.
EXPECT_FALSE(TryMatchIdentity(
{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}));
// Even one lane out of place is not an identity shuffle.
EXPECT_FALSE(TryMatchIdentity(
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31}}));
}
TEST_F(InstructionSelectorShuffleTest, TryMatchDup) {
int index;
// All lanes from the same 32 bit source lane.
EXPECT_TRUE(TryMatchDup<4>({{4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}},
&index));
EXPECT_EQ(1, index);
// It shouldn't match for other vector shapes.
EXPECT_FALSE(TryMatchDup<8>(
{{4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}}, &index));
EXPECT_FALSE(TryMatchDup<16>(
{{4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}}, &index));
// All lanes from the same 16 bit source lane.
EXPECT_TRUE(TryMatchDup<8>(
{{16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17}},
&index));
EXPECT_EQ(8, index);
// It shouldn't match for other vector shapes.
EXPECT_FALSE(TryMatchDup<4>(
{{16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17}},
&index));
EXPECT_FALSE(TryMatchDup<16>(
{{16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17}},
&index));
// All lanes from the same 8 bit source lane.
EXPECT_TRUE(TryMatchDup<16>(
{{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}}, &index));
EXPECT_EQ(7, index);
// It shouldn't match for other vector shapes.
EXPECT_FALSE(TryMatchDup<4>(
{{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}}, &index));
EXPECT_FALSE(TryMatchDup<8>(
{{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}}, &index));
}
TEST_F(InstructionSelectorShuffleTest, TryMatchConcat) {
uint8_t offset;
// Ascending indices, jump at end to same input (concatenating swizzle).
EXPECT_TRUE(TryMatchConcat(
{{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2}}, &offset));
EXPECT_EQ(3, offset);
// Ascending indices, jump at end to other input (concatenating shuffle).
EXPECT_TRUE(TryMatchConcat(
{{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}}, &offset));
EXPECT_EQ(4, offset);
// Shuffles that should not match:
// Ascending indices, but jump isn't at end/beginning.
EXPECT_FALSE(TryMatchConcat(
{{3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6}}, &offset));
// Ascending indices, but multiple jumps.
EXPECT_FALSE(TryMatchConcat(
{{0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}}, &offset));
}
TEST_F(InstructionSelectorShuffleTest, TryMatch32x4Shuffle) {
uint8_t shuffle32x4[4];
// Match if each group of 4 bytes is from the same 32 bit lane.
EXPECT_TRUE(TryMatch32x4Shuffle(
{{12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19}},
shuffle32x4));
EXPECT_EQ(3, shuffle32x4[0]);
EXPECT_EQ(2, shuffle32x4[1]);
EXPECT_EQ(1, shuffle32x4[2]);
EXPECT_EQ(4, shuffle32x4[3]);
// Bytes must be in order in the 32 bit lane.
EXPECT_FALSE(TryMatch32x4Shuffle(
{{12, 13, 14, 14, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19}},
shuffle32x4));
// Each group must start with the first byte in the 32 bit lane.
EXPECT_FALSE(TryMatch32x4Shuffle(
{{13, 14, 15, 12, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19}},
shuffle32x4));
}
TEST_F(InstructionSelectorShuffleTest, TryMatch16x8Shuffle) {
uint8_t shuffle16x8[8];
// Match if each group of 2 bytes is from the same 16 bit lane.
EXPECT_TRUE(TryMatch16x8Shuffle(
{{12, 13, 30, 31, 8, 9, 26, 27, 4, 5, 22, 23, 16, 17, 2, 3}},
shuffle16x8));
EXPECT_EQ(6, shuffle16x8[0]);
EXPECT_EQ(15, shuffle16x8[1]);
EXPECT_EQ(4, shuffle16x8[2]);
EXPECT_EQ(13, shuffle16x8[3]);
EXPECT_EQ(2, shuffle16x8[4]);
EXPECT_EQ(11, shuffle16x8[5]);
EXPECT_EQ(8, shuffle16x8[6]);
EXPECT_EQ(1, shuffle16x8[7]);
// Bytes must be in order in the 16 bit lane.
EXPECT_FALSE(TryMatch16x8Shuffle(
{{12, 13, 30, 30, 8, 9, 26, 27, 4, 5, 22, 23, 16, 17, 2, 3}},
shuffle16x8));
// Each group must start with the first byte in the 16 bit lane.
EXPECT_FALSE(TryMatch16x8Shuffle(
{{12, 13, 31, 30, 8, 9, 26, 27, 4, 5, 22, 23, 16, 17, 2, 3}},
shuffle16x8));
}
TEST_F(InstructionSelectorShuffleTest, TryMatchBlend) {
// Match if each byte remains in place.
EXPECT_TRUE(TryMatchBlend(
{{0, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31}}));
// Identity is a blend.
EXPECT_TRUE(
TryMatchBlend({{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}));
// Even one lane out of place is not a blend.
EXPECT_FALSE(TryMatchBlend(
{{1, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31}}));
}
} // namespace compiler
} // namespace internal
} // namespace v8