| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2021 the V8 project authors. All rights reserved. |
| |
| #if V8_TARGET_ARCH_RISCV64 |
| |
| #include "src/codegen/riscv64/assembler-riscv64.h" |
| |
| #include "src/base/cpu.h" |
| #include "src/codegen/flush-instruction-cache.h" |
| #include "src/codegen/riscv64/assembler-riscv64-inl.h" |
| #include "src/codegen/safepoint-table.h" |
| #include "src/codegen/string-constants.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/diagnostics/disasm.h" |
| #include "src/diagnostics/disassembler.h" |
| #include "src/objects/heap-number-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| // Get the CPU features enabled by the build. For cross compilation the |
| // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS |
| // can be defined to enable FPU instructions when building the |
| // snapshot. |
| static unsigned CpuFeaturesImpliedByCompiler() { |
| unsigned answer = 0; |
| #ifdef CAN_USE_FPU_INSTRUCTIONS |
| answer |= 1u << FPU; |
| #endif // def CAN_USE_FPU_INSTRUCTIONS |
| |
| #if (defined CAN_USE_RVV_INSTRUCTIONS) |
| answer |= 1u << RISCV_SIMD; |
| #endif // def CAN_USE_RVV_INSTRUCTIONS |
| return answer; |
| } |
| |
| bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(RISCV_SIMD); } |
| |
| void CpuFeatures::ProbeImpl(bool cross_compile) { |
| supported_ |= CpuFeaturesImpliedByCompiler(); |
| // Only use statically determined features for cross compile (snapshot). |
| if (cross_compile) return; |
| // Probe for additional features at runtime. |
| base::CPU cpu; |
| if (cpu.has_fpu()) supported_ |= 1u << FPU; |
| if (cpu.has_rvv()) supported_ |= 1u << RISCV_SIMD; |
| // Set a static value on whether SIMD is supported. |
| // This variable is only used for certain archs to query SupportWasmSimd128() |
| // at runtime in builtins using an extern ref. Other callers should use |
| // CpuFeatures::SupportWasmSimd128(). |
| CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128(); |
| } |
| |
| void CpuFeatures::PrintTarget() {} |
| void CpuFeatures::PrintFeatures() {} |
| int ToNumber(Register reg) { |
| DCHECK(reg.is_valid()); |
| const int kNumbers[] = { |
| 0, // zero_reg |
| 1, // ra |
| 2, // sp |
| 3, // gp |
| 4, // tp |
| 5, // t0 |
| 6, // t1 |
| 7, // t2 |
| 8, // s0/fp |
| 9, // s1 |
| 10, // a0 |
| 11, // a1 |
| 12, // a2 |
| 13, // a3 |
| 14, // a4 |
| 15, // a5 |
| 16, // a6 |
| 17, // a7 |
| 18, // s2 |
| 19, // s3 |
| 20, // s4 |
| 21, // s5 |
| 22, // s6 |
| 23, // s7 |
| 24, // s8 |
| 25, // s9 |
| 26, // s10 |
| 27, // s11 |
| 28, // t3 |
| 29, // t4 |
| 30, // t5 |
| 31, // t6 |
| }; |
| return kNumbers[reg.code()]; |
| } |
| |
| Register ToRegister(int num) { |
| DCHECK(num >= 0 && num < kNumRegisters); |
| const Register kRegisters[] = { |
| zero_reg, ra, sp, gp, tp, t0, t1, t2, fp, s1, a0, a1, a2, a3, a4, a5, |
| a6, a7, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, t3, t4, t5, t6}; |
| return kRegisters[num]; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo. |
| |
| const int RelocInfo::kApplyMask = |
| RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | |
| RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED) | |
| RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET); |
| |
| bool RelocInfo::IsCodedSpecially() { |
| // The deserializer needs to know whether a pointer is specially coded. Being |
| // specially coded on RISC-V means that it is a lui/addi instruction, and that |
| // is always the case inside code objects. |
| return true; |
| } |
| |
| bool RelocInfo::IsInConstantPool() { return false; } |
| |
| uint32_t RelocInfo::wasm_call_tag() const { |
| DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); |
| return static_cast<uint32_t>( |
| Assembler::target_address_at(pc_, constant_pool_)); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand and MemOperand. |
