blob: 4f575bab78e173e698ecbf3f082eab7303c102ee [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <type_traits>
#include "include/v8.h"
#include "src/base/functional.h"
#include "src/base/macros.h"
#include "src/common/checks.h"
#include "src/common/globals.h"
#include "src/handles/handle-for.h"
#include "src/zone/zone.h"
namespace v8 {
namespace internal {
// Forward declarations.
class DeferredHandles;
class HandleScopeImplementer;
class Isolate;
class OffThreadIsolate;
template <typename T>
class MaybeHandle;
class Object;
class OrderedHashMap;
class OrderedHashSet;
class OrderedNameDictionary;
class SmallOrderedHashMap;
class SmallOrderedHashSet;
class SmallOrderedNameDictionary;
class WasmExportedFunctionData;
// ----------------------------------------------------------------------------
// Base class for Handle instantiations. Don't use directly.
class HandleBase {
V8_INLINE explicit HandleBase(Address* location) : location_(location) {}
V8_INLINE explicit HandleBase(Address object, Isolate* isolate);
// Check if this handle refers to the exact same object as the other handle.
V8_INLINE bool is_identical_to(const HandleBase that) const {
SLOW_DCHECK((this->location_ == nullptr || this->IsDereferenceAllowed()) &&
(that.location_ == nullptr || that.IsDereferenceAllowed()));
if (this->location_ == that.location_) return true;
if (this->location_ == nullptr || that.location_ == nullptr) return false;
return *this->location_ == *that.location_;
V8_INLINE bool is_null() const { return location_ == nullptr; }
// Returns the raw address where this handle is stored. This should only be
// used for hashing handles; do not ever try to dereference it.
V8_INLINE Address address() const { return bit_cast<Address>(location_); }
// Returns the address to where the raw pointer is stored.
V8_INLINE Address* location() const {
SLOW_DCHECK(location_ == nullptr || IsDereferenceAllowed());
return location_;
#ifdef DEBUG
bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const;
bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const { return true; }
#endif // DEBUG
// This uses type Address* as opposed to a pointer type to a typed
// wrapper class, because it doesn't point to instances of such a
// wrapper class. Design overview:
Address* location_;
template <typename T>
class Handle;
template <typename T>
class OffThreadHandle;
// {ObjectRef} is returned by {Handle::operator->}. It should never be stored
// anywhere or used in any other code; no one should ever have to spell out
// {ObjectRef} in code. Its only purpose is to be dereferenced immediately by
// "operator-> chaining". Returning the address of the field is valid because
// this objects lifetime only ends at the end of the full statement.
template <typename T>
class HandleObjectRef {
T* operator->() { return &object_; }
friend class Handle<T>;
friend class OffThreadHandle<T>;
explicit HandleObjectRef(T object) : object_(object) {}
T object_;
// ----------------------------------------------------------------------------
// A Handle provides a reference to an object that survives relocation by
// the garbage collector.
// Handles are only valid within a HandleScope. When a handle is created
// for an object a cell is allocated in the current HandleScope.
// Also note that Handles do not provide default equality comparison or hashing
// operators on purpose. Such operators would be misleading, because intended
// semantics is ambiguous between Handle location and object identity. Instead
// use either {is_identical_to} or {location} explicitly.
template <typename T>
class Handle final : public HandleBase {
V8_INLINE explicit Handle() : HandleBase(nullptr) {
// Skip static type check in order to allow Handle<XXX>::null() as default
// parameter values in non-inl header files without requiring full
// definition of type XXX.
V8_INLINE explicit Handle(Address* location) : HandleBase(location) {
// This static type check also fails for forward class declarations.
static_assert(std::is_convertible<T*, Object*>::value,
"static type violation");
// TODO(jkummerow): Runtime type check here as a SLOW_DCHECK?
V8_INLINE Handle(T object, Isolate* isolate);
// Allocate a new handle for the object, do not canonicalize.
V8_INLINE static Handle<T> New(T object, Isolate* isolate);
// Constructor for handling automatic up casting.
// Ex. Handle<JSFunction> can be passed when Handle<Object> is expected.
template <typename S, typename = typename std::enable_if<
std::is_convertible<S*, T*>::value>::type>
V8_INLINE Handle(Handle<S> handle) : HandleBase(handle) {}
V8_INLINE HandleObjectRef<T> operator->() const {
return HandleObjectRef<T>{**this};
V8_INLINE T operator*() const {
// unchecked_cast because we rather trust Handle<T> to contain a T than
// include all the respective -inl.h headers for SLOW_DCHECKs.
return T::unchecked_cast(Object(*location()));
template <typename S>
inline static const Handle<T> cast(Handle<S> that);
// TODO(yangguo): Values that contain empty handles should be declared as
// MaybeHandle to force validation before being used as handles.
static const Handle<T> null() { return Handle<T>(); }
// Location equality.
bool equals(Handle<T> other) const { return address() == other.address(); }
// Provide function object for location equality comparison.
struct equal_to {
V8_INLINE bool operator()(Handle<T> lhs, Handle<T> rhs) const {
return lhs.equals(rhs);
// Provide function object for location hashing.
