blob: 98bcdbbc2f3bad800f78146326b2d38840101919 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/execution/frames.h"
#include <memory>
#include <sstream>
#include "src/base/bits.h"
#include "src/codegen/interface-descriptors.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/register-configuration.h"
#include "src/codegen/safepoint-table.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frames-inl.h"
#include "src/execution/vm-state-inl.h"
#include "src/ic/ic-stats.h"
#include "src/logging/counters.h"
#include "src/objects/code.h"
#include "src/objects/slots.h"
#include "src/objects/smi.h"
#include "src/objects/visitors.h"
#include "src/snapshot/snapshot.h"
#include "src/strings/string-stream.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ =
nullptr;
namespace {
Address AddressOf(const StackHandler* handler) {
Address raw = handler->address();
#ifdef V8_USE_ADDRESS_SANITIZER
// ASan puts C++-allocated StackHandler markers onto its fake stack.
// We work around that by storing the real stack address in the "padding"
// field. StackHandlers allocated from generated code have 0 as padding.
Address padding =
base::Memory<Address>(raw + StackHandlerConstants::kPaddingOffset);
if (padding != 0) return padding;
#endif
return raw;
}
} // namespace
// Iterator that supports traversing the stack handlers of a
// particular frame. Needs to know the top of the handler chain.
class StackHandlerIterator {
public:
StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
: limit_(frame->fp()), handler_(handler) {
// Make sure the handler has already been unwound to this frame.
DCHECK(frame->sp() <= AddressOf(handler));
// For CWasmEntry frames, the handler was registered by the last C++
// frame (Execution::CallWasm), so even though its address is already
// beyond the limit, we know we always want to unwind one handler.
if (frame->type() == StackFrame::C_WASM_ENTRY) {
handler_ = handler_->next();
}
}
StackHandler* handler() const { return handler_; }
bool done() { return handler_ == nullptr || AddressOf(handler_) > limit_; }
void Advance() {
DCHECK(!done());
handler_ = handler_->next();
}
private:
const Address limit_;
StackHandler* handler_;
};
// -------------------------------------------------------------------------
#define INITIALIZE_SINGLETON(type, field) field##_(this),
StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate,
bool can_access_heap_objects)
: isolate_(isolate),
STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(nullptr),
handler_(nullptr),
can_access_heap_objects_(can_access_heap_objects) {}
#undef INITIALIZE_SINGLETON
StackFrameIterator::StackFrameIterator(Isolate* isolate)
: StackFrameIterator(isolate, isolate->thread_local_top()) {}
StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t)
: StackFrameIteratorBase(isolate, true) {
Reset(t);
}
void StackFrameIterator::Advance() {
DCHECK(!done());
// Compute the state of the calling frame before restoring
// callee-saved registers and unwinding handlers. This allows the
// frame code that computes the caller state to access the top
// handler and the value of any callee-saved register if needed.
StackFrame::State state;
StackFrame::Type type = frame_->GetCallerState(&state);
// Unwind handlers corresponding to the current frame.
StackHandlerIterator it(frame_, handler_);
while (!it.done()) it.Advance();
handler_ = it.handler();
// Advance to the calling frame.
frame_ = SingletonFor(type, &state);
// When we're done iterating over the stack frames, the handler
// chain must have been completely unwound.
DCHECK(!done() || handler_ == nullptr);
}
void StackFrameIterator::Reset(ThreadLocalTop* top) {
StackFrame::State state;
StackFrame::Type type =
ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state);
handler_ = StackHandler::FromAddress(Isolate::handler(top));
frame_ = SingletonFor(type, &state);
}
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type,
StackFrame::State* state) {
StackFrame* result = SingletonFor(type);
DCHECK((!result) == (type == StackFrame::NONE));
if (result) result->state_ = *state;
return result;
}
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) {
#define FRAME_TYPE_CASE(type, field) \
case StackFrame::type: \
return &field##_;
switch (type) {
case StackFrame::NONE:
return nullptr;
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
default:
break;
}
return nullptr;
#undef FRAME_TYPE_CASE
}
// -------------------------------------------------------------------------
void JavaScriptFrameIterator::Advance() {
do {
iterator_.Advance();
} while (!iterator_.done() && !iterator_.frame()->is_java_script());
}
// -------------------------------------------------------------------------
StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate)
: iterator_(isolate) {
if (!done() && !IsValidFrame(iterator_.frame())) Advance();
}
StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate,
StackFrameId id)
: StackTraceFrameIterator(isolate) {
while (!done() && frame()->id() != id) Advance();
}
void StackTraceFrameIterator::Advance() {
do {
iterator_.Advance();
} while (!done() && !IsValidFrame(iterator_.frame()));
}
bool StackTraceFrameIterator::IsValidFrame(StackFrame* frame) const {
if (frame->is_java_script()) {
JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame);
if (!js_frame->function().IsJSFunction()) return false;
return js_frame->function().shared().IsSubjectToDebugging();
}
// Apart from JavaScript frames, only Wasm frames are valid.
return frame->is_wasm();
}
// -------------------------------------------------------------------------
namespace {
bool IsInterpreterFramePc(Isolate* isolate, Address pc,
StackFrame::State* state) {
Code interpreter_entry_trampoline =
isolate->builtins()->builtin(Builtins::kInterpreterEntryTrampoline);
Code interpreter_bytecode_advance =
isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeAdvance);
Code interpreter_bytecode_dispatch =
isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
if (interpreter_entry_trampoline.contains(pc) ||
interpreter_bytecode_advance.contains(pc) ||
interpreter_bytecode_dispatch.contains(pc)) {
return true;
} else if (FLAG_interpreted_frames_native_stack) {
intptr_t marker = Memory<intptr_t>(
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset);
MSAN_MEMORY_IS_INITIALIZED(
state->fp + StandardFrameConstants::kFunctionOffset,
kSystemPointerSize);
Object maybe_function = Object(
Memory<Address>(state->fp + StandardFrameConstants::kFunctionOffset));
// There's no need to run a full ContainsSlow if we know the frame can't be
// an InterpretedFrame, so we do these fast checks first
if (StackFrame::IsTypeMarker(marker) || maybe_function.IsSmi()) {
return false;
} else if (!isolate->heap()->InSpaceSlow(pc, CODE_SPACE)) {
return false;
}
interpreter_entry_trampoline =
isolate->heap()->GcSafeFindCodeForInnerPointer(pc);
return interpreter_entry_trampoline.is_interpreter_trampoline_builtin();
} else {
return false;
}
}
} // namespace
bool SafeStackFrameIterator::IsNoFrameBytecodeHandlerPc(Isolate* isolate,
Address pc,
Address fp) const {
// Return false for builds with non-embedded bytecode handlers.
if (Isolate::CurrentEmbeddedBlob() == nullptr) return false;
EmbeddedData d = EmbeddedData::FromBlob();
if (pc < d.InstructionStartOfBytecodeHandlers() ||
pc >= d.InstructionEndOfBytecodeHandlers()) {
// Not a bytecode handler pc address.
return false;
}
if (!IsValidStackAddress(fp +
CommonFrameConstants::kContextOrFrameTypeOffset)) {
return false;
}
// Check if top stack frame is a bytecode handler stub frame.
MSAN_MEMORY_IS_INITIALIZED(
fp + CommonFrameConstants::kContextOrFrameTypeOffset, kSystemPointerSize);
intptr_t marker =
Memory<intptr_t>(fp + CommonFrameConstants::kContextOrFrameTypeOffset);
if (StackFrame::IsTypeMarker(marker) &&
StackFrame::MarkerToType(marker) == StackFrame::STUB) {
// Bytecode handler built a frame.
return false;
}
return true;
}
SafeStackFrameIterator::SafeStackFrameIterator(Isolate* isolate, Address pc,
Address fp, Address sp,
Address lr, Address js_entry_sp)
: StackFrameIteratorBase(isolate, false),
low_bound_(sp),
high_bound_(js_entry_sp),
top_frame_type_(StackFrame::NONE),
top_context_address_(kNullAddress),
external_callback_scope_(isolate->external_callback_scope()),
top_link_register_(lr) {
StackFrame::State state;
StackFrame::Type type;
ThreadLocalTop* top = isolate->thread_local_top();
bool advance_frame = true;
Address fast_c_fp = isolate->isolate_data()->fast_c_call_caller_fp();
uint8_t stack_is_iterable = isolate->isolate_data()->stack_is_iterable();
if (!stack_is_iterable) {
frame_ = nullptr;
return;
}
// 'Fast C calls' are a special type of C call where we call directly from JS
// to C without an exit frame inbetween. The CEntryStub is responsible for
// setting Isolate::c_entry_fp, meaning that it won't be set for fast C calls.
// To keep the stack iterable, we store the FP and PC of the caller of the
// fast C call on the isolate. This is guaranteed to be the topmost JS frame,
// because fast C calls cannot call back into JS. We start iterating the stack
// from this topmost JS frame.
if (fast_c_fp) {
DCHECK_NE(kNullAddress, isolate->isolate_data()->fast_c_call_caller_pc());
type = StackFrame::Type::OPTIMIZED;
top_frame_type_ = type;
state.fp = fast_c_fp;
state.sp = sp;
state.pc_address = isolate->isolate_data()->fast_c_call_caller_pc_address();
advance_frame = false;
} else if (IsValidTop(top)) {
type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state);
top_frame_type_ = type;
} else if (IsValidStackAddress(fp)) {
DCHECK_NE(fp, kNullAddress);
state.fp = fp;
state.sp = sp;
state.pc_address = StackFrame::ResolveReturnAddressLocation(
reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp)));
// If the current PC is in a bytecode handler, the top stack frame isn't
// the bytecode handler's frame and the top of stack or link register is a
// return address into the interpreter entry trampoline, then we are likely
// in a bytecode handler with elided frame. In that case, set the PC
// properly and make sure we do not drop the frame.
if (IsNoFrameBytecodeHandlerPc(isolate, pc, fp)) {
Address* tos_location = nullptr;
if (top_link_register_) {
tos_location = &top_link_register_;
} else if (IsValidStackAddress(sp)) {
MSAN_MEMORY_IS_INITIALIZED(sp, kSystemPointerSize);
tos_location = reinterpret_cast<Address*>(sp);
}
if (IsInterpreterFramePc(isolate, *tos_location, &state)) {
state.pc_address = tos_location;
advance_frame = false;
}
}
// StackFrame::ComputeType will read both kContextOffset and kMarkerOffset,
// we check only that kMarkerOffset is within the stack bounds and do
// compile time check that kContextOffset slot is pushed on the stack before
// kMarkerOffset.
