blob: 06237cfb9e60a4f3c7569b518e3fc56e07d0a98d [file] [log] [blame] [edit]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif
#ifndef V8_CODEGEN_PPC_MACRO_ASSEMBLER_PPC_H_
#define V8_CODEGEN_PPC_MACRO_ASSEMBLER_PPC_H_
#include "src/base/numbers/double.h"
#include "src/base/platform/platform.h"
#include "src/codegen/bailout-reason.h"
#include "src/codegen/ppc/assembler-ppc.h"
#include "src/common/globals.h"
#include "src/objects/contexts.h"
namespace v8 {
namespace internal {
enum class StackLimitKind { kInterruptStackLimit, kRealStackLimit };
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg);
// These exist to provide portability between 32 and 64bit
#if V8_TARGET_ARCH_PPC64
#define ClearLeftImm clrldi
#define ClearRightImm clrrdi
#else
#define ClearLeftImm clrlwi
#define ClearRightImm clrrwi
#endif
class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
public:
using TurboAssemblerBase::TurboAssemblerBase;
void CallBuiltin(Builtin builtin, Condition cond);
void TailCallBuiltin(Builtin builtin);
void Popcnt32(Register dst, Register src);
void Popcnt64(Register dst, Register src);
// Converts the integer (untagged smi) in |src| to a double, storing
// the result to |dst|
void ConvertIntToDouble(Register src, DoubleRegister dst);
// Converts the unsigned integer (untagged smi) in |src| to
// a double, storing the result to |dst|
void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
// Converts the integer (untagged smi) in |src| to
// a float, storing the result in |dst|
void ConvertIntToFloat(Register src, DoubleRegister dst);
// Converts the unsigned integer (untagged smi) in |src| to
// a float, storing the result in |dst|
void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
#if V8_TARGET_ARCH_PPC64
void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
#endif
// Converts the double_input to an integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertDoubleToInt64(const DoubleRegister double_input,
#if !V8_TARGET_ARCH_PPC64
const Register dst_hi,
#endif
const Register dst, const DoubleRegister double_dst,
FPRoundingMode rounding_mode = kRoundToZero);
#if V8_TARGET_ARCH_PPC64
// Converts the double_input to an unsigned integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertDoubleToUnsignedInt64(
const DoubleRegister double_input, const Register dst,
const DoubleRegister double_dst,
FPRoundingMode rounding_mode = kRoundToZero);
#endif
// Activation support.
void EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg = false);
// Returns the pc offset at which the frame ends.
int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
void AllocateStackSpace(int bytes) {
DCHECK_GE(bytes, 0);
if (bytes == 0) return;
AddS64(sp, sp, Operand(-bytes), r0);
}
void AllocateStackSpace(Register bytes) { sub(sp, sp, bytes); }
// Push a fixed frame, consisting of lr, fp, constant pool.
void PushCommonFrame(Register marker_reg = no_reg);
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue();
enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes };
void DropArguments(Register count, ArgumentsCountType type,
ArgumentsCountMode mode);
void DropArgumentsAndPushNewReceiver(Register argc, Register receiver,
ArgumentsCountType type,
ArgumentsCountMode mode);
// Push a standard frame, consisting of lr, fp, constant pool,
// context and JS function
void PushStandardFrame(Register function_reg);
// Restore caller's frame pointer and return address prior to being
// overwritten by tail call stack preparation.
void RestoreFrameStateForTailCall();
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
void InitializeRootRegister() {
ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
mov(kRootRegister, Operand(isolate_root));
}
void LoadDoubleLiteral(DoubleRegister result, base::Double value,
Register scratch);
// load a literal signed int value <value> to GPR <dst>
void LoadIntLiteral(Register dst, int value);
// load an SMI value <value> to GPR <dst>
void LoadSmiLiteral(Register dst, Smi smi);
void LoadPC(Register dst);
void ComputeCodeStartAddress(Register dst);
void CmpS64(Register src1, const Operand& src2, Register scratch,
CRegister cr = cr7);
void CmpS64(Register src1, Register src2, CRegister cr = cr7);
void CmpU64(Register src1, const Operand& src2, Register scratch,
CRegister cr = cr7);
void CmpU64(Register src1, Register src2, CRegister cr = cr7);
void CmpS32(Register src1, const Operand& src2, Register scratch,
CRegister cr = cr7);
void CmpS32(Register src1, Register src2, CRegister cr = cr7);
void CmpU32(Register src1, const Operand& src2, Register scratch,
CRegister cr = cr7);
void CmpU32(Register src1, Register src2, CRegister cr = cr7);
void CompareTagged(Register src1, Register src2, CRegister cr = cr7) {
if (COMPRESS_POINTERS_BOOL) {
CmpS32(src1, src2, cr);
} else {
CmpS64(src1, src2, cr);
}
}
void MinF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
DoubleRegister scratch = kScratchDoubleReg);
void MaxF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
DoubleRegister scratch = kScratchDoubleReg);
// Set new rounding mode RN to FPSCR
void SetRoundingMode(FPRoundingMode RN);
// reset rounding mode to default (kRoundToNearest)
void ResetRoundingMode();