struct hash {
V8_INLINE size_t operator()(Handle<T> const& handle) const {
return base::hash<Address>()(handle.address());
// Handles of different classes are allowed to access each other's location_.
template <typename>
friend class Handle;
// MaybeHandle is allowed to access location_.
template <typename>
friend class MaybeHandle;
template <typename T>
inline std::ostream& operator<<(std::ostream& os, Handle<T> handle);
// ----------------------------------------------------------------------------
// A fake Handle that simply wraps an object reference. This is used for
// off-thread Objects, where we want a class that behaves like Handle for the
// purposes of operator->, casting, etc., but isn't a GC root and doesn't
// require access to the Isolate.
template <typename T>
class OffThreadHandle {
OffThreadHandle() = default;
explicit OffThreadHandle(T obj, OffThreadIsolate* isolate = nullptr)
: address_(obj.ptr()) {}
// Constructor for handling automatic up casting. We rely on the compiler
// making sure that the cast to T is legitimate.
template <typename U>
OffThreadHandle<T>(OffThreadHandle<U> other)
: address_(static_cast<T>(*other).ptr()) {}
T operator*() const { return T::unchecked_cast(Object(address_)); }
V8_INLINE HandleObjectRef<T> operator->() const {
return HandleObjectRef<T>{**this};
template <typename U>
static OffThreadHandle<T> cast(OffThreadHandle<U> other) {
return OffThreadHandle<T>(T::cast(*other));
bool is_null() const {
// TODO(leszeks): This will only work for HeapObjects, figure out a way to
// make is_null work for Object and Smi too.
return (*this)->is_null();
bool ToHandle(OffThreadHandle<T>* out) {
if (is_null()) return false;
*out = *this;
return true;
OffThreadHandle<T> ToHandleChecked() {
return *this;
Address address_ = 0;
// A helper class which wraps an normal or off-thread handle, and returns one
// or the other depending on the factory type.
template <typename T>
class HandleOrOffThreadHandle {
HandleOrOffThreadHandle() = default;
template <typename U>
HandleOrOffThreadHandle(Handle<U> handle) // NOLINT
: value_(bit_cast<Address>(static_cast<Handle<T>>(handle).location())) {
#ifdef DEBUG
which_ = kHandle;
template <typename U>
HandleOrOffThreadHandle(OffThreadHandle<U> handle) // NOLINT
: value_(static_cast<OffThreadHandle<T>>(handle)->ptr()) {
#ifdef DEBUG
which_ = kOffThreadHandle;
// Explicit getters for the Handle and OffThreadHandle.
inline Handle<T> get_handle() {
DCHECK_NE(which_, kOffThreadHandle);
return Handle<T>(reinterpret_cast<Address*>(value_));
inline OffThreadHandle<T> get_off_thread_handle() {
DCHECK_NE(which_, kHandle);
return OffThreadHandle<T>(T::unchecked_cast(Object(value_)));
// Implicitly convert to Handle, MaybeHandle and OffThreadHandle, whenever
// the conversion can be implicit.
template <typename U>
operator Handle<U>() { // NOLINT
return get_handle();
template <typename U>
operator MaybeHandle<U>() { // NOLINT
return get_handle();
template <typename U>
operator OffThreadHandle<U>() { // NOLINT
return get_off_thread_handle();
// Allow templated dispatch on which type of handle to get.
template <typename IsolateType>
inline HandleFor<IsolateType, T> get() {
return get_for(Tag<IsolateType>());
inline bool is_null() const { return value_ == 0; }
#ifdef DEBUG
inline bool is_initialized() const { return which_ != kUninitialized; }
// Tagged overloads because we can't specialize the above getter
// without also specializing the class.
template <typename IsolateType>
struct Tag {};
V8_INLINE Handle<T> get_for(Tag<class Isolate>) { return get_handle(); }
V8_INLINE OffThreadHandle<T> get_for(Tag<class OffThreadIsolate>) {
return get_off_thread_handle();
// Either handle.location() or off_thread_handle->ptr().
Address value_ = 0;
#ifdef DEBUG
enum { kUninitialized, kHandle, kOffThreadHandle } which_ = kUninitialized;
// ----------------------------------------------------------------------------
// A stack-allocated class that governs a number of local handles.
// After a handle scope has been created, all local handles will be
// allocated within that handle scope until either the handle scope is
// deleted or another handle scope is created. If there is already a
// handle scope and a new one is created, all allocations will take
// place in the new handle scope until it is deleted. After that,
// new handles will again be allocated in the original handle scope.
// After the handle scope of a local handle has been deleted the
// garbage collector will no longer track the object stored in the
// handle and may deallocate it. The behavior of accessing a handle
// for which the handle scope has been deleted is undefined.
class HandleScope {
explicit inline HandleScope(Isolate* isolate);
inline HandleScope(HandleScope&& other) V8_NOEXCEPT;
inline ~HandleScope();
inline HandleScope& operator=(HandleScope&& other) V8_NOEXCEPT;
// Counts the number of allocated handles.
V8_EXPORT_PRIVATE static int NumberOfHandles(Isolate* isolate);
// Create a new handle or lookup a canonical handle.