STATIC_ASSERT(StandardFrameConstants::kFunctionOffset <
StandardFrameConstants::kContextOffset);
Address frame_marker = fp + StandardFrameConstants::kFunctionOffset;
if (IsValidStackAddress(frame_marker)) {
type = StackFrame::ComputeType(this, &state);
top_frame_type_ = type;
// We only keep the top frame if we believe it to be interpreted frame.
if (type != StackFrame::INTERPRETED) {
advance_frame = true;
}
MSAN_MEMORY_IS_INITIALIZED(
fp + CommonFrameConstants::kContextOrFrameTypeOffset,
kSystemPointerSize);
Address type_or_context_address =
Memory<Address>(fp + CommonFrameConstants::kContextOrFrameTypeOffset);
if (!StackFrame::IsTypeMarker(type_or_context_address))
top_context_address_ = type_or_context_address;
} else {
// Mark the frame as OPTIMIZED if we cannot determine its type.
// We chose OPTIMIZED rather than INTERPRETED because it's closer to
// the original value of StackFrame::JAVA_SCRIPT here, in that JAVA_SCRIPT
// referred to full-codegen frames (now removed from the tree), and
// OPTIMIZED refers to turbofan frames, both of which are generated
// code. INTERPRETED frames refer to bytecode.
// The frame anyways will be skipped.
type = StackFrame::OPTIMIZED;
// Top frame is incomplete so we cannot reliably determine its type.
top_frame_type_ = StackFrame::NONE;
}
} else {
return;
}
frame_ = SingletonFor(type, &state);
if (advance_frame && frame_) Advance();
}
bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const {
Address c_entry_fp = Isolate::c_entry_fp(top);
if (!IsValidExitFrame(c_entry_fp)) return false;
// There should be at least one JS_ENTRY stack handler.
Address handler = Isolate::handler(top);
if (handler == kNullAddress) return false;
// Check that there are no js frames on top of the native frames.
return c_entry_fp < handler;
}
void SafeStackFrameIterator::AdvanceOneFrame() {
DCHECK(!done());
StackFrame* last_frame = frame_;
Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
// Before advancing to the next stack frame, perform pointer validity tests.
if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) {
frame_ = nullptr;
return;
}
// Advance to the previous frame.
StackFrame::State state;
StackFrame::Type type = frame_->GetCallerState(&state);
frame_ = SingletonFor(type, &state);
if (!frame_) return;
// Check that we have actually moved to the previous frame in the stack.
if (frame_->sp() <= last_sp || frame_->fp() <= last_fp) {
frame_ = nullptr;
}
}
bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
}
bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
StackFrame::State state;
if (frame->is_entry() || frame->is_construct_entry()) {
// See EntryFrame::GetCallerState. It computes the caller FP address
// and calls ExitFrame::GetStateForFramePointer on it. We need to be
// sure that caller FP address is valid.
Address caller_fp =
Memory<Address>(frame->fp() + EntryFrameConstants::kCallerFPOffset);
if (!IsValidExitFrame(caller_fp)) return false;
} else if (frame->is_arguments_adaptor()) {
// See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
// the number of arguments is stored on stack as Smi. We need to check
// that it really an Smi.
Object number_of_args =
reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->GetExpression(0);
if (!number_of_args.IsSmi()) {
return false;
}
}
frame->ComputeCallerState(&state);
return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
SingletonFor(frame->GetCallerState(&state)) != nullptr;
}
bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const {
if (!IsValidStackAddress(fp)) return false;
Address sp = ExitFrame::ComputeStackPointer(fp);
if (!IsValidStackAddress(sp)) return false;
StackFrame::State state;
ExitFrame::FillState(fp, sp, &state);
MSAN_MEMORY_IS_INITIALIZED(state.pc_address, sizeof(state.pc_address));
return *state.pc_address != kNullAddress;
}
void SafeStackFrameIterator::Advance() {
while (true) {
AdvanceOneFrame();
if (done()) break;
ExternalCallbackScope* last_callback_scope = nullptr;
while (external_callback_scope_ != nullptr &&
external_callback_scope_->scope_address() < frame_->fp()) {
// As long as the setup of a frame is not atomic, we may happen to be
// in an interval where an ExternalCallbackScope is already created,
// but the frame is not yet entered. So we are actually observing
// the previous frame.
// Skip all the ExternalCallbackScope's that are below the current fp.
last_callback_scope = external_callback_scope_;
external_callback_scope_ = external_callback_scope_->previous();
}
if (frame_->is_java_script() || frame_->is_wasm() ||
frame_->is_wasm_to_js()) {
break;
}
if (frame_->is_exit() || frame_->is_builtin_exit()) {
// Some of the EXIT frames may have ExternalCallbackScope allocated on
// top of them. In that case the scope corresponds to the first EXIT
// frame beneath it. There may be other EXIT frames on top of the
// ExternalCallbackScope, just skip them as we cannot collect any useful
// information about them.
if (last_callback_scope) {
frame_->state_.pc_address =
last_callback_scope->callback_entrypoint_address();
}
break;
}
}
}
// -------------------------------------------------------------------------
namespace {
Code GetContainingCode(Isolate* isolate, Address pc) {
return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code;
}
} // namespace
Code StackFrame::LookupCode() const {
Code result = GetContainingCode(isolate(), pc());
DCHECK_GE(pc(), result.InstructionStart());
DCHECK_LT(pc(), result.InstructionEnd());
return result;
}
void StackFrame::IteratePc(RootVisitor* v, Address* pc_address,
Address* constant_pool_address, Code holder) {
Address old_pc = ReadPC(pc_address);
DCHECK(ReadOnlyHeap::Contains(holder) ||
holder.GetHeap()->GcSafeCodeContains(holder, old_pc));
unsigned pc_offset =
static_cast<unsigned>(old_pc - holder.InstructionStart());
Object code = holder;
v->VisitRootPointer(Root::kTop, nullptr, FullObjectSlot(&code));
if (code == holder) return;
holder = Code::unchecked_cast(code);
Address pc = holder.InstructionStart() + pc_offset;
// TODO(v8:10026): avoid replacing a signed pointer.
PointerAuthentication::ReplacePC(pc_address, pc, kSystemPointerSize);
if (FLAG_enable_embedded_constant_pool && constant_pool_address) {
*constant_pool_address = holder.constant_pool();
}
}
void StackFrame::SetReturnAddressLocationResolver(
ReturnAddressLocationResolver resolver) {
DCHECK_NULL(return_address_location_resolver_);
return_address_location_resolver_ = resolver;
}
StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator,
State* state) {
DCHECK_NE(state->fp, kNullAddress);
MSAN_MEMORY_IS_INITIALIZED(
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset,
kSystemPointerSize);
intptr_t marker = Memory<intptr_t>(
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset);
Address pc = StackFrame::ReadPC(state->pc_address);
if (!iterator->can_access_heap_objects_) {
// TODO(titzer): "can_access_heap_objects" is kind of bogus. It really
// means that we are being called from the profiler, which can interrupt
// the VM with a signal at any arbitrary instruction, with essentially
// anything on the stack. So basically none of these checks are 100%
// reliable.
MSAN_MEMORY_IS_INITIALIZED(
state->fp + StandardFrameConstants::kFunctionOffset,
kSystemPointerSize);
Object maybe_function = Object(
Memory<Address>(state->fp + StandardFrameConstants::kFunctionOffset));
if (!StackFrame::IsTypeMarker(marker)) {
if (maybe_function.IsSmi()) {
return NATIVE;
} else if (IsInterpreterFramePc(iterator->isolate(), pc, state)) {
return INTERPRETED;
} else {
return OPTIMIZED;
}
}
} else {
// If the {pc} does not point into WebAssembly code we can rely on the
// returned {wasm_code} to be null and fall back to {GetContainingCode}.
wasm::WasmCodeRefScope code_ref_scope;
wasm::WasmCode* wasm_code =
iterator->isolate()->wasm_engine()->code_manager()->LookupCode(pc);
if (wasm_code != nullptr) {
switch (wasm_code->kind()) {
case wasm::WasmCode::kFunction:
return WASM_COMPILED;
case wasm::WasmCode::kWasmToCapiWrapper:
return WASM_EXIT;
case wasm::WasmCode::kWasmToJsWrapper:
return WASM_TO_JS;
case wasm::WasmCode::kInterpreterEntry:
return WASM_INTERPRETER_ENTRY;
default:
UNREACHABLE();
}
} else {
// Look up the code object to figure out the type of the stack frame.
Code code_obj = GetContainingCode(iterator->isolate(), pc);
if (!code_obj.is_null()) {
switch (code_obj.kind()) {
case Code::BUILTIN:
if (StackFrame::IsTypeMarker(marker)) break;
if (code_obj.is_interpreter_trampoline_builtin()) {
return INTERPRETED;
}
if (code_obj.is_turbofanned()) {
// TODO(bmeurer): We treat frames for BUILTIN Code objects as
// OptimizedFrame for now (all the builtins with JavaScript
// linkage are actually generated with TurboFan currently, so
// this is sound).
return OPTIMIZED;
}
return BUILTIN;
case Code::OPTIMIZED_FUNCTION:
return OPTIMIZED;
case Code::JS_TO_WASM_FUNCTION:
return JS_TO_WASM;
case Code::JS_TO_JS_FUNCTION:
return STUB;
case Code::C_WASM_ENTRY:
return C_WASM_ENTRY;
case Code::WASM_FUNCTION:
case Code::WASM_TO_CAPI_FUNCTION:
case Code::WASM_TO_JS_FUNCTION:
case Code::WASM_INTERPRETER_ENTRY:
// Never appear as on-heap {Code} objects.