void AddS64(Register dst, Register src, const Operand& value,
Register scratch = r0, OEBit s = LeaveOE, RCBit r = LeaveRC);
void AddS64(Register dst, Register src, Register value, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void SubS64(Register dst, Register src, const Operand& value,
Register scratch = r0, OEBit s = LeaveOE, RCBit r = LeaveRC);
void SubS64(Register dst, Register src, Register value, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void AddS32(Register dst, Register src, const Operand& value,
Register scratch = r0, RCBit r = LeaveRC);
void AddS32(Register dst, Register src, Register value, RCBit r = LeaveRC);
void SubS32(Register dst, Register src, const Operand& value,
Register scratch = r0, RCBit r = LeaveRC);
void SubS32(Register dst, Register src, Register value, RCBit r = LeaveRC);
void MulS64(Register dst, Register src, const Operand& value,
Register scratch = r0, OEBit s = LeaveOE, RCBit r = LeaveRC);
void MulS64(Register dst, Register src, Register value, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void MulS32(Register dst, Register src, const Operand& value,
Register scratch = r0, OEBit s = LeaveOE, RCBit r = LeaveRC);
void MulS32(Register dst, Register src, Register value, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void DivS64(Register dst, Register src, Register value, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void DivU64(Register dst, Register src, Register value, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void DivS32(Register dst, Register src, Register value, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void DivU32(Register dst, Register src, Register value, OEBit s = LeaveOE,
RCBit r = LeaveRC);
void ModS64(Register dst, Register src, Register value);
void ModU64(Register dst, Register src, Register value);
void ModS32(Register dst, Register src, Register value);
void ModU32(Register dst, Register src, Register value);
void AndU64(Register dst, Register src, const Operand& value,
Register scratch = r0, RCBit r = SetRC);
void AndU64(Register dst, Register src, Register value, RCBit r = SetRC);
void OrU64(Register dst, Register src, const Operand& value,
Register scratch = r0, RCBit r = SetRC);
void OrU64(Register dst, Register src, Register value, RCBit r = LeaveRC);
void XorU64(Register dst, Register src, const Operand& value,
Register scratch = r0, RCBit r = SetRC);
void XorU64(Register dst, Register src, Register value, RCBit r = LeaveRC);
void AndU32(Register dst, Register src, const Operand& value,
Register scratch = r0, RCBit r = SetRC);
void AndU32(Register dst, Register src, Register value, RCBit r = SetRC);
void OrU32(Register dst, Register src, const Operand& value,
Register scratch = r0, RCBit r = SetRC);
void OrU32(Register dst, Register src, Register value, RCBit r = LeaveRC);
void XorU32(Register dst, Register src, const Operand& value,
Register scratch = r0, RCBit r = SetRC);
void XorU32(Register dst, Register src, Register value, RCBit r = LeaveRC);
void ShiftLeftU64(Register dst, Register src, const Operand& value,
RCBit r = LeaveRC);
void ShiftRightU64(Register dst, Register src, const Operand& value,
RCBit r = LeaveRC);
void ShiftRightS64(Register dst, Register src, const Operand& value,
RCBit r = LeaveRC);
void ShiftLeftU32(Register dst, Register src, const Operand& value,
RCBit r = LeaveRC);
void ShiftRightU32(Register dst, Register src, const Operand& value,
RCBit r = LeaveRC);
void ShiftRightS32(Register dst, Register src, const Operand& value,
RCBit r = LeaveRC);
void ShiftLeftU64(Register dst, Register src, Register value,
RCBit r = LeaveRC);
void ShiftRightU64(Register dst, Register src, Register value,
RCBit r = LeaveRC);
void ShiftRightS64(Register dst, Register src, Register value,
RCBit r = LeaveRC);
void ShiftLeftU32(Register dst, Register src, Register value,
RCBit r = LeaveRC);
void ShiftRightU32(Register dst, Register src, Register value,
RCBit r = LeaveRC);
void ShiftRightS32(Register dst, Register src, Register value,
RCBit r = LeaveRC);
void CountLeadingZerosU32(Register dst, Register src, RCBit r = LeaveRC);
void CountLeadingZerosU64(Register dst, Register src, RCBit r = LeaveRC);
void CountTrailingZerosU32(Register dst, Register src, Register scratch1 = ip,
Register scratch2 = r0, RCBit r = LeaveRC);
void CountTrailingZerosU64(Register dst, Register src, Register scratch1 = ip,
Register scratch2 = r0, RCBit r = LeaveRC);
void ClearByteU64(Register dst, int byte_idx);
void ReverseBitsU64(Register dst, Register src, Register scratch1,
Register scratch2);
void ReverseBitsU32(Register dst, Register src, Register scratch1,
Register scratch2);
void ReverseBitsInSingleByteU64(Register dst, Register src,
Register scratch1, Register scratch2,
int byte_idx);
void AddF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
RCBit r = LeaveRC);
void SubF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
RCBit r = LeaveRC);
void MulF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
RCBit r = LeaveRC);
void DivF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
RCBit r = LeaveRC);
void AddF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
RCBit r = LeaveRC);