V8_INLINE static Address* GetHandle(Isolate* isolate, Address value);
// Creates a new handle with the given value.
V8_INLINE static Address* CreateHandle(Isolate* isolate, Address value);
// Deallocates any extensions used by the current scope.
V8_EXPORT_PRIVATE static void DeleteExtensions(Isolate* isolate);
static Address current_next_address(Isolate* isolate);
static Address current_limit_address(Isolate* isolate);
static Address current_level_address(Isolate* isolate);
// Closes the HandleScope (invalidating all handles
// created in the scope of the HandleScope) and returns
// a Handle backed by the parent scope holding the
// value of the argument handle.
template <typename T>
Handle<T> CloseAndEscape(Handle<T> handle_value);
Isolate* isolate() { return isolate_; }
// Limit for number of handles with --check-handle-count. This is
// large enough to compile natives and pass unit tests with some
// slack for future changes to natives.
static const int kCheckHandleThreshold = 30 * 1024;
// Prevent heap allocation or illegal handle scopes.
void* operator new(size_t size);
void operator delete(void* size_t);
Isolate* isolate_;
Address* prev_next_;
Address* prev_limit_;
// Close the handle scope resetting limits to a previous state.
static inline void CloseScope(Isolate* isolate, Address* prev_next,
Address* prev_limit);
// Extend the handle scope making room for more handles.
V8_EXPORT_PRIVATE static Address* Extend(Isolate* isolate);
// Zaps the handles in the half-open interval [start, end).
V8_EXPORT_PRIVATE static void ZapRange(Address* start, Address* end);
friend class v8::HandleScope;
friend class DeferredHandles;
friend class DeferredHandleScope;
friend class HandleScopeImplementer;
friend class Isolate;
// Forward declarations for CanonicalHandleScope.
template <typename V, class AllocationPolicy>
class IdentityMap;
class RootIndexMap;
// A CanonicalHandleScope does not open a new HandleScope. It changes the
// existing HandleScope so that Handles created within are canonicalized.
// This does not apply to nested inner HandleScopes unless a nested
// CanonicalHandleScope is introduced. Handles are only canonicalized within
// the same CanonicalHandleScope, but not across nested ones.
class V8_EXPORT_PRIVATE CanonicalHandleScope final {
explicit CanonicalHandleScope(Isolate* isolate);
Address* Lookup(Address object);
Isolate* isolate_;
Zone zone_;
RootIndexMap* root_index_map_;
IdentityMap<Address*, ZoneAllocationPolicy>* identity_map_;
// Ordinary nested handle scopes within the current one are not canonical.
int canonical_level_;
// We may have nested canonical scopes. Handles are canonical within each one.
CanonicalHandleScope* prev_canonical_scope_;
friend class HandleScope;
// A DeferredHandleScope is a HandleScope in which handles are not destroyed
// when the DeferredHandleScope is left. Instead the DeferredHandleScope has to
// be detached with {Detach}, and the result of {Detach} has to be destroyed
// explicitly. A DeferredHandleScope should only be used with the following
// design pattern:
// 1) Open a HandleScope (not a DeferredHandleScope).
// HandleScope scope(isolate_);
// 2) Create handles.
// Handle<Object> h1 = handle(object1, isolate);
// Handle<Object> h2 = handle(object2, isolate);
// 3) Open a DeferredHandleScope.
// DeferredHandleScope deferred_scope(isolate);
// 4) Reopen handles which should be in the DeferredHandleScope, e.g only h1.
// h1 = handle(*h1, isolate);
// 5) Detach the DeferredHandleScope.
// DeferredHandles* deferred_handles = deferred_scope.Detach();
// 6) Destroy the deferred handles.
// delete deferred_handles;
// Note: A DeferredHandleScope must not be opened within a DeferredHandleScope.
class V8_EXPORT_PRIVATE DeferredHandleScope final {
explicit DeferredHandleScope(Isolate* isolate);
// The DeferredHandles object returned stores the Handles created
// since the creation of this DeferredHandleScope. The Handles are
// alive as long as the DeferredHandles object is alive.
std::unique_ptr<DeferredHandles> Detach();
Address* prev_limit_;
Address* prev_next_;
HandleScopeImplementer* impl_;
#ifdef DEBUG
bool handles_detached_ = false;
int prev_level_;
friend class HandleScopeImplementer;
// Seal off the current HandleScope so that new handles can only be created
// if a new HandleScope is entered.
class SealHandleScope final {
#ifndef DEBUG
explicit SealHandleScope(Isolate* isolate) {}
~SealHandleScope() = default;
explicit inline SealHandleScope(Isolate* isolate);
inline ~SealHandleScope();
Isolate* isolate_;
Address* prev_limit_;
int prev_sealed_level_;
struct HandleScopeData final {
Address* next;
Address* limit;
int level;
int sealed_level;
CanonicalHandleScope* canonical_scope;
void Initialize() {
next = limit = nullptr;
sealed_level = level = 0;
canonical_scope = nullptr;
class OffThreadHandleScope {
explicit OffThreadHandleScope(OffThreadIsolate* isolate) {}
} // namespace internal
} // namespace v8