UNREACHABLE();
default:
// All other types should have an explicit marker
break;
}
} else {
return NATIVE;
}
}
}
DCHECK(StackFrame::IsTypeMarker(marker));
StackFrame::Type candidate = StackFrame::MarkerToType(marker);
switch (candidate) {
case ENTRY:
case CONSTRUCT_ENTRY:
case EXIT:
case BUILTIN_CONTINUATION:
case JAVA_SCRIPT_BUILTIN_CONTINUATION:
case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH:
case BUILTIN_EXIT:
case STUB:
case INTERNAL:
case CONSTRUCT:
case ARGUMENTS_ADAPTOR:
case WASM_TO_JS:
case WASM_COMPILED:
case WASM_COMPILE_LAZY:
case WASM_EXIT:
return candidate;
case JS_TO_WASM:
case OPTIMIZED:
case INTERPRETED:
default:
// Unoptimized and optimized JavaScript frames, including
// interpreted frames, should never have a StackFrame::Type
// marker. If we find one, we're likely being called from the
// profiler in a bogus stack frame.
return NATIVE;
}
}
#ifdef DEBUG
bool StackFrame::can_access_heap_objects() const {
return iterator_->can_access_heap_objects_;
}
#endif
StackFrame::Type StackFrame::GetCallerState(State* state) const {
ComputeCallerState(state);
return ComputeType(iterator_, state);
}
Address StackFrame::UnpaddedFP() const { return fp(); }
Code NativeFrame::unchecked_code() const { return Code(); }
void NativeFrame::ComputeCallerState(State* state) const {
state->sp = caller_sp();
state->fp = Memory<Address>(fp() + CommonFrameConstants::kCallerFPOffset);
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(fp() + CommonFrameConstants::kCallerPCOffset));
state->callee_pc_address = nullptr;
state->constant_pool_address = nullptr;
}
Code EntryFrame::unchecked_code() const {
return isolate()->heap()->builtin(Builtins::kJSEntry);
}
void EntryFrame::ComputeCallerState(State* state) const {
GetCallerState(state);
}
StackFrame::Type EntryFrame::GetCallerState(State* state) const {
const int offset = EntryFrameConstants::kCallerFPOffset;
Address fp = Memory<Address>(this->fp() + offset);
return ExitFrame::GetStateForFramePointer(fp, state);
}
StackFrame::Type CWasmEntryFrame::GetCallerState(State* state) const {
const int offset = CWasmEntryFrameConstants::kCEntryFPOffset;
Address fp = Memory<Address>(this->fp() + offset);
return ExitFrame::GetStateForFramePointer(fp, state);
}
Code ConstructEntryFrame::unchecked_code() const {
return isolate()->heap()->builtin(Builtins::kJSConstructEntry);
}
Code ExitFrame::unchecked_code() const { return Code(); }
void ExitFrame::ComputeCallerState(State* state) const {
// Set up the caller state.
state->sp = caller_sp();
state->fp = Memory<Address>(fp() + ExitFrameConstants::kCallerFPOffset);
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset));
state->callee_pc_address = nullptr;
if (FLAG_enable_embedded_constant_pool) {
state->constant_pool_address = reinterpret_cast<Address*>(
fp() + ExitFrameConstants::kConstantPoolOffset);
}
}
void ExitFrame::Iterate(RootVisitor* v) const {
// The arguments are traversed as part of the expression stack of
// the calling frame.
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}
Address ExitFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
if (fp == 0) return NONE;
StackFrame::Type type = ComputeFrameType(fp);
Address sp = (type == WASM_EXIT) ? WasmExitFrame::ComputeStackPointer(fp)
: ExitFrame::ComputeStackPointer(fp);
FillState(fp, sp, state);
DCHECK_NE(*state->pc_address, kNullAddress);
return type;
}
StackFrame::Type ExitFrame::ComputeFrameType(Address fp) {
// Distinguish between between regular and builtin exit frames.
// Default to EXIT in all hairy cases (e.g., when called from profiler).
const int offset = ExitFrameConstants::kFrameTypeOffset;
Object marker(Memory<Address>(fp + offset));
if (!marker.IsSmi()) {
return EXIT;
}
intptr_t marker_int = bit_cast<intptr_t>(marker);
StackFrame::Type frame_type = static_cast<StackFrame::Type>(marker_int >> 1);
if (frame_type == EXIT || frame_type == BUILTIN_EXIT ||
frame_type == WASM_EXIT) {
return frame_type;
}
return EXIT;
}
Address ExitFrame::ComputeStackPointer(Address fp) {
MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset,
kSystemPointerSize);
return Memory<Address>(fp + ExitFrameConstants::kSPOffset);
}
Address WasmExitFrame::ComputeStackPointer(Address fp) {
// For WASM_EXIT frames, {sp} is only needed for finding the PC slot,
// everything else is handled via safepoint information.
Address sp = fp + WasmExitFrameConstants::kWasmInstanceOffset;
DCHECK_EQ(sp - 1 * kPCOnStackSize,
fp + WasmExitFrameConstants::kCallingPCOffset);
return sp;
}
void ExitFrame::FillState(Address fp, Address sp, State* state) {
state->sp = sp;
state->fp = fp;
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize));
state->callee_pc_address = nullptr;
// The constant pool recorded in the exit frame is not associated
// with the pc in this state (the return address into a C entry
// stub). ComputeCallerState will retrieve the constant pool
// together with the associated caller pc.
state->constant_pool_address = nullptr;
}
JSFunction BuiltinExitFrame::function() const {
return JSFunction::cast(target_slot_object());
}
Object BuiltinExitFrame::receiver() const { return receiver_slot_object(); }
bool BuiltinExitFrame::IsConstructor() const {
return !new_target_slot_object().IsUndefined(isolate());
}
Object BuiltinExitFrame::GetParameter(int i) const {
DCHECK(i >= 0 && i < ComputeParametersCount());
int offset =
BuiltinExitFrameConstants::kFirstArgumentOffset + i * kSystemPointerSize;
return Object(Memory<Address>(fp() + offset));
}
int BuiltinExitFrame::ComputeParametersCount() const {
Object argc_slot = argc_slot_object();
DCHECK(argc_slot.IsSmi());
// Argc also counts the receiver, target, new target, and argc itself as args,
// therefore the real argument count is argc - 4.
int argc = Smi::ToInt(argc_slot) - 4;
DCHECK_GE(argc, 0);
return argc;
}
namespace {
void PrintIndex(StringStream* accumulator, StackFrame::PrintMode mode,
int index) {
accumulator->Add((mode == StackFrame::OVERVIEW) ? "%5d: " : "[%d]: ", index);
}
const char* StringForStackFrameType(StackFrame::Type type) {
switch (type) {
#define CASE(value, name) \
case StackFrame::value: \
return #name;
STACK_FRAME_TYPE_LIST(CASE)
#undef CASE
default:
UNREACHABLE();
}
}
} // namespace
void StackFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
DisallowHeapAllocation no_gc;
PrintIndex(accumulator, mode, index);
accumulator->Add(StringForStackFrameType(type()));
accumulator->Add(" [pc: %p]\n", reinterpret_cast<void*>(pc()));
}
void BuiltinExitFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
DisallowHeapAllocation no_gc;
Object receiver = this->receiver();
JSFunction function = this->function();
accumulator->PrintSecurityTokenIfChanged(function);
PrintIndex(accumulator, mode, index);
accumulator->Add("builtin exit frame: ");
Code code;
if (IsConstructor()) accumulator->Add("new ");
accumulator->PrintFunction(function, receiver, &code);
accumulator->Add("(this=%o", receiver);
// Print the parameters.
int parameters_count = ComputeParametersCount();
for (int i = 0; i < parameters_count; i++) {
accumulator->Add(",%o", GetParameter(i));
}
accumulator->Add(")\n\n");
}
Address StandardFrame::GetExpressionAddress(int n) const {
const int offset = StandardFrameConstants::kExpressionsOffset;
return fp() + offset - n * kSystemPointerSize;
}
Address InterpretedFrame::GetExpressionAddress(int n) const {
const int offset = InterpreterFrameConstants::kExpressionsOffset;
return fp() + offset - n * kSystemPointerSize;
}
Script StandardFrame::script() const {
// This should only be called on frames which override this method.
UNREACHABLE();
return Script();
}
Object StandardFrame::receiver() const {
return ReadOnlyRoots(isolate()).undefined_value();
}
Object StandardFrame::context() const {
return ReadOnlyRoots(isolate()).undefined_value();
}
int StandardFrame::position() const {
AbstractCode code = AbstractCode::cast(LookupCode());
int code_offset = static_cast<int>(pc() - code.InstructionStart());
return code.SourcePosition(code_offset);
}
int StandardFrame::ComputeExpressionsCount() const {
Address base = GetExpressionAddress(0);
Address limit = sp() - kSystemPointerSize;
DCHECK(base >= limit); // stack grows downwards
// Include register-allocated locals in number of expressions.
return static_cast<int>((base - limit) / kSystemPointerSize);
}
Object StandardFrame::GetParameter(int index) const {
// StandardFrame does not define any parameters.
UNREACHABLE();
}
int StandardFrame::ComputeParametersCount() const { return 0; }
void StandardFrame::ComputeCallerState(State* state) const {
state->sp = caller_sp();
state->fp = caller_fp();
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(ComputePCAddress(fp())));
state->callee_pc_address = pc_address();
state->constant_pool_address =
reinterpret_cast<Address*>(ComputeConstantPoolAddress(fp()));
}
bool StandardFrame::IsConstructor() const { return false; }
void StandardFrame::Summarize(std::vector<FrameSummary>* functions) const {
// This should only be called on frames which override this method.
UNREACHABLE();
}
void StandardFrame::IterateCompiledFrame(RootVisitor* v) const {
// Make sure that we're not doing "safe" stack frame iteration. We cannot
// possibly find pointers in optimized frames in that state.
DCHECK(can_access_heap_objects());
// Find the code and compute the safepoint information.