| // See assembler-riscv64-inl.h for inlined constructors. |
| |
| Operand::Operand(Handle<HeapObject> handle) |
| : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) { |
| value_.immediate = static_cast<intptr_t>(handle.address()); |
| } |
| |
| Operand Operand::EmbeddedNumber(double value) { |
| int32_t smi; |
| if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi)); |
| Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); |
| result.is_heap_object_request_ = true; |
| result.value_.heap_object_request = HeapObjectRequest(value); |
| return result; |
| } |
| |
| Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) { |
| Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); |
| result.is_heap_object_request_ = true; |
| result.value_.heap_object_request = HeapObjectRequest(str); |
| return result; |
| } |
| |
| MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { |
| offset_ = offset; |
| } |
| |
| MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier, |
| OffsetAddend offset_addend) |
| : Operand(rm) { |
| offset_ = unit * multiplier + offset_addend; |
| } |
| |
| void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { |
| DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty()); |
| for (auto& request : heap_object_requests_) { |
| Handle<HeapObject> object; |
| switch (request.kind()) { |
| case HeapObjectRequest::kHeapNumber: |
| object = isolate->factory()->NewHeapNumber<AllocationType::kOld>( |
| request.heap_number()); |
| break; |
| case HeapObjectRequest::kStringConstant: |
| const StringConstantBase* str = request.string(); |
| CHECK_NOT_NULL(str); |
| object = str->AllocateStringConstant(isolate); |
| break; |
| } |
| Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset(); |
| set_target_value_at(pc, reinterpret_cast<uint64_t>(object.location())); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Specific instructions, constants, and masks. |
| |
| Assembler::Assembler(const AssemblerOptions& options, |
| std::unique_ptr<AssemblerBuffer> buffer) |
| : AssemblerBase(options, std::move(buffer)), |
| VU(this), |
| scratch_register_list_({t3, t5}), |
| constpool_(this) { |
| reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_); |
| |
| last_trampoline_pool_end_ = 0; |
| no_trampoline_pool_before_ = 0; |
| trampoline_pool_blocked_nesting_ = 0; |
| // We leave space (16 * kTrampolineSlotsSize) |
| // for BlockTrampolinePoolScope buffer. |
| next_buffer_check_ = FLAG_force_long_branches |
| ? kMaxInt |
| : kMaxBranchOffset - kTrampolineSlotsSize * 16; |
| internal_trampoline_exception_ = false; |
| last_bound_pos_ = 0; |
| |
| trampoline_emitted_ = FLAG_force_long_branches; |
| unbound_labels_count_ = 0; |
| block_buffer_growth_ = false; |
| } |
| |
| void Assembler::AbortedCodeGeneration() { constpool_.Clear(); } |
| Assembler::~Assembler() { CHECK(constpool_.IsEmpty()); } |
| |
| void Assembler::GetCode(Isolate* isolate, CodeDesc* desc, |
| SafepointTableBuilder* safepoint_table_builder, |
| int handler_table_offset) { |
| // As a crutch to avoid having to add manual Align calls wherever we use a |
| // raw workflow to create Code objects (mostly in tests), add another Align |
| // call here. It does no harm - the end of the Code object is aligned to the |
| // (larger) kCodeAlignment anyways. |
| // TODO(jgruber): Consider moving responsibility for proper alignment to |
| // metadata table builders (safepoint, handler, constant pool, code |
| // comments). |
| DataAlign(Code::kMetadataAlignment); |
| |
| ForceConstantPoolEmissionWithoutJump(); |
| |
| int code_comments_size = WriteCodeComments(); |
| |
| DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap. |
| |
| AllocateAndInstallRequestedHeapObjects(isolate); |
| |