void SubF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
RCBit r = LeaveRC);
void MulF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
RCBit r = LeaveRC);
void DivF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
RCBit r = LeaveRC);
void CopySignF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
RCBit r = LeaveRC);
template <class _type>
void SignedExtend(Register dst, Register value) {
switch (sizeof(_type)) {
case 1:
extsb(dst, value);
break;
case 2:
extsh(dst, value);
break;
case 4:
extsw(dst, value);
break;
case 8:
if (dst != value) mr(dst, value);
break;
default:
UNREACHABLE();
}
}
template <class _type>
void ZeroExtend(Register dst, Register value) {
switch (sizeof(_type)) {
case 1:
ZeroExtByte(dst, value);
break;
case 2:
ZeroExtHalfWord(dst, value);
break;
case 4:
ZeroExtWord32(dst, value);
break;
case 8:
if (dst != value) mr(dst, value);
break;
default:
UNREACHABLE();
}
}
template <class _type>
void ExtendValue(Register dst, Register value) {
if (std::is_signed<_type>::value) {
SignedExtend<_type>(dst, value);
} else {
ZeroExtend<_type>(dst, value);
}
}
template <class _type>
void LoadReserve(Register output, MemOperand dst) {
switch (sizeof(_type)) {
case 1:
lbarx(output, dst);
break;
case 2:
lharx(output, dst);
break;
case 4:
lwarx(output, dst);
break;
case 8:
ldarx(output, dst);
break;
default:
UNREACHABLE();
}
if (std::is_signed<_type>::value) {
SignedExtend<_type>(output, output);
}
}
template <class _type>
void StoreConditional(Register value, MemOperand dst) {
switch (sizeof(_type)) {
case 1:
stbcx(value, dst);
break;
case 2:
sthcx(value, dst);
break;
case 4:
stwcx(value, dst);
break;
case 8:
stdcx(value, dst);
break;
default:
UNREACHABLE();
}
}
template <class _type>
void AtomicCompareExchange(MemOperand dst, Register old_value,
Register new_value, Register output,
Register scratch) {
Label loop;
Label exit;
if (sizeof(_type) != 8) {
ExtendValue<_type>(scratch, old_value);
old_value = scratch;
}
lwsync();
bind(&loop);
LoadReserve<_type>(output, dst);
cmp(output, old_value, cr0);
bne(&exit, cr0);
StoreConditional<_type>(new_value, dst);
bne(&loop, cr0);
bind(&exit);
sync();
}
template <class _type>
void AtomicExchange(MemOperand dst, Register new_value, Register output) {
Label exchange;
lwsync();
bind(&exchange);
LoadReserve<_type>(output, dst);
StoreConditional<_type>(new_value, dst);
bne(&exchange, cr0);
sync();
}
template <class _type, class bin_op>
void AtomicOps(MemOperand dst, Register value, Register output,
Register result, bin_op op) {
Label binop;
lwsync();
bind(&binop);
switch (sizeof(_type)) {
case 1:
lbarx(output, dst);
break;
case 2:
lharx(output, dst);
break;
case 4:
lwarx(output, dst);
break;
case 8:
ldarx(output, dst);
break;
default:
UNREACHABLE();
}
op(result, output, value);
switch (sizeof(_type)) {
case 1:
stbcx(result, dst);
break;
case 2:
sthcx(result, dst);
break;
case 4:
stwcx(result, dst);
break;
case 8:
stdcx(result, dst);
break;
default:
UNREACHABLE();
}
bne(&binop, cr0);
sync();
}
void Push(Register src) { push(src); }
// Push a handle.
void Push(Handle<HeapObject> handle);
void Push(Smi smi);
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2) {
StoreU64WithUpdate(src2, MemOperand(sp, -2 * kSystemPointerSize));
StoreU64(src1, MemOperand(sp, kSystemPointerSize));
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3) {
StoreU64WithUpdate(src3, MemOperand(sp, -3 * kSystemPointerSize));
StoreU64(src2, MemOperand(sp, kSystemPointerSize));
StoreU64(src1, MemOperand(sp, 2 * kSystemPointerSize));
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4) {
StoreU64WithUpdate(src4, MemOperand(sp, -4 * kSystemPointerSize));
StoreU64(src3, MemOperand(sp, kSystemPointerSize));
StoreU64(src2, MemOperand(sp, 2 * kSystemPointerSize));
StoreU64(src1, MemOperand(sp, 3 * kSystemPointerSize));
}
// Push five registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4,
Register src5) {
StoreU64WithUpdate(src5, MemOperand(sp, -5 * kSystemPointerSize));
StoreU64(src4, MemOperand(sp, kSystemPointerSize));
StoreU64(src3, MemOperand(sp, 2 * kSystemPointerSize));
StoreU64(src2, MemOperand(sp, 3 * kSystemPointerSize));
StoreU64(src1, MemOperand(sp, 4 * kSystemPointerSize));
}
enum PushArrayOrder { kNormal, kReverse };
void PushArray(Register array, Register size, Register scratch,
Register scratch2, PushArrayOrder order = kNormal);
void Pop(Register dst) { pop(dst); }
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2) {
LoadU64(src2, MemOperand(sp, 0));
LoadU64(src1, MemOperand(sp, kSystemPointerSize));
addi(sp, sp, Operand(2 * kSystemPointerSize));
}
// Pop three registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3) {
LoadU64(src3, MemOperand(sp, 0));
LoadU64(src2, MemOperand(sp, kSystemPointerSize));
LoadU64(src1, MemOperand(sp, 2 * kSystemPointerSize));
addi(sp, sp, Operand(3 * kSystemPointerSize));
}
// Pop four registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Register src4) {
LoadU64(src4, MemOperand(sp, 0));
LoadU64(src3, MemOperand(sp, kSystemPointerSize));
LoadU64(src2, MemOperand(sp, 2 * kSystemPointerSize));
LoadU64(src1, MemOperand(sp, 3 * kSystemPointerSize));
addi(sp, sp, Operand(4 * kSystemPointerSize));
}