Address inner_pointer = pc();
const wasm::WasmCode* wasm_code =
isolate()->wasm_engine()->code_manager()->LookupCode(inner_pointer);
SafepointEntry safepoint_entry;
uint32_t stack_slots;
Code code;
bool has_tagged_params = false;
uint32_t tagged_parameter_slots = 0;
if (wasm_code != nullptr) {
SafepointTable table(wasm_code->instruction_start(),
wasm_code->safepoint_table_offset(),
wasm_code->stack_slots());
safepoint_entry = table.FindEntry(inner_pointer);
stack_slots = wasm_code->stack_slots();
has_tagged_params = wasm_code->kind() != wasm::WasmCode::kFunction &&
wasm_code->kind() != wasm::WasmCode::kWasmToCapiWrapper;
tagged_parameter_slots = wasm_code->tagged_parameter_slots();
} else {
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry =
isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer);
if (!entry->safepoint_entry.is_valid()) {
entry->safepoint_entry = entry->code.GetSafepointEntry(inner_pointer);
DCHECK(entry->safepoint_entry.is_valid());
} else {
DCHECK(entry->safepoint_entry.Equals(
entry->code.GetSafepointEntry(inner_pointer)));
}
code = entry->code;
safepoint_entry = entry->safepoint_entry;
stack_slots = code.stack_slots();
has_tagged_params = code.has_tagged_params();
}
uint32_t slot_space = stack_slots * kSystemPointerSize;
// Determine the fixed header and spill slot area size.
int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp;
intptr_t marker =
Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset);
if (StackFrame::IsTypeMarker(marker)) {
StackFrame::Type candidate = StackFrame::MarkerToType(marker);
switch (candidate) {
case ENTRY:
case CONSTRUCT_ENTRY:
case EXIT:
case BUILTIN_CONTINUATION:
case JAVA_SCRIPT_BUILTIN_CONTINUATION:
case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH:
case BUILTIN_EXIT:
case ARGUMENTS_ADAPTOR:
case STUB:
case INTERNAL:
case CONSTRUCT:
case JS_TO_WASM:
case C_WASM_ENTRY:
frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp;
break;
case WASM_TO_JS:
case WASM_COMPILED:
case WASM_INTERPRETER_ENTRY:
case WASM_COMPILE_LAZY:
frame_header_size = WasmCompiledFrameConstants::kFixedFrameSizeFromFp;
break;
case WASM_EXIT:
// The last value in the frame header is the calling PC, which should
// not be visited.
static_assert(WasmExitFrameConstants::kFixedSlotCountFromFp ==
WasmCompiledFrameConstants::kFixedSlotCountFromFp + 1,
"WasmExitFrame has one slot more than WasmCompiledFrame");
frame_header_size = WasmCompiledFrameConstants::kFixedFrameSizeFromFp;
break;
case OPTIMIZED:
case INTERPRETED:
case BUILTIN:
// These frame types have a context, but they are actually stored
// in the place on the stack that one finds the frame type.
UNREACHABLE();
break;
case NATIVE:
case NONE:
case NUMBER_OF_TYPES:
case MANUAL:
UNREACHABLE();
break;
}
}
slot_space -=
(frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp);
FullObjectSlot frame_header_base(&Memory<Address>(fp() - frame_header_size));
FullObjectSlot frame_header_limit(
&Memory<Address>(fp() - StandardFrameConstants::kCPSlotSize));
FullObjectSlot parameters_base(&Memory<Address>(sp()));
FullObjectSlot parameters_limit(frame_header_base.address() - slot_space);
// Visit the rest of the parameters if they are tagged.
if (has_tagged_params) {
v->VisitRootPointers(Root::kTop, nullptr, parameters_base,
parameters_limit);
}
// Visit pointer spill slots and locals.
uint8_t* safepoint_bits = safepoint_entry.bits();
for (unsigned index = 0; index < stack_slots; index++) {
int byte_index = index >> kBitsPerByteLog2;
int bit_index = index & (kBitsPerByte - 1);
if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
FullObjectSlot spill_slot = parameters_limit + index;
#ifdef V8_COMPRESS_POINTERS
// Spill slots may contain compressed values in which case the upper
// 32-bits will contain zeros. In order to simplify handling of such
// slots in GC we ensure that the slot always contains full value.
// The spill slot may actually contain weak references so we load/store
// values using spill_slot.location() in order to avoid dealing with
// FullMaybeObjectSlots here.
Tagged_t compressed_value = static_cast<Tagged_t>(*spill_slot.location());
if (!HAS_SMI_TAG(compressed_value)) {
// We don't need to update smi values.
*spill_slot.location() =
DecompressTaggedPointer(isolate(), compressed_value);
}
#endif
v->VisitRootPointer(Root::kTop, nullptr, spill_slot);
}
}
// Visit tagged parameters that have been passed to the function of this
// frame. Conceptionally these parameters belong to the parent frame. However,
// the exact count is only known by this frame (in the presence of tail calls,
// this information cannot be derived from the call site).
if (tagged_parameter_slots > 0) {
FullObjectSlot tagged_parameter_base(&Memory<Address>(caller_sp()));
FullObjectSlot tagged_parameter_limit =
tagged_parameter_base + tagged_parameter_slots;
v->VisitRootPointers(Root::kTop, nullptr, tagged_parameter_base,
tagged_parameter_limit);
}
// For the off-heap code cases, we can skip this.
if (!code.is_null()) {
// Visit the return address in the callee and incoming arguments.
IteratePc(v, pc_address(), constant_pool_address(), code);
}
// If this frame has JavaScript ABI, visit the context (in stub and JS
// frames) and the function (in JS frames). If it has WebAssembly ABI, visit
// the instance object.
v->VisitRootPointers(Root::kTop, nullptr, frame_header_base,
frame_header_limit);
}
void StubFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); }
Code StubFrame::unchecked_code() const {
return isolate()->FindCodeObject(pc());
}
Address StubFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
int StubFrame::LookupExceptionHandlerInTable() {
Code code = LookupCode();
DCHECK(code.is_turbofanned());
DCHECK_EQ(code.kind(), Code::BUILTIN);
HandlerTable table(code);
int pc_offset = static_cast<int>(pc() - code.InstructionStart());
return table.LookupReturn(pc_offset);
}
void OptimizedFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); }
void JavaScriptFrame::SetParameterValue(int index, Object value) const {
Memory<Address>(GetParameterSlot(index)) = value.ptr();
}
bool JavaScriptFrame::IsConstructor() const {
Address fp = caller_fp();
if (has_adapted_arguments()) {
// Skip the arguments adaptor frame and look at the real caller.
fp = Memory<Address>(fp + StandardFrameConstants::kCallerFPOffset);
}
return IsConstructFrame(fp);
}
bool JavaScriptFrame::HasInlinedFrames() const {
std::vector<SharedFunctionInfo> functions;
GetFunctions(&functions);
return functions.size() > 1;
}
Code JavaScriptFrame::unchecked_code() const { return function().code(); }
int OptimizedFrame::ComputeParametersCount() const {
Code code = LookupCode();
if (code.kind() == Code::BUILTIN) {
return static_cast<int>(
Memory<intptr_t>(fp() + OptimizedBuiltinFrameConstants::kArgCOffset));
} else {
return JavaScriptFrame::ComputeParametersCount();
}
}
Address JavaScriptFrame::GetCallerStackPointer() const {
return fp() + StandardFrameConstants::kCallerSPOffset;
}
void JavaScriptFrame::GetFunctions(
std::vector<SharedFunctionInfo>* functions) const {
DCHECK(functions->empty());
functions->push_back(function().shared());
}
void JavaScriptFrame::GetFunctions(
std::vector<Handle<SharedFunctionInfo>>* functions) const {
DCHECK(functions->empty());
std::vector<SharedFunctionInfo> raw_functions;
GetFunctions(&raw_functions);
for (const auto& raw_function : raw_functions) {
functions->push_back(
Handle<SharedFunctionInfo>(raw_function, function().GetIsolate()));
}
}
void JavaScriptFrame::Summarize(std::vector<FrameSummary>* functions) const {
DCHECK(functions->empty());
Code code = LookupCode();
int offset = static_cast<int>(pc() - code.InstructionStart());
Handle<AbstractCode> abstract_code(AbstractCode::cast(code), isolate());
Handle<FixedArray> params = GetParameters();
FrameSummary::JavaScriptFrameSummary summary(
isolate(), receiver(), function(), *abstract_code, offset,
IsConstructor(), *params);
functions->push_back(summary);
}
JSFunction JavaScriptFrame::function() const {
return JSFunction::cast(function_slot_object());
}
Object JavaScriptFrame::unchecked_function() const {
// During deoptimization of an optimized function, we may have yet to
// materialize some closures on the stack. The arguments marker object
// marks this case.
DCHECK(function_slot_object().IsJSFunction() ||
ReadOnlyRoots(isolate()).arguments_marker() == function_slot_object());
return function_slot_object();
}
Object JavaScriptFrame::receiver() const { return GetParameter(-1); }
Object JavaScriptFrame::context() const {
const int offset = StandardFrameConstants::kContextOffset;
Object maybe_result(Memory<Address>(fp() + offset));
DCHECK(!maybe_result.IsSmi());
return maybe_result;
}
Script JavaScriptFrame::script() const {
return Script::cast(function().shared().script());
}
int JavaScriptFrame::LookupExceptionHandlerInTable(
int* stack_depth, HandlerTable::CatchPrediction* prediction) {
DCHECK(!LookupCode().has_handler_table());
DCHECK(!LookupCode().is_optimized_code());
return -1;
}
void JavaScriptFrame::PrintFunctionAndOffset(JSFunction function,
AbstractCode code, int code_offset,
FILE* file,
bool print_line_number) {
PrintF(file, "%s", function.IsOptimized() ? "*" : "~");
function.PrintName(file);
PrintF(file, "+%d", code_offset);
if (print_line_number) {
SharedFunctionInfo shared = function.shared();
int source_pos = code.SourcePosition(code_offset);
Object maybe_script = shared.script();
if (maybe_script.IsScript()) {
Script script = Script::cast(maybe_script);
int line = script.GetLineNumber(source_pos) + 1;
Object script_name_raw = script.name();
if (script_name_raw.IsString()) {
String script_name = String::cast(script.name());
std::unique_ptr<char[]> c_script_name =
script_name.ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
PrintF(file, " at %s:%d", c_script_name.get(), line);
} else {
PrintF(file, " at <unknown>:%d", line);
}
} else {
PrintF(file, " at <unknown>:<unknown>");
}
}
}
void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args,
bool print_line_number) {
// constructor calls
DisallowHeapAllocation no_allocation;
JavaScriptFrameIterator it(isolate);
while (!it.done()) {
if (it.frame()->is_java_script()) {
JavaScriptFrame* frame = it.frame();
if (frame->IsConstructor()) PrintF(file, "new ");
JSFunction function = frame->function();
int code_offset = 0;
if (frame->is_interpreted()) {
InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame);
code_offset = iframe->GetBytecodeOffset();
} else {
Code code = frame->unchecked_code();
code_offset = static_cast<int>(frame->pc() - code.InstructionStart());
}
PrintFunctionAndOffset(function, function.abstract_code(), code_offset,
file, print_line_number);
if (print_args) {
// function arguments
// (we are intentionally only printing the actually
// supplied parameters, not all parameters required)
PrintF(file, "(this=");
frame->receiver().ShortPrint(file);
const int length = frame->ComputeParametersCount();
for (int i = 0; i < length; i++) {
PrintF(file, ", ");
frame->GetParameter(i).ShortPrint(file);
}
PrintF(file, ")");
}
break;
}
it.Advance();
}
}
void JavaScriptFrame::CollectFunctionAndOffsetForICStats(JSFunction function,
AbstractCode code,
int code_offset) {
auto ic_stats = ICStats::instance();
ICInfo& ic_info = ic_stats->Current();
SharedFunctionInfo shared = function.shared();
ic_info.function_name = ic_stats->GetOrCacheFunctionName(function);
ic_info.script_offset = code_offset;
int source_pos = code.SourcePosition(code_offset);
Object maybe_script = shared.script();
if (maybe_script.IsScript()) {
Script script = Script::cast(maybe_script);
ic_info.line_num = script.GetLineNumber(source_pos) + 1;
ic_info.column_num = script.GetColumnNumber(source_pos);
ic_info.script_name = ic_stats->GetOrCacheScriptName(script);
}
}
Object JavaScriptFrame::GetParameter(int index) const {
return Object(Memory<Address>(GetParameterSlot(index)));
}
int JavaScriptFrame::ComputeParametersCount() const {
DCHECK(can_access_heap_objects() &&
isolate()->heap()->gc_state() == Heap::NOT_IN_GC);
return function().shared().internal_formal_parameter_count();
}
Handle<FixedArray> JavaScriptFrame::GetParameters() const {
if (V8_LIKELY(!FLAG_detailed_error_stack_trace)) {
return isolate()->factory()->empty_fixed_array();
}
int param_count = ComputeParametersCount();
Handle<FixedArray> parameters =
isolate()->factory()->NewFixedArray(param_count);
for (int i = 0; i < param_count; i++) {
parameters->set(i, GetParameter(i));
}
return parameters;
}
int JavaScriptBuiltinContinuationFrame::ComputeParametersCount() const {
// Assert that the first allocatable register is also the argument count
// register.