| // Set up code descriptor. |
| // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to |
| // this point to make CodeDesc initialization less fiddly. |
| |
| static constexpr int kConstantPoolSize = 0; |
| const int instruction_size = pc_offset(); |
| const int code_comments_offset = instruction_size - code_comments_size; |
| const int constant_pool_offset = code_comments_offset - kConstantPoolSize; |
| const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable) |
| ? constant_pool_offset |
| : handler_table_offset; |
| const int safepoint_table_offset = |
| (safepoint_table_builder == kNoSafepointTable) |
| ? handler_table_offset2 |
| : safepoint_table_builder->safepoint_table_offset(); |
| const int reloc_info_offset = |
| static_cast<int>(reloc_info_writer.pos() - buffer_->start()); |
| CodeDesc::Initialize(desc, this, safepoint_table_offset, |
| handler_table_offset2, constant_pool_offset, |
| code_comments_offset, reloc_info_offset); |
| } |
| |
| void Assembler::Align(int m) { |
| DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m)); |
| while ((pc_offset() & (m - 1)) != 0) { |
| NOP(); |
| } |
| } |
| |
| void Assembler::CodeTargetAlign() { |
| // No advantage to aligning branch/call targets to more than |
| // single instruction, that I am aware of. |
| Align(4); |
| } |
| |
| // Labels refer to positions in the (to be) generated code. |
| // There are bound, linked, and unused labels. |
| // |
| // Bound labels refer to known positions in the already |
| // generated code. pos() is the position the label refers to. |
| // |
| // Linked labels refer to unknown positions in the code |
| // to be generated; pos() is the position of the last |
| // instruction using the label. |
| |
| // The link chain is terminated by a value in the instruction of 0, |
| // which is an otherwise illegal value (branch 0 is inf loop). When this case |
| // is detected, return an position of -1, an otherwise illegal position. |
| const int kEndOfChain = -1; |
| const int kEndOfJumpChain = 0; |
| |
| bool Assembler::IsBranch(Instr instr) { |
| return (instr & kBaseOpcodeMask) == BRANCH; |
| } |
| |
| bool Assembler::IsCBranch(Instr instr) { |
| int Op = instr & kRvcOpcodeMask; |
| return Op == RO_C_BNEZ || Op == RO_C_BEQZ; |
| } |
| bool Assembler::IsJump(Instr instr) { |
| int Op = instr & kBaseOpcodeMask; |
| return Op == JAL || Op == JALR; |
| } |
| |
| bool Assembler::IsNop(Instr instr) { return instr == kNopByte; } |
| |
| bool Assembler::IsJal(Instr instr) { return (instr & kBaseOpcodeMask) == JAL; } |
| |
| bool Assembler::IsJalr(Instr instr) { |
| return (instr & kBaseOpcodeMask) == JALR; |
| } |
| |
| bool Assembler::IsCJal(Instr instr) { |
| return (instr & kRvcOpcodeMask) == RO_C_J; |
| } |
| |
| bool Assembler::IsLui(Instr instr) { return (instr & kBaseOpcodeMask) == LUI; } |
| bool Assembler::IsAuipc(Instr instr) { |
| return (instr & kBaseOpcodeMask) == AUIPC; |
| } |
| bool Assembler::IsAddiw(Instr instr) { |
| return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_ADDIW; |
| } |
| bool Assembler::IsAddi(Instr instr) { |
| return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_ADDI; |
| } |
| bool Assembler::IsOri(Instr instr) { |
| return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_ORI; |
| } |
| bool Assembler::IsSlli(Instr instr) { |
| return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_SLLI; |
| } |
| |
| bool Assembler::IsLd(Instr instr) { |
| return (instr & (kBaseOpcodeMask | kFunct3Mask)) == RO_LD; |
| } |
| |
| int Assembler::target_at(int pos, bool is_internal) { |
| if (is_internal) { |
| int64_t* p = reinterpret_cast<int64_t*>(buffer_start_ + pos); |
| int64_t address = *p; |
| if (address == kEndOfJumpChain) { |
| return kEndOfChain; |
| } else { |
| int64_t instr_address = reinterpret_cast<int64_t>(p); |