// Pop five registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Register src4,
Register src5) {
LoadU64(src5, MemOperand(sp, 0));
LoadU64(src4, MemOperand(sp, kSystemPointerSize));
LoadU64(src3, MemOperand(sp, 2 * kSystemPointerSize));
LoadU64(src2, MemOperand(sp, 3 * kSystemPointerSize));
LoadU64(src1, MemOperand(sp, 4 * kSystemPointerSize));
addi(sp, sp, Operand(5 * kSystemPointerSize));
}
void MaybeSaveRegisters(RegList registers);
void MaybeRestoreRegisters(RegList registers);
void CallEphemeronKeyBarrier(Register object, Register slot_address,
SaveFPRegsMode fp_mode);
void CallRecordWriteStubSaveRegisters(
Register object, Register slot_address, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
void CallRecordWriteStub(
Register object, Register slot_address, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
void MultiPush(RegList regs, Register location = sp);
void MultiPop(RegList regs, Register location = sp);
void MultiPushDoubles(DoubleRegList dregs, Register location = sp);
void MultiPopDoubles(DoubleRegList dregs, Register location = sp);
void MultiPushV128(Simd128RegList dregs, Register scratch,
Register location = sp);
void MultiPopV128(Simd128RegList dregs, Register scratch,
Register location = sp);
void MultiPushF64AndV128(DoubleRegList dregs, Simd128RegList simd_regs,
Register scratch1, Register scratch2,
Register location = sp);
void MultiPopF64AndV128(DoubleRegList dregs, Simd128RegList simd_regs,
Register scratch1, Register scratch2,
Register location = sp);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register scratch1,
Register scratch2, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register scratch1,
Register scratch2, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Load an object from the root table.
void LoadRoot(Register destination, RootIndex index) final {
LoadRoot(destination, index, al);
}
void LoadRoot(Register destination, RootIndex index, Condition cond);
void SwapP(Register src, Register dst, Register scratch);
void SwapP(Register src, MemOperand dst, Register scratch);
void SwapP(MemOperand src, MemOperand dst, Register scratch_0,
Register scratch_1);
void SwapFloat32(DoubleRegister src, DoubleRegister dst,
DoubleRegister scratch);
void SwapFloat32(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
void SwapFloat32(MemOperand src, MemOperand dst, DoubleRegister scratch_0,
DoubleRegister scratch_1);
void SwapDouble(DoubleRegister src, DoubleRegister dst,
DoubleRegister scratch);
void SwapDouble(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
void SwapDouble(MemOperand src, MemOperand dst, DoubleRegister scratch_0,
DoubleRegister scratch_1);
void SwapSimd128(Simd128Register src, Simd128Register dst,
Simd128Register scratch);
void SwapSimd128(Simd128Register src, MemOperand dst,
Simd128Register scratch);
void SwapSimd128(MemOperand src, MemOperand dst, Simd128Register scratch1,
Simd128Register scratch2);
void ByteReverseU16(Register dst, Register val, Register scratch);
void ByteReverseU32(Register dst, Register val, Register scratch);
void ByteReverseU64(Register dst, Register val, Register = r0);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, non-register arguments must be stored in
// sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
// are word sized. If double arguments are used, this function assumes that
// all double arguments are stored before core registers; otherwise the
// correct alignment of the double values is not guaranteed.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
Register scratch);
void PrepareCallCFunction(int num_reg_arguments, Register scratch);
// There are two ways of passing double arguments on ARM, depending on
// whether soft or hard floating point ABI is used. These functions
// abstract parameter passing for the three different ways we call
// C functions from generated code.
void MovToFloatParameter(DoubleRegister src);
void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
void MovToFloatResult(DoubleRegister src);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments,
bool has_function_descriptor = true);
void CallCFunction(Register function, int num_arguments,
bool has_function_descriptor = true);
void CallCFunction(ExternalReference function, int num_reg_arguments,
int num_double_arguments,
bool has_function_descriptor = true);
void CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments,
bool has_function_descriptor = true);
void MovFromFloatParameter(DoubleRegister dst);
void MovFromFloatResult(DoubleRegister dst);
void Trap();
void DebugBreak();
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, AbortReason reason, CRegister cr = cr7);
// Like Assert(), but always enabled.
void Check(Condition cond, AbortReason reason, CRegister cr = cr7);
// Print a message to stdout and abort execution.
void Abort(AbortReason reason);
#if !V8_TARGET_ARCH_PPC64
void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
#endif
void LoadFromConstantsTable(Register destination, int constant_index) final;
void LoadRootRegisterOffset(Register destination, intptr_t offset) final;
void LoadRootRelative(Register destination, int32_t offset) final;
// Jump, Call, and Ret pseudo instructions implementing inter-working.