DCHECK_EQ(RegisterConfiguration::Default()->GetAllocatableGeneralCode(0),
kJavaScriptCallArgCountRegister.code());
Object argc_object(
Memory<Address>(fp() + BuiltinContinuationFrameConstants::kArgCOffset));
return Smi::ToInt(argc_object);
}
intptr_t JavaScriptBuiltinContinuationFrame::GetSPToFPDelta() const {
Address height_slot =
fp() + BuiltinContinuationFrameConstants::kFrameSPtoFPDeltaAtDeoptimize;
intptr_t height = Smi::ToInt(Smi(Memory<Address>(height_slot)));
return height;
}
Object JavaScriptBuiltinContinuationFrame::context() const {
return Object(Memory<Address>(
fp() + BuiltinContinuationFrameConstants::kBuiltinContextOffset));
}
void JavaScriptBuiltinContinuationWithCatchFrame::SetException(
Object exception) {
Address exception_argument_slot =
fp() + BuiltinContinuationFrameConstants::kFixedFrameSizeAboveFp +
kSystemPointerSize; // Skip over return value slot.
// Only allow setting exception if previous value was the hole.
CHECK_EQ(ReadOnlyRoots(isolate()).the_hole_value(),
Object(Memory<Address>(exception_argument_slot)));
Memory<Address>(exception_argument_slot) = exception.ptr();
}
FrameSummary::JavaScriptFrameSummary::JavaScriptFrameSummary(
Isolate* isolate, Object receiver, JSFunction function,
AbstractCode abstract_code, int code_offset, bool is_constructor,
FixedArray parameters)
: FrameSummaryBase(isolate, FrameSummary::JAVA_SCRIPT),
receiver_(receiver, isolate),
function_(function, isolate),
abstract_code_(abstract_code, isolate),
code_offset_(code_offset),
is_constructor_(is_constructor),
parameters_(parameters, isolate) {
DCHECK(abstract_code.IsBytecodeArray() ||
Code::cast(abstract_code).kind() != Code::OPTIMIZED_FUNCTION);
}
void FrameSummary::EnsureSourcePositionsAvailable() {
if (IsJavaScript()) {
java_script_summary_.EnsureSourcePositionsAvailable();
}
}
bool FrameSummary::AreSourcePositionsAvailable() const {
if (IsJavaScript()) {
return java_script_summary_.AreSourcePositionsAvailable();
}
return true;
}
void FrameSummary::JavaScriptFrameSummary::EnsureSourcePositionsAvailable() {
Handle<SharedFunctionInfo> shared(function()->shared(), isolate());
SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate(), shared);
}
bool FrameSummary::JavaScriptFrameSummary::AreSourcePositionsAvailable() const {
return !FLAG_enable_lazy_source_positions ||
function()->shared().GetBytecodeArray().HasSourcePositionTable();
}
bool FrameSummary::JavaScriptFrameSummary::is_subject_to_debugging() const {
return function()->shared().IsSubjectToDebugging();
}
int FrameSummary::JavaScriptFrameSummary::SourcePosition() const {
return abstract_code()->SourcePosition(code_offset());
}
int FrameSummary::JavaScriptFrameSummary::SourceStatementPosition() const {
return abstract_code()->SourceStatementPosition(code_offset());
}
Handle<Object> FrameSummary::JavaScriptFrameSummary::script() const {
return handle(function_->shared().script(), isolate());
}
Handle<String> FrameSummary::JavaScriptFrameSummary::FunctionName() const {
return JSFunction::GetDebugName(function_);
}
Handle<Context> FrameSummary::JavaScriptFrameSummary::native_context() const {
return handle(function_->context().native_context(), isolate());
}
FrameSummary::WasmFrameSummary::WasmFrameSummary(
Isolate* isolate, FrameSummary::Kind kind,
Handle<WasmInstanceObject> instance, bool at_to_number_conversion)
: FrameSummaryBase(isolate, kind),
wasm_instance_(instance),
at_to_number_conversion_(at_to_number_conversion) {}
Handle<Object> FrameSummary::WasmFrameSummary::receiver() const {
return wasm_instance_->GetIsolate()->global_proxy();
}
#define WASM_SUMMARY_DISPATCH(type, name) \
type FrameSummary::WasmFrameSummary::name() const { \
DCHECK(kind() == Kind::WASM_COMPILED || kind() == Kind::WASM_INTERPRETED); \
return kind() == Kind::WASM_COMPILED \
? static_cast<const WasmCompiledFrameSummary*>(this)->name() \
: static_cast<const WasmInterpretedFrameSummary*>(this) \
->name(); \
}
WASM_SUMMARY_DISPATCH(uint32_t, function_index)
WASM_SUMMARY_DISPATCH(int, byte_offset)
#undef WASM_SUMMARY_DISPATCH
int FrameSummary::WasmFrameSummary::SourcePosition() const {
const wasm::WasmModule* module = wasm_instance()->module_object().module();
return GetSourcePosition(module, function_index(), byte_offset(),
at_to_number_conversion());
}
Handle<Script> FrameSummary::WasmFrameSummary::script() const {
return handle(wasm_instance()->module_object().script(),
wasm_instance()->GetIsolate());
}
Handle<String> FrameSummary::WasmFrameSummary::FunctionName() const {
Handle<WasmModuleObject> module_object(wasm_instance()->module_object(),
isolate());
return WasmModuleObject::GetFunctionName(isolate(), module_object,
function_index());
}
Handle<Context> FrameSummary::WasmFrameSummary::native_context() const {
return handle(wasm_instance()->native_context(), isolate());
}
FrameSummary::WasmCompiledFrameSummary::WasmCompiledFrameSummary(
Isolate* isolate, Handle<WasmInstanceObject> instance, wasm::WasmCode* code,
int code_offset, bool at_to_number_conversion)
: WasmFrameSummary(isolate, WASM_COMPILED, instance,
at_to_number_conversion),
code_(code),
code_offset_(code_offset) {}
uint32_t FrameSummary::WasmCompiledFrameSummary::function_index() const {
return code()->index();
}
int FrameSummary::WasmCompiledFrameSummary::GetWasmSourcePosition(
const wasm::WasmCode* code, int offset) {
int position = 0;
// Subtract one because the current PC is one instruction after the call site.
offset--;
for (SourcePositionTableIterator iterator(code->source_positions());
!iterator.done() && iterator.code_offset() <= offset;
iterator.Advance()) {
position = iterator.source_position().ScriptOffset();
}
return position;
}
int FrameSummary::WasmCompiledFrameSummary::byte_offset() const {
return GetWasmSourcePosition(code_, code_offset());
}
FrameSummary::WasmInterpretedFrameSummary::WasmInterpretedFrameSummary(
Isolate* isolate, Handle<WasmInstanceObject> instance,
uint32_t function_index, int byte_offset)
: WasmFrameSummary(isolate, WASM_INTERPRETED, instance, false),
function_index_(function_index),
byte_offset_(byte_offset) {}
FrameSummary::~FrameSummary() {
#define FRAME_SUMMARY_DESTR(kind, type, field, desc) \
case kind: \
field.~type(); \
break;
switch (base_.kind()) {
FRAME_SUMMARY_VARIANTS(FRAME_SUMMARY_DESTR)
default:
UNREACHABLE();
}
#undef FRAME_SUMMARY_DESTR
}
FrameSummary FrameSummary::GetTop(const StandardFrame* frame) {
std::vector<FrameSummary> frames;
frame->Summarize(&frames);
DCHECK_LT(0, frames.size());
return frames.back();
}
FrameSummary FrameSummary::GetBottom(const StandardFrame* frame) {
return Get(frame, 0);
}
FrameSummary FrameSummary::GetSingle(const StandardFrame* frame) {
std::vector<FrameSummary> frames;
frame->Summarize(&frames);
DCHECK_EQ(1, frames.size());
return frames.front();
}
FrameSummary FrameSummary::Get(const StandardFrame* frame, int index) {
DCHECK_LE(0, index);
std::vector<FrameSummary> frames;
frame->Summarize(&frames);
DCHECK_GT(frames.size(), index);
return frames[index];
}
#define FRAME_SUMMARY_DISPATCH(ret, name) \
ret FrameSummary::name() const { \
switch (base_.kind()) { \
case JAVA_SCRIPT: \
return java_script_summary_.name(); \
case WASM_COMPILED: \
return wasm_compiled_summary_.name(); \
case WASM_INTERPRETED: \
return wasm_interpreted_summary_.name(); \
default: \
UNREACHABLE(); \
return ret{}; \
} \
}
FRAME_SUMMARY_DISPATCH(Handle<Object>, receiver)
FRAME_SUMMARY_DISPATCH(int, code_offset)
FRAME_SUMMARY_DISPATCH(bool, is_constructor)
FRAME_SUMMARY_DISPATCH(bool, is_subject_to_debugging)
FRAME_SUMMARY_DISPATCH(Handle<Object>, script)
FRAME_SUMMARY_DISPATCH(int, SourcePosition)
FRAME_SUMMARY_DISPATCH(int, SourceStatementPosition)
FRAME_SUMMARY_DISPATCH(Handle<String>, FunctionName)
FRAME_SUMMARY_DISPATCH(Handle<Context>, native_context)
#undef FRAME_SUMMARY_DISPATCH
void OptimizedFrame::Summarize(std::vector<FrameSummary>* frames) const {
DCHECK(frames->empty());
DCHECK(is_optimized());
// Delegate to JS frame in absence of turbofan deoptimization.
// TODO(turbofan): Revisit once we support deoptimization across the board.
Code code = LookupCode();
if (code.kind() == Code::BUILTIN) {
return JavaScriptFrame::Summarize(frames);
}
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationData const data = GetDeoptimizationData(&deopt_index);
if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
CHECK(data.is_null());
FATAL("Missing deoptimization information for OptimizedFrame::Summarize.");
}
// Prepare iteration over translation. Note that the below iteration might
// materialize objects without storing them back to the Isolate, this will
// lead to objects being re-materialized again for each summary.
TranslatedState translated(this);
translated.Prepare(fp());
// We create the summary in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
bool is_constructor = IsConstructor();
for (auto it = translated.begin(); it != translated.end(); it++) {
if (it->kind() == TranslatedFrame::kInterpretedFunction ||
it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
it->kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
Handle<SharedFunctionInfo> shared_info = it->shared_info();
// The translation commands are ordered and the function is always
// at the first position, and the receiver is next.
TranslatedFrame::iterator translated_values = it->begin();
// Get or materialize the correct function in the optimized frame.
Handle<JSFunction> function =
Handle<JSFunction>::cast(translated_values->GetValue());
translated_values++;
// Get or materialize the correct receiver in the optimized frame.
Handle<Object> receiver = translated_values->GetValue();
translated_values++;
// Determine the underlying code object and the position within it from
// the translation corresponding to the frame type in question.
Handle<AbstractCode> abstract_code;
unsigned code_offset;
if (it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
it->kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
code_offset = 0;
abstract_code =
handle(AbstractCode::cast(isolate()->builtins()->builtin(
Builtins::GetBuiltinFromBailoutId(it->node_id()))),
isolate());
} else {
DCHECK_EQ(it->kind(), TranslatedFrame::kInterpretedFunction);
code_offset = it->node_id().ToInt(); // Points to current bytecode.
abstract_code = handle(shared_info->abstract_code(), isolate());
}
// Append full summary of the encountered JS frame.
Handle<FixedArray> params = GetParameters();
FrameSummary::JavaScriptFrameSummary summary(
isolate(), *receiver, *function, *abstract_code, code_offset,
is_constructor, *params);
frames->push_back(summary);
is_constructor = false;
} else if (it->kind() == TranslatedFrame::kConstructStub) {
// The next encountered JS frame will be marked as a constructor call.
DCHECK(!is_constructor);
is_constructor = true;
}
}
}
int OptimizedFrame::LookupExceptionHandlerInTable(
int* data, HandlerTable::CatchPrediction* prediction) {
// We cannot perform exception prediction on optimized code. Instead, we need
// to use FrameSummary to find the corresponding code offset in unoptimized
// code to perform prediction there.
DCHECK_NULL(prediction);
Code code = LookupCode();
HandlerTable table(code);
int pc_offset = static_cast<int>(pc() - code.InstructionStart());
DCHECK_NULL(data); // Data is not used and will not return a value.
// When the return pc has been replaced by a trampoline there won't be
// a handler for this trampoline. Thus we need to use the return pc that
// _used to be_ on the stack to get the right ExceptionHandler.
if (code.kind() == Code::OPTIMIZED_FUNCTION &&
code.marked_for_deoptimization()) {
SafepointTable safepoints(code);
pc_offset = safepoints.find_return_pc(pc_offset);
}
return table.LookupReturn(pc_offset);
}
DeoptimizationData OptimizedFrame::GetDeoptimizationData(
int* deopt_index) const {
DCHECK(is_optimized());
JSFunction opt_function = function();
Code code = opt_function.code();
// The code object may have been replaced by lazy deoptimization. Fall
// back to a slow search in this case to find the original optimized
// code object.
if (!code.contains(pc())) {
code = isolate()->heap()->GcSafeFindCodeForInnerPointer(pc());
}
DCHECK(!code.is_null());
DCHECK(code.kind() == Code::OPTIMIZED_FUNCTION);
SafepointEntry safepoint_entry = code.GetSafepointEntry(pc());
if (safepoint_entry.has_deoptimization_index()) {
*deopt_index = safepoint_entry.deoptimization_index();
return DeoptimizationData::cast(code.deoptimization_data());
}
*deopt_index = Safepoint::kNoDeoptimizationIndex;
return DeoptimizationData();
}
Object OptimizedFrame::receiver() const {
Code code = LookupCode();
if (code.kind() == Code::BUILTIN) {
intptr_t argc = static_cast<int>(
Memory<intptr_t>(fp() + OptimizedBuiltinFrameConstants::kArgCOffset));
intptr_t args_size =
(StandardFrameConstants::kFixedSlotCountAboveFp + argc) *
kSystemPointerSize;
Address receiver_ptr = fp() + args_size;
return *FullObjectSlot(receiver_ptr);
} else {
return JavaScriptFrame::receiver();
}
}
void OptimizedFrame::GetFunctions(
std::vector<SharedFunctionInfo>* functions) const {
DCHECK(functions->empty());
DCHECK(is_optimized());
// Delegate to JS frame in absence of turbofan deoptimization.
// TODO(turbofan): Revisit once we support deoptimization across the board.
Code code = LookupCode();
if (code.kind() == Code::BUILTIN) {
return JavaScriptFrame::GetFunctions(functions);
}
DisallowHeapAllocation no_gc;
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationData const data = GetDeoptimizationData(&deopt_index);
DCHECK(!data.is_null());
DCHECK_NE(Safepoint::kNoDeoptimizationIndex, deopt_index);
FixedArray const literal_array = data.LiteralArray();
TranslationIterator it(data.TranslationByteArray(),
data.TranslationIndex(deopt_index).value());
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
DCHECK_EQ(Translation::BEGIN, opcode);
it.Next(); // Skip frame count.
int jsframe_count = it.Next();
it.Next(); // Skip update feedback count.
// We insert the frames in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
while (jsframe_count != 0) {
opcode = static_cast<Translation::Opcode>(it.Next());
if (opcode == Translation::INTERPRETED_FRAME ||
opcode == Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME ||
opcode ==
Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME) {
it.Next(); // Skip bailout id.
jsframe_count--;
// The second operand of the frame points to the function.
Object shared = literal_array.get(it.Next());
functions->push_back(SharedFunctionInfo::cast(shared));
// Skip over remaining operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode) - 2);
} else {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
}
}
int OptimizedFrame::StackSlotOffsetRelativeToFp(int slot_index) {
return StandardFrameConstants::kCallerSPOffset -
((slot_index + 1) * kSystemPointerSize);
}
Object OptimizedFrame::StackSlotAt(int index) const {
return Object(Memory<Address>(fp() + StackSlotOffsetRelativeToFp(index)));
}
int InterpretedFrame::position() const {
AbstractCode code = AbstractCode::cast(GetBytecodeArray());
int code_offset = GetBytecodeOffset();
return code.SourcePosition(code_offset);
}
int InterpretedFrame::LookupExceptionHandlerInTable(
int* context_register, HandlerTable::CatchPrediction* prediction) {
HandlerTable table(GetBytecodeArray());
return table.LookupRange(GetBytecodeOffset(), context_register, prediction);
}
int InterpretedFrame::GetBytecodeOffset() const {
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp,
InterpreterFrameConstants::kExpressionsOffset -
index * kSystemPointerSize);
int raw_offset = Smi::ToInt(GetExpression(index));
return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
}
int InterpretedFrame::GetBytecodeOffset(Address fp) {
const int offset = InterpreterFrameConstants::kExpressionsOffset;
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp,
InterpreterFrameConstants::kExpressionsOffset -
index * kSystemPointerSize);
Address expression_offset = fp + offset - index * kSystemPointerSize;
int raw_offset = Smi::ToInt(Object(Memory<Address>(expression_offset)));
return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
}
void InterpretedFrame::PatchBytecodeOffset(int new_offset) {
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp,
InterpreterFrameConstants::kExpressionsOffset -
index * kSystemPointerSize);
int raw_offset = BytecodeArray::kHeaderSize - kHeapObjectTag + new_offset;
SetExpression(index, Smi::FromInt(raw_offset));
}
BytecodeArray InterpretedFrame::GetBytecodeArray() const {
const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
DCHECK_EQ(InterpreterFrameConstants::kBytecodeArrayFromFp,
InterpreterFrameConstants::kExpressionsOffset -
index * kSystemPointerSize);
return BytecodeArray::cast(GetExpression(index));
}
void InterpretedFrame::PatchBytecodeArray(BytecodeArray bytecode_array) {
const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
DCHECK_EQ(InterpreterFrameConstants::kBytecodeArrayFromFp,
InterpreterFrameConstants::kExpressionsOffset -
index * kSystemPointerSize);
SetExpression(index, bytecode_array);
}
Object InterpretedFrame::ReadInterpreterRegister(int register_index) const {
const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
DCHECK_EQ(InterpreterFrameConstants::kRegisterFileFromFp,
InterpreterFrameConstants::kExpressionsOffset -
index * kSystemPointerSize);
return GetExpression(index + register_index);
}
void InterpretedFrame::WriteInterpreterRegister(int register_index,
Object value) {
const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
DCHECK_EQ(InterpreterFrameConstants::kRegisterFileFromFp,
InterpreterFrameConstants::kExpressionsOffset -
index * kSystemPointerSize);
return SetExpression(index + register_index, value);
}
void InterpretedFrame::Summarize(std::vector<FrameSummary>* functions) const {
DCHECK(functions->empty());
Handle<AbstractCode> abstract_code(AbstractCode::cast(GetBytecodeArray()),
isolate());
Handle<FixedArray> params = GetParameters();
FrameSummary::JavaScriptFrameSummary summary(
isolate(), receiver(), function(), *abstract_code, GetBytecodeOffset(),
IsConstructor(), *params);
functions->push_back(summary);
}
int ArgumentsAdaptorFrame::ComputeParametersCount() const {
return Smi::ToInt(GetExpression(0));
}
Code ArgumentsAdaptorFrame::unchecked_code() const {
return isolate()->builtins()->builtin(Builtins::kArgumentsAdaptorTrampoline);
}
int BuiltinFrame::ComputeParametersCount() const {
return Smi::ToInt(GetExpression(0));
}
void BuiltinFrame::PrintFrameKind(StringStream* accumulator) const {
accumulator->Add("builtin frame: ");
}
Address InternalFrame::GetCallerStackPointer() const {
// Internal frames have no arguments. The stack pointer of the
// caller is at a fixed offset from the frame pointer.