void Jump(Register target);
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
CRegister cr = cr7);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al,
CRegister cr = cr7);
void Jump(const ExternalReference& reference);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
CRegister cr = cr7);
void Call(Register target);
void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
Condition cond = al);
void Call(Label* target);
// Load the builtin given by the Smi in |builtin_index| into the same
// register.
void LoadEntryFromBuiltinIndex(Register builtin_index);
void LoadEntryFromBuiltin(Builtin builtin, Register destination);
MemOperand EntryFromBuiltinAsOperand(Builtin builtin);
void LoadCodeObjectEntry(Register destination, Register code_object);
void CallCodeObject(Register code_object);
void JumpCodeObject(Register code_object,
JumpMode jump_mode = JumpMode::kJump);
void CallBuiltinByIndex(Register builtin_index);
void CallForDeoptimization(Builtin target, int deopt_id, Label* exit,
DeoptimizeKind kind, Label* ret,
Label* jump_deoptimization_entry_label);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count);
void Drop(Register count, Register scratch = r0);
void Ret() { blr(); }
void Ret(Condition cond, CRegister cr = cr7) { bclr(cond, cr); }
void Ret(int drop) {
Drop(drop);
blr();
}
// If the value is a NaN, canonicalize the value else, do nothing.
void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
void CanonicalizeNaN(const DoubleRegister value) {
CanonicalizeNaN(value, value);
}
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met);
// Move values between integer and floating point registers.
void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
Register scratch);
void MovInt64ToDouble(DoubleRegister dst,
#if !V8_TARGET_ARCH_PPC64
Register src_hi,
#endif
Register src);
#if V8_TARGET_ARCH_PPC64
void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
Register src_lo, Register scratch);
#endif
void InsertDoubleLow(DoubleRegister dst, Register src, Register scratch);
void InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch);
void MovDoubleLowToInt(Register dst, DoubleRegister src);
void MovDoubleHighToInt(Register dst, DoubleRegister src);
void MovDoubleToInt64(
#if !V8_TARGET_ARCH_PPC64
Register dst_hi,
#endif
Register dst, DoubleRegister src);
void MovIntToFloat(DoubleRegister dst, Register src, Register scratch);
void MovFloatToInt(Register dst, DoubleRegister src, DoubleRegister scratch);
// Register move. May do nothing if the registers are identical.
void Move(Register dst, Smi smi) { LoadSmiLiteral(dst, smi); }
void Move(Register dst, Handle<HeapObject> value,
RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
void Move(Register dst, ExternalReference reference);
void Move(Register dst, Register src, Condition cond = al);
void Move(DoubleRegister dst, DoubleRegister src);
void Move(Register dst, const MemOperand& src) {
// TODO: use scratch register scope instead of r0
LoadU64(dst, src, r0);
}
void SmiUntag(Register dst, const MemOperand& src, RCBit rc = LeaveRC,
Register scratch = no_reg);
void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }
void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
if (COMPRESS_POINTERS_BOOL) {
srawi(dst, src, kSmiShift, rc);
} else {
ShiftRightS64(dst, src, Operand(kSmiShift), rc);
}
}
void SmiToInt32(Register smi) {
if (FLAG_enable_slow_asserts) {
AssertSmi(smi);
}
DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
SmiUntag(smi);
}
// Shift left by kSmiShift
void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
ShiftLeftU64(dst, src, Operand(kSmiShift), rc);
}
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
void AssertSmi(Register object);
void ZeroExtByte(Register dst, Register src);
void ZeroExtHalfWord(Register dst, Register src);
void ZeroExtWord32(Register dst, Register src);
// ---------------------------------------------------------------------------
// Bit testing/extraction
//
// Bit numbering is such that the least significant bit is bit 0
// (for consistency between 32/64-bit).
// Extract consecutive bits (defined by rangeStart - rangeEnd) from src
// and, if !test, shift them into the least significant bits of dst.
inline void ExtractBitRange(Register dst, Register src, int rangeStart,
int rangeEnd, RCBit rc = LeaveRC,
bool test = false) {
DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerSystemPointer);
int rotate = (rangeEnd == 0) ? 0 : kBitsPerSystemPointer - rangeEnd;
int width = rangeStart - rangeEnd + 1;
if (rc == SetRC && rangeStart < 16 && (rangeEnd == 0 || test)) {
// Prefer faster andi when applicable.
andi(dst, src, Operand(((1 << width) - 1) << rangeEnd));
} else {
#if V8_TARGET_ARCH_PPC64
rldicl(dst, src, rotate, kBitsPerSystemPointer - width, rc);
#else
rlwinm(dst, src, rotate, kBitsPerSystemPointer - width,
kBitsPerSystemPointer - 1, rc);
#endif
}
}
inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
RCBit rc = LeaveRC, bool test = false) {
ExtractBitRange(dst, src, bitNumber, bitNumber, rc, test);
}
// Extract consecutive bits (defined by mask) from src and place them
// into the least significant bits of dst.
inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
RCBit rc = LeaveRC, bool test = false) {
int start = kBitsPerSystemPointer - 1;
int end;
uintptr_t bit = (1L << start);
while (bit && (mask & bit) == 0) {
start--;
bit >>= 1;
}
end = start;
bit >>= 1;
while (bit && (mask & bit)) {
end--;
bit >>= 1;
}
// 1-bits in mask must be contiguous
DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
ExtractBitRange(dst, src, start, end, rc, test);
}
// Test single bit in value.
inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC, true);
}
// Test consecutive bit range in value. Range is defined by mask.
inline void TestBitMask(Register value, uintptr_t mask,
Register scratch = r0) {
ExtractBitMask(scratch, value, mask, SetRC, true);
}
// Test consecutive bit range in value. Range is defined by
// rangeStart - rangeEnd.
inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
Register scratch = r0) {
ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC, true);
}
inline void TestIfSmi(Register value, Register scratch) {
TestBitRange(value, kSmiTagSize - 1, 0, scratch);
}
// Jump the register contains a smi.
inline void JumpIfSmi(Register value, Label* smi_label) {
TestIfSmi(value, r0);
beq(smi_label, cr0); // branch if SMI
}
void JumpIfEqual(Register x, int32_t y, Label* dest);
void JumpIfLessThan(Register x, int32_t y, Label* dest);
void LoadMap(Register destination, Register object);
#if V8_TARGET_ARCH_PPC64
inline void TestIfInt32(Register value, Register scratch,
CRegister cr = cr7) {
// High bits must be identical to fit into an 32-bit integer
extsw(scratch, value);
CmpS64(scratch, value, cr);
}
#else
inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
CRegister cr = cr7) {
// High bits must be identical to fit into an 32-bit integer
srawi(scratch, lo_word, 31);
CmpS64(scratch, hi_word, cr);
}
#endif
// Overflow handling functions.
// Usage: call the appropriate arithmetic function and then call one of the
// flow control functions with the corresponding label.
// Compute dst = left + right, setting condition codes. dst may be same as
// either left or right (or a unique register). left and right must not be
// the same register.
void AddAndCheckForOverflow(Register dst, Register left, Register right,
Register overflow_dst, Register scratch = r0);
void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
Register overflow_dst, Register scratch = r0);
// Compute dst = left - right, setting condition codes. dst may be same as
// either left or right (or a unique register). left and right must not be
// the same register.
void SubAndCheckForOverflow(Register dst, Register left, Register right,
Register overflow_dst, Register scratch = r0);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
// succeeds, otherwise falls through if result is saturated. On return
// 'result' either holds answer, or is clobbered on fall through.
void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
Label* done);
void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
DoubleRegister double_input, StubCallMode stub_mode);
void LoadConstantPoolPointerRegister();
// Loads the constant pool pointer (kConstantPoolRegister).
void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
Register code_target_address);
void AbortConstantPoolBuilding() {
#ifdef DEBUG
// Avoid DCHECK(!is_linked()) failure in ~Label()
bind(ConstantPoolPosition());
#endif
}
// Generates an instruction sequence s.t. the return address points to the
// instruction following the call.
// The return address on the stack is used by frame iteration.
void StoreReturnAddressAndCall(Register target);
// Control-flow integrity:
// Define a function entrypoint. This doesn't emit any code for this
// architecture, as control-flow integrity is not supported for it.
void CodeEntry() {}
// Define an exception handler.
void ExceptionHandler() {}
// Define an exception handler and bind a label.
void BindExceptionHandler(Label* label) { bind(label); }
// ---------------------------------------------------------------------------
// Pointer compression Support
void SmiToPtrArrayOffset(Register dst, Register src) {
#if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
static_assert(kSmiTag == 0 && kSmiShift < kSystemPointerSizeLog2);
ShiftLeftU64(dst, src, Operand(kSystemPointerSizeLog2 - kSmiShift));
#else
static_assert(kSmiTag == 0 && kSmiShift > kSystemPointerSizeLog2);
ShiftRightS64(dst, src, Operand(kSmiShift - kSystemPointerSizeLog2));
#endif
}
// Loads a field containing a HeapObject and decompresses it if pointer
// compression is enabled.
void LoadTaggedPointerField(const Register& destination,
const MemOperand& field_operand,
const Register& scratch = no_reg);
void LoadTaggedSignedField(Register destination, MemOperand field_operand,
Register scratch);
// Loads a field containing any tagged value and decompresses it if necessary.
void LoadAnyTaggedField(const Register& destination,
const MemOperand& field_operand,
const Register& scratch = no_reg);
// Compresses and stores tagged value to given on-heap location.