return fp() + StandardFrameConstants::kCallerSPOffset;
}
Code InternalFrame::unchecked_code() const { return Code(); }
void WasmCompiledFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
PrintIndex(accumulator, mode, index);
accumulator->Add("WASM [");
accumulator->PrintName(script().name());
Address instruction_start = isolate()
->wasm_engine()
->code_manager()
->LookupCode(pc())
->instruction_start();
Vector<const uint8_t> raw_func_name =
module_object().GetRawFunctionName(function_index());
const int kMaxPrintedFunctionName = 64;
char func_name[kMaxPrintedFunctionName + 1];
int func_name_len = std::min(kMaxPrintedFunctionName, raw_func_name.length());
memcpy(func_name, raw_func_name.begin(), func_name_len);
func_name[func_name_len] = '\0';
int pos = position();
const wasm::WasmModule* module = wasm_instance().module_object().module();
int func_index = function_index();
int func_code_offset = module->functions[func_index].code.offset();
accumulator->Add("], function #%u ('%s'), pc=%p (+0x%x), pos=%d (+%d)\n",
func_index, func_name, reinterpret_cast<void*>(pc()),
static_cast<int>(pc() - instruction_start), pos,
pos - func_code_offset);
if (mode != OVERVIEW) accumulator->Add("\n");
}
Code WasmCompiledFrame::unchecked_code() const {
return isolate()->FindCodeObject(pc());
}
void WasmCompiledFrame::Iterate(RootVisitor* v) const {
IterateCompiledFrame(v);
}
Address WasmCompiledFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
wasm::WasmCode* WasmCompiledFrame::wasm_code() const {
return isolate()->wasm_engine()->code_manager()->LookupCode(pc());
}
WasmInstanceObject WasmCompiledFrame::wasm_instance() const {
const int offset = WasmCompiledFrameConstants::kWasmInstanceOffset;
Object instance(Memory<Address>(fp() + offset));
return WasmInstanceObject::cast(instance);
}
wasm::NativeModule* WasmCompiledFrame::native_module() const {
return module_object().native_module();
}
WasmModuleObject WasmCompiledFrame::module_object() const {
return wasm_instance().module_object();
}
uint32_t WasmCompiledFrame::function_index() const {
return FrameSummary::GetSingle(this).AsWasmCompiled().function_index();
}
Script WasmCompiledFrame::script() const { return module_object().script(); }
int WasmCompiledFrame::position() const {
return FrameSummary::GetSingle(this).SourcePosition();
}
Object WasmCompiledFrame::context() const {
return wasm_instance().native_context();
}
void WasmCompiledFrame::Summarize(std::vector<FrameSummary>* functions) const {
DCHECK(functions->empty());
// The {WasmCode*} escapes this scope via the {FrameSummary}, which is fine,
// since this code object is part of our stack.
wasm::WasmCodeRefScope code_ref_scope;
wasm::WasmCode* code = wasm_code();
int offset = static_cast<int>(pc() - code->instruction_start());
Handle<WasmInstanceObject> instance(wasm_instance(), isolate());
FrameSummary::WasmCompiledFrameSummary summary(
isolate(), instance, code, offset, at_to_number_conversion());
functions->push_back(summary);
}
bool WasmCompiledFrame::at_to_number_conversion() const {
// Check whether our callee is a WASM_TO_JS frame, and this frame is at the
// ToNumber conversion call.
wasm::WasmCode* code =
callee_pc() != kNullAddress
? isolate()->wasm_engine()->code_manager()->LookupCode(callee_pc())
: nullptr;
if (!code || code->kind() != wasm::WasmCode::kWasmToJsWrapper) return false;
int offset = static_cast<int>(callee_pc() - code->instruction_start());
int pos = FrameSummary::WasmCompiledFrameSummary::GetWasmSourcePosition(
code, offset);
DCHECK(pos == 0 || pos == 1);
// The imported call has position 0, ToNumber has position 1.
return !!pos;
}
int WasmCompiledFrame::LookupExceptionHandlerInTable() {
wasm::WasmCode* code =
isolate()->wasm_engine()->code_manager()->LookupCode(pc());
if (!code->IsAnonymous() && code->handler_table_size() > 0) {
HandlerTable table(code->handler_table(), code->handler_table_size(),
HandlerTable::kReturnAddressBasedEncoding);
int pc_offset = static_cast<int>(pc() - code->instruction_start());
return table.LookupReturn(pc_offset);
}
return -1;
}
void WasmInterpreterEntryFrame::Iterate(RootVisitor* v) const {
IterateCompiledFrame(v);
}
void WasmInterpreterEntryFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
PrintIndex(accumulator, mode, index);
accumulator->Add("WASM INTERPRETER ENTRY [");
Script script = this->script();
accumulator->PrintName(script.name());
accumulator->Add("]");
if (mode != OVERVIEW) accumulator->Add("\n");
}
void WasmInterpreterEntryFrame::Summarize(
std::vector<FrameSummary>* functions) const {
Handle<WasmInstanceObject> instance(wasm_instance(), isolate());
std::vector<std::pair<uint32_t, int>> interpreted_stack =
instance->debug_info().GetInterpretedStack(fp());
for (auto& e : interpreted_stack) {
FrameSummary::WasmInterpretedFrameSummary summary(isolate(), instance,
e.first, e.second);
functions->push_back(summary);
}
}
Code WasmInterpreterEntryFrame::unchecked_code() const { return Code(); }
int WasmInterpreterEntryFrame::NumberOfActiveFrames() const {
Handle<WasmInstanceObject> instance(wasm_instance(), isolate());
return instance->debug_info().NumberOfActiveFrames(fp());
}
WasmInstanceObject WasmInterpreterEntryFrame::wasm_instance() const {
const int offset = WasmCompiledFrameConstants::kWasmInstanceOffset;
Object instance(Memory<Address>(fp() + offset));
return WasmInstanceObject::cast(instance);
}
WasmDebugInfo WasmInterpreterEntryFrame::debug_info() const {
return wasm_instance().debug_info();
}
WasmModuleObject WasmInterpreterEntryFrame::module_object() const {
return wasm_instance().module_object();
}
Script WasmInterpreterEntryFrame::script() const {
return module_object().script();
}
int WasmInterpreterEntryFrame::position() const {
return FrameSummary::GetBottom(this).AsWasmInterpreted().SourcePosition();
}
Object WasmInterpreterEntryFrame::context() const {
return wasm_instance().native_context();
}
Address WasmInterpreterEntryFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
Code WasmCompileLazyFrame::unchecked_code() const { return Code(); }
WasmInstanceObject WasmCompileLazyFrame::wasm_instance() const {
return WasmInstanceObject::cast(*wasm_instance_slot());
}
FullObjectSlot WasmCompileLazyFrame::wasm_instance_slot() const {
const int offset = WasmCompileLazyFrameConstants::kWasmInstanceOffset;
return FullObjectSlot(&Memory<Address>(fp() + offset));
}
void WasmCompileLazyFrame::Iterate(RootVisitor* v) const {
const int header_size = WasmCompileLazyFrameConstants::kFixedFrameSizeFromFp;
FullObjectSlot base(&Memory<Address>(sp()));
FullObjectSlot limit(&Memory<Address>(fp() - header_size));
v->VisitRootPointers(Root::kTop, nullptr, base, limit);
v->VisitRootPointer(Root::kTop, nullptr, wasm_instance_slot());
}
Address WasmCompileLazyFrame::GetCallerStackPointer() const {
return fp() + WasmCompileLazyFrameConstants::kCallerSPOffset;
}
namespace {
void PrintFunctionSource(StringStream* accumulator, SharedFunctionInfo shared,
Code code) {
if (FLAG_max_stack_trace_source_length != 0 && !code.is_null()) {
std::ostringstream os;
os << "--------- s o u r c e c o d e ---------\n"
<< SourceCodeOf(shared, FLAG_max_stack_trace_source_length)
<< "\n-----------------------------------------\n";
accumulator->Add(os.str().c_str());
}
}
} // namespace
void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
Handle<SharedFunctionInfo> shared = handle(function().shared(), isolate());
SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate(), shared);
DisallowHeapAllocation no_gc;
Object receiver = this->receiver();
JSFunction function = this->function();
accumulator->PrintSecurityTokenIfChanged(function);
PrintIndex(accumulator, mode, index);
PrintFrameKind(accumulator);
Code code;
if (IsConstructor()) accumulator->Add("new ");
accumulator->PrintFunction(function, receiver, &code);
accumulator->Add(" [%p]", function);
// Get scope information for nicer output, if possible. If code is nullptr, or
// doesn't contain scope info, scope_info will return 0 for the number of
// parameters, stack local variables, context local variables, stack slots,
// or context slots.
ScopeInfo scope_info = shared->scope_info();
Object script_obj = shared->script();
if (script_obj.IsScript()) {
Script script = Script::cast(script_obj);
accumulator->Add(" [");
accumulator->PrintName(script.name());
if (is_interpreted()) {
const InterpretedFrame* iframe =
reinterpret_cast<const InterpretedFrame*>(this);
BytecodeArray bytecodes = iframe->GetBytecodeArray();
int offset = iframe->GetBytecodeOffset();
int source_pos = AbstractCode::cast(bytecodes).SourcePosition(offset);
int line = script.GetLineNumber(source_pos) + 1;
accumulator->Add(":%d] [bytecode=%p offset=%d]", line,
reinterpret_cast<void*>(bytecodes.ptr()), offset);
} else {
int function_start_pos = shared->StartPosition();
int line = script.GetLineNumber(function_start_pos) + 1;
accumulator->Add(":~%d] [pc=%p]", line, reinterpret_cast<void*>(pc()));
}
}
accumulator->Add("(this=%o", receiver);
// Print the parameters.
int parameters_count = ComputeParametersCount();
for (int i = 0; i < parameters_count; i++) {
accumulator->Add(",");
accumulator->Add("%o", GetParameter(i));
}
accumulator->Add(")");
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
if (is_optimized()) {
accumulator->Add(" {\n// optimized frame\n");
PrintFunctionSource(accumulator, *shared, code);
accumulator->Add("}\n");
return;
}
accumulator->Add(" {\n");
// Compute the number of locals and expression stack elements.
int heap_locals_count = scope_info.ContextLocalCount();
int expressions_count = ComputeExpressionsCount();
// Try to get hold of the context of this frame.