void StoreTaggedField(const Register& value,
const MemOperand& dst_field_operand,
const Register& scratch = no_reg);
void DecompressTaggedSigned(Register destination, MemOperand field_operand);
void DecompressTaggedSigned(Register destination, Register src);
void DecompressTaggedPointer(Register destination, MemOperand field_operand);
void DecompressTaggedPointer(Register destination, Register source);
void DecompressAnyTagged(Register destination, MemOperand field_operand);
void DecompressAnyTagged(Register destination, Register source);
void LoadF64(DoubleRegister dst, const MemOperand& mem,
Register scratch = no_reg);
void LoadF32(DoubleRegister dst, const MemOperand& mem,
Register scratch = no_reg);
void StoreF32(DoubleRegister src, const MemOperand& mem,
Register scratch = no_reg);
void StoreF64(DoubleRegister src, const MemOperand& mem,
Register scratch = no_reg);
void LoadF32WithUpdate(DoubleRegister dst, const MemOperand& mem,
Register scratch = no_reg);
void LoadF64WithUpdate(DoubleRegister dst, const MemOperand& mem,
Register scratch = no_reg);
void StoreF32WithUpdate(DoubleRegister src, const MemOperand& mem,
Register scratch = no_reg);
void StoreF64WithUpdate(DoubleRegister src, const MemOperand& mem,
Register scratch = no_reg);
void LoadU64(Register dst, const MemOperand& mem, Register scratch = no_reg);
void LoadU32(Register dst, const MemOperand& mem, Register scratch = no_reg);
void LoadS32(Register dst, const MemOperand& mem, Register scratch = no_reg);
void LoadU16(Register dst, const MemOperand& mem, Register scratch = no_reg);
void LoadS16(Register dst, const MemOperand& mem, Register scratch = no_reg);
void LoadU8(Register dst, const MemOperand& mem, Register scratch = no_reg);
void LoadS8(Register dst, const MemOperand& mem, Register scratch = no_reg);
void StoreU64(Register src, const MemOperand& mem, Register scratch = no_reg);
void StoreU32(Register src, const MemOperand& mem, Register scratch);
void StoreU16(Register src, const MemOperand& mem, Register scratch);
void StoreU8(Register src, const MemOperand& mem, Register scratch);
void LoadU64WithUpdate(Register dst, const MemOperand& mem,
Register scratch = no_reg);
void StoreU64WithUpdate(Register src, const MemOperand& mem,
Register scratch = no_reg);
void LoadU64LE(Register dst, const MemOperand& mem, Register scratch);
void LoadU32LE(Register dst, const MemOperand& mem, Register scratch);
void LoadU16LE(Register dst, const MemOperand& mem, Register scratch);
void StoreU64LE(Register src, const MemOperand& mem, Register scratch);
void StoreU32LE(Register src, const MemOperand& mem, Register scratch);
void StoreU16LE(Register src, const MemOperand& mem, Register scratch);
void LoadS32LE(Register dst, const MemOperand& mem, Register scratch);
void LoadS16LE(Register dst, const MemOperand& mem, Register scratch);
void LoadF64LE(DoubleRegister dst, const MemOperand& mem, Register scratch,
Register scratch2);
void LoadF32LE(DoubleRegister dst, const MemOperand& mem, Register scratch,
Register scratch2);
void StoreF32LE(DoubleRegister src, const MemOperand& mem, Register scratch,
Register scratch2);
void StoreF64LE(DoubleRegister src, const MemOperand& mem, Register scratch,
Register scratch2);
// Simd Support.
void LoadSimd128(Simd128Register dst, const MemOperand& mem,
Register scratch);
void StoreSimd128(Simd128Register src, const MemOperand& mem,
Register scratch);
void LoadSimd128LE(Simd128Register dst, const MemOperand& mem,
Register scratch);
void StoreSimd128LE(Simd128Register src, const MemOperand& mem,
Register scratch1, Simd128Register scratch2);
void F64x2Splat(Simd128Register dst, DoubleRegister src, Register scratch);
void F32x4Splat(Simd128Register dst, DoubleRegister src,
DoubleRegister scratch1, Register scratch2);
void I64x2Splat(Simd128Register dst, Register src);
void I32x4Splat(Simd128Register dst, Register src);
void I16x8Splat(Simd128Register dst, Register src);
void I8x16Splat(Simd128Register dst, Register src);
private:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
int CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments);
void CallCFunctionHelper(Register function, int num_reg_arguments,
int num_double_arguments,
bool has_function_descriptor);
};
// MacroAssembler implements a collection of frequently used acros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
public:
using TurboAssembler::TurboAssembler;
// It assumes that the arguments are located below the stack pointer.
// argc is the number of arguments not including the receiver.
// TODO(victorgomes): Remove this function once we stick with the reversed
// arguments order.
void LoadReceiver(Register dest, Register argc) {
LoadU64(dest, MemOperand(sp, 0));
}
void StoreReceiver(Register rec, Register argc, Register scratch) {
StoreU64(rec, MemOperand(sp, 0));
}
// ---------------------------------------------------------------------------
// GC Support
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldMemOperand(reg, off).
void RecordWriteField(Register object, int offset, Register value,
Register slot_address, LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
SmiCheck smi_check = SmiCheck::kInline);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(Register object, Register slot_address, Register value,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
SmiCheck smi_check = SmiCheck::kInline);
// Enter exit frame.
// stack_space - extra stack space, used for parameters before call to C.
// At least one slot (for the return address) should be provided.
void EnterExitFrame(bool save_doubles, int stack_space = 1,
StackFrame::Type frame_type = StackFrame::EXIT);
// Leave the current exit frame. Expects the return value in r0.
// Expect the number of values, pushed prior to the exit frame, to
// remove in a register (or no_reg, if there is nothing to remove).
void LeaveExitFrame(bool save_doubles, Register argument_count,
bool argument_count_is_length = false);
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX);
}
void LoadNativeContextSlot(Register dst, int index);
// ----------------------------------------------------------------
// new PPC macro-assembler interfaces that are slightly higher level
// than assembler-ppc and may generate variable length sequences
// load a literal double value <value> to FPR <result>
void AddSmiLiteral(Register dst, Register src, Smi smi, Register scratch);
void SubSmiLiteral(Register dst, Register src, Smi smi, Register scratch);
void CmpSmiLiteral(Register src1, Smi smi, Register scratch,
CRegister cr = cr7);
void CmplSmiLiteral(Register src1, Smi smi, Register scratch,
CRegister cr = cr7);
void AndSmiLiteral(Register dst, Register src, Smi smi, Register scratch,
RCBit rc = LeaveRC);
// ---------------------------------------------------------------------------
// JavaScript invokes
// Removes current frame and its arguments from the stack preserving
// the arguments and a return address pushed to the stack for the next call.
// Both |callee_args_count| and |caller_args_countg| do not include
// receiver. |callee_args_count| is not modified. |caller_args_count|
// is trashed.
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// On function call, call into the debugger if necessary.
void CheckDebugHook(Register fun, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunctionWithNewTarget(Register function, Register new_target,
Register actual_parameter_count,
InvokeType type);
void InvokeFunction(Register function, Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// Exception handling
// Push a new stack handler and link into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
// Must preserve the result register.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Support functions.
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
// Type_reg can be no_reg. In that case ip is used.
void CompareObjectType(Register heap_object, Register map, Register type_reg,
InstanceType type);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
void CompareInstanceType(Register map, Register type_reg, InstanceType type);
// Compare instance type ranges for a map (lower_limit and higher_limit
// inclusive).
//
// Always use unsigned comparisons: ls for a positive result.
void CompareInstanceTypeRange(Register map, Register type_reg,
InstanceType lower_limit,
InstanceType higher_limit);
// Compare the object in a register to a value from the root list.
// Uses the ip register as scratch.
void CompareRoot(Register obj, RootIndex index);
void PushRoot(RootIndex index) {
LoadRoot(r0, index);
Push(r0);
}
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
CompareRoot(with, index);
beq(if_equal);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
CompareRoot(with, index);
bne(if_not_equal);
}
// Checks if value is in range [lower_limit, higher_limit] using a single
// comparison.
void CompareRange(Register value, unsigned lower_limit,
unsigned higher_limit);
void JumpIfIsInRange(Register value, unsigned lower_limit,
unsigned higher_limit, Label* on_in_range);
// ---------------------------------------------------------------------------
// Runtime calls
static int CallSizeNotPredictableCodeSize(Address target,
RelocInfo::Mode rmode,
Condition cond = al);
void CallJSEntry(Register target);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore);
void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, SaveFPRegsMode::kSave);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin,
bool builtin_exit_frame = false);
// Generates a trampoline to jump to the off-heap instruction stream.
void JumpToOffHeapInstructionStream(Address entry);
// ---------------------------------------------------------------------------
// In-place weak references.
void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
// ---------------------------------------------------------------------------
// StatsCounter support
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2) {
if (!FLAG_native_code_counters) return;
EmitIncrementCounter(counter, value, scratch1, scratch2);
}
void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2) {
if (!FLAG_native_code_counters) return;
EmitDecrementCounter(counter, value, scratch1, scratch2);
}
void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
// ---------------------------------------------------------------------------
// Stack limit utilities
void StackOverflowCheck(Register num_args, Register scratch,
Label* stack_overflow);
void LoadStackLimit(Register destination, StackLimitKind kind);
// ---------------------------------------------------------------------------
// Smi utilities
// Jump if either of the registers contain a non-smi.
inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
TestIfSmi(value, r0);
bne(not_smi_label, cr0);
}
#if !defined(V8_COMPRESS_POINTERS) && !defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
// Ensure it is permissible to read/write int value directly from
// upper half of the smi.
static_assert(kSmiTag == 0);
static_assert(kSmiTagSize + kSmiShiftSize == 32);
#endif
#if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN
#define SmiWordOffset(offset) (offset + kSystemPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif
// Abort execution if argument is not a Constructor, enabled via --debug-code.
void AssertConstructor(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a callable JSFunction, enabled via
// --debug-code.
void AssertCallableFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
// ---------------------------------------------------------------------------
// Patching helpers.
template <typename Field>
void DecodeField(Register dst, Register src, RCBit rc = LeaveRC) {
ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift,
rc);
}
template <typename Field>
void DecodeField(Register reg, RCBit rc = LeaveRC) {
DecodeField<Field>(reg, reg, rc);
}
void TestCodeTIsMarkedForDeoptimization(Register codet, Register scratch1,
Register scratch2);
Operand ClearedValue() const;
private:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
// Helper functions for generating invokes.
void InvokePrologue(Register expected_parameter_count,
Register actual_parameter_count, Label* done,
InvokeType type);
DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};
struct MoveCycleState {
// Whether a move in the cycle needs a double scratch register.
bool pending_double_scratch_register_use = false;
};
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_PPC_MACRO_ASSEMBLER_PPC_H_