Context context;
if (this->context().IsContext()) {
context = Context::cast(this->context());
while (context.IsWithContext()) {
context = context.previous();
DCHECK(!context.is_null());
}
}
// Print heap-allocated local variables.
if (heap_locals_count > 0) {
accumulator->Add(" // heap-allocated locals\n");
}
for (int i = 0; i < heap_locals_count; i++) {
accumulator->Add(" var ");
accumulator->PrintName(scope_info.ContextLocalName(i));
accumulator->Add(" = ");
if (!context.is_null()) {
int index = Context::MIN_CONTEXT_SLOTS + i;
if (index < context.length()) {
accumulator->Add("%o", context.get(index));
} else {
accumulator->Add(
"// warning: missing context slot - inconsistent frame?");
}
} else {
accumulator->Add("// warning: no context found - inconsistent frame?");
}
accumulator->Add("\n");
}
// Print the expression stack.
if (0 < expressions_count) {
accumulator->Add(" // expression stack (top to bottom)\n");
}
for (int i = expressions_count - 1; i >= 0; i--) {
accumulator->Add(" [%02d] : %o\n", i, GetExpression(i));
}
PrintFunctionSource(accumulator, *shared, code);
accumulator->Add("}\n\n");
}
void ArgumentsAdaptorFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
int actual = ComputeParametersCount();
int expected = -1;
JSFunction function = this->function();
expected = function.shared().internal_formal_parameter_count();
PrintIndex(accumulator, mode, index);
accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
accumulator->Add(" {\n");
// Print actual arguments.
if (actual > 0) accumulator->Add(" // actual arguments\n");
for (int i = 0; i < actual; i++) {
accumulator->Add(" [%02d] : %o", i, GetParameter(i));
if (expected != -1 && i >= expected) {
accumulator->Add(" // not passed to callee");
}
accumulator->Add("\n");
}
accumulator->Add("}\n\n");
}
void EntryFrame::Iterate(RootVisitor* v) const {
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}
void StandardFrame::IterateExpressions(RootVisitor* v) const {
const int offset = StandardFrameConstants::kLastObjectOffset;
FullObjectSlot base(&Memory<Address>(sp()));
FullObjectSlot limit(&Memory<Address>(fp() + offset) + 1);
v->VisitRootPointers(Root::kTop, nullptr, base, limit);
}
void JavaScriptFrame::Iterate(RootVisitor* v) const {
IterateExpressions(v);
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}
void InternalFrame::Iterate(RootVisitor* v) const {
Code code = LookupCode();
IteratePc(v, pc_address(), constant_pool_address(), code);
// Internal frames typically do not receive any arguments, hence their stack
// only contains tagged pointers.
// We are misusing the has_tagged_params flag here to tell us whether
// the full stack frame contains only tagged pointers or only raw values.
// This is used for the WasmCompileLazy builtin, where we actually pass
// untagged arguments and also store untagged values on the stack.
if (code.has_tagged_params()) IterateExpressions(v);
}
// -------------------------------------------------------------------------
namespace {
uint32_t PcAddressForHashing(Isolate* isolate, Address address) {
if (InstructionStream::PcIsOffHeap(isolate, address)) {
// Ensure that we get predictable hashes for addresses in embedded code.
return EmbeddedData::FromBlob(isolate).AddressForHashing(address);
}
return ObjectAddressForHashing(address);
}
} // namespace
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry*
InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) {
isolate_->counters()->pc_to_code()->Increment();
DCHECK(base::bits::IsPowerOfTwo(kInnerPointerToCodeCacheSize));
uint32_t hash =
ComputeUnseededHash(PcAddressForHashing(isolate_, inner_pointer));
uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1);
InnerPointerToCodeCacheEntry* entry = cache(index);
if (entry->inner_pointer == inner_pointer) {
isolate_->counters()->pc_to_code_cached()->Increment();
DCHECK(entry->code ==
isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer));
} else {
// Because this code may be interrupted by a profiling signal that
// also queries the cache, we cannot update inner_pointer before the code
// has been set. Otherwise, we risk trying to use a cache entry before
// the code has been computed.
entry->code =
isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer);
entry->safepoint_entry.Reset();
entry->inner_pointer = inner_pointer;
}
return entry;
}
// Frame layout helper class implementation.
// -------------------------------------------------------------------------
namespace {
int ArgumentPaddingSlots(int arg_count) {
return ShouldPadArguments(arg_count) ? 1 : 0;
}
// Some architectures need to push padding together with the TOS register
// in order to maintain stack alignment.
constexpr int TopOfStackRegisterPaddingSlots() { return kPadArguments ? 1 : 0; }
bool BuiltinContinuationModeIsWithCatch(BuiltinContinuationMode mode) {
switch (mode) {
case BuiltinContinuationMode::STUB:
case BuiltinContinuationMode::JAVASCRIPT:
return false;
case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
return true;
}
UNREACHABLE();
}
} // namespace
InterpretedFrameInfo::InterpretedFrameInfo(int parameters_count_with_receiver,
int translation_height,
bool is_topmost,
FrameInfoKind frame_info_kind) {
const int locals_count = translation_height;
register_stack_slot_count_ =
InterpreterFrameConstants::RegisterStackSlotCount(locals_count);
static constexpr int kTheAccumulator = 1;
static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots();
int maybe_additional_slots =
(is_topmost || frame_info_kind == FrameInfoKind::kConservative)
? (kTheAccumulator + kTopOfStackPadding)
: 0;
frame_size_in_bytes_without_fixed_ =
(register_stack_slot_count_ + maybe_additional_slots) *
kSystemPointerSize;
// The 'fixed' part of the frame consists of the incoming parameters and
// the part described by InterpreterFrameConstants. This will include
// argument padding, when needed.
const int parameter_padding_slots =
ArgumentPaddingSlots(parameters_count_with_receiver);
const int fixed_frame_size =
InterpreterFrameConstants::kFixedFrameSize +
(parameters_count_with_receiver + parameter_padding_slots) *
kSystemPointerSize;
frame_size_in_bytes_ = frame_size_in_bytes_without_fixed_ + fixed_frame_size;
}
ArgumentsAdaptorFrameInfo::ArgumentsAdaptorFrameInfo(int translation_height) {
// Note: This is according to the Translation's notion of 'parameters' which
// differs to that of the SharedFunctionInfo, e.g. by including the receiver.
const int parameters_count = translation_height;
frame_size_in_bytes_without_fixed_ =
(parameters_count + ArgumentPaddingSlots(parameters_count)) *
kSystemPointerSize;
frame_size_in_bytes_ = frame_size_in_bytes_without_fixed_ +
ArgumentsAdaptorFrameConstants::kFixedFrameSize;
}
ConstructStubFrameInfo::ConstructStubFrameInfo(int translation_height,
bool is_topmost,
FrameInfoKind frame_info_kind) {
// Note: This is according to the Translation's notion of 'parameters' which
// differs to that of the SharedFunctionInfo, e.g. by including the receiver.
const int parameters_count = translation_height;
// If the construct frame appears to be topmost we should ensure that the
// value of result register is preserved during continuation execution.
// We do this here by "pushing" the result of the constructor function to
// the top of the reconstructed stack and popping it in
// {Builtins::kNotifyDeoptimized}.
static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots();
static constexpr int kTheResult = 1;
const int argument_padding = ArgumentPaddingSlots(parameters_count);
const int adjusted_height =
(is_topmost || frame_info_kind == FrameInfoKind::kConservative)
? parameters_count + argument_padding + kTheResult +
kTopOfStackPadding
: parameters_count + argument_padding;
frame_size_in_bytes_without_fixed_ = adjusted_height * kSystemPointerSize;
frame_size_in_bytes_ = frame_size_in_bytes_without_fixed_ +
ConstructFrameConstants::kFixedFrameSize;
}
BuiltinContinuationFrameInfo::BuiltinContinuationFrameInfo(
int translation_height,
const CallInterfaceDescriptor& continuation_descriptor,
const RegisterConfiguration* register_config, bool is_topmost,
DeoptimizeKind deopt_kind, BuiltinContinuationMode continuation_mode,
FrameInfoKind frame_info_kind) {
const bool is_conservative = frame_info_kind == FrameInfoKind::kConservative;
// Note: This is according to the Translation's notion of 'parameters' which
// differs to that of the SharedFunctionInfo, e.g. by including the receiver.
const int parameters_count = translation_height;
frame_has_result_stack_slot_ =
!is_topmost || deopt_kind == DeoptimizeKind::kLazy;
const int result_slot_count =
(frame_has_result_stack_slot_ || is_conservative) ? 1 : 0;
const int exception_slot_count =
(BuiltinContinuationModeIsWithCatch(continuation_mode) || is_conservative)
? 1
: 0;
const int allocatable_register_count =
register_config->num_allocatable_general_registers();
const int padding_slot_count =
BuiltinContinuationFrameConstants::PaddingSlotCount(
allocatable_register_count);
const int register_parameter_count =
continuation_descriptor.GetRegisterParameterCount();
translated_stack_parameter_count_ =
parameters_count - register_parameter_count;
stack_parameter_count_ = translated_stack_parameter_count_ +
result_slot_count + exception_slot_count;
const int stack_param_pad_count =
ArgumentPaddingSlots(stack_parameter_count_);
// If the builtins frame appears to be topmost we should ensure that the
// value of result register is preserved during continuation execution.
// We do this here by "pushing" the result of callback function to the
// top of the reconstructed stack and popping it in
// {Builtins::kNotifyDeoptimized}.
static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots();
static constexpr int kTheResult = 1;
const int push_result_count =
(is_topmost || is_conservative) ? kTheResult + kTopOfStackPadding : 0;
frame_size_in_bytes_ =
kSystemPointerSize * (stack_parameter_count_ + stack_param_pad_count +
allocatable_register_count + padding_slot_count +
push_result_count) +
BuiltinContinuationFrameConstants::kFixedFrameSize;
frame_size_in_bytes_above_fp_ =
kSystemPointerSize * (allocatable_register_count + padding_slot_count +
push_result_count) +
(BuiltinContinuationFrameConstants::kFixedFrameSize -
BuiltinContinuationFrameConstants::kFixedFrameSizeAboveFp);
}
} // namespace internal
} // namespace v8