| DCHECK(instr_address - address < INT_MAX); |
| int delta = static_cast<int>(instr_address - address); |
| DCHECK(pos > delta); |
| return pos - delta; |
| } |
| } |
| Instruction* instruction = Instruction::At(buffer_start_ + pos); |
| DEBUG_PRINTF("target_at: %p (%d)\n\t", |
| reinterpret_cast<Instr*>(buffer_start_ + pos), pos); |
| Instr instr = instruction->InstructionBits(); |
| disassembleInstr(instruction->InstructionBits()); |
| |
| switch (instruction->InstructionOpcodeType()) { |
| case BRANCH: { |
| int32_t imm13 = BranchOffset(instr); |
| if (imm13 == kEndOfJumpChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| return pos + imm13; |
| } |
| } |
| case JAL: { |
| int32_t imm21 = JumpOffset(instr); |
| if (imm21 == kEndOfJumpChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| return pos + imm21; |
| } |
| } |
| case JALR: { |
| int32_t imm12 = instr >> 20; |
| if (imm12 == kEndOfJumpChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| return pos + imm12; |
| } |
| } |
| case LUI: { |
| Address pc = reinterpret_cast<Address>(buffer_start_ + pos); |
| pc = target_address_at(pc); |
| uint64_t instr_address = reinterpret_cast<uint64_t>(buffer_start_ + pos); |
| uint64_t imm = reinterpret_cast<uint64_t>(pc); |
| if (imm == kEndOfJumpChain) { |
| return kEndOfChain; |
| } else { |
| DCHECK(instr_address - imm < INT_MAX); |
| int32_t delta = static_cast<int32_t>(instr_address - imm); |
| DCHECK(pos > delta); |
| return pos - delta; |
| } |
| } |
| case AUIPC: { |
| Instr instr_auipc = instr; |
| Instr instr_I = instr_at(pos + 4); |
| DCHECK(IsJalr(instr_I) || IsAddi(instr_I)); |
| int32_t offset = BrachlongOffset(instr_auipc, instr_I); |
| if (offset == kEndOfJumpChain) return kEndOfChain; |
| return offset + pos; |
| } |
| case RO_C_J: { |
| int32_t offset = instruction->RvcImm11CJValue(); |
| if (offset == kEndOfJumpChain) return kEndOfChain; |
| return offset + pos; |
| } |
| case RO_C_BNEZ: |
| case RO_C_BEQZ: { |
| int32_t offset = instruction->RvcImm8BValue(); |
| if (offset == kEndOfJumpChain) return kEndOfChain; |
| return pos + offset; |
| } |
| default: { |
| if (instr == kEndOfJumpChain) { |
| return kEndOfChain; |
| } else { |
| int32_t imm18 = |
| ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
| return (imm18 + pos); |
| } |
| } |
| } |
| } |
| |
| static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos, |
| Instr instr) { |
| int32_t imm = target_pos - pos; |
| DCHECK_EQ(imm & 1, 0); |
| DCHECK(is_intn(imm, Assembler::kBranchOffsetBits)); |
| |
| instr &= ~kBImm12Mask; |
| int32_t imm12 = ((imm & 0x800) >> 4) | // bit 11 |
| ((imm & 0x1e) << 7) | // bits 4-1 |
| ((imm & 0x7e0) << 20) | // bits 10-5 |
| ((imm & 0x1000) << 19); // bit 12 |
| |
| return instr | (imm12 & kBImm12Mask); |
| } |
| |
| static inline Instr SetLdOffset(int32_t offset, Instr instr) { |
| DCHECK(Assembler::IsLd(instr)); |
| DCHECK(is_int12(offset)); |
| instr &= ~kImm12Mask; |
| int32_t imm12 = offset << kImm12Shift; |
| return instr | (imm12 & kImm12Mask); |
| } |
| |
| static inline Instr SetAuipcOffset(int32_t offset, Instr instr) { |
| DCHECK(Assembler::IsAuipc(instr)); |
| DCHECK(is_int20(offset)); |
| instr = (instr & ~kImm31_12Mask) | ((offset & kImm19_0Mask) << 12); |
| return instr; |
| } |
| |
| static inline Instr SetJalrOffset(int32_t offset, Instr instr) { |
| DCHECK(Assembler::IsJalr(instr)); |
| DCHECK(is_int12(offset)); |
| instr &= ~kImm12Mask; |
| int32_t imm12 = offset << kImm12Shift; |
| DCHECK(Assembler::IsJalr(instr | (imm12 & kImm12Mask))); |
| DCHECK_EQ(Assembler::JalrOffset(instr | (imm12 & kImm12Mask)), offset); |
| return instr | (imm12 & kImm12Mask); |
| } |
| |
| static inline Instr SetJalOffset(int32_t pos, int32_t target_pos, Instr instr) { |
| DCHECK(Assembler::IsJal(instr)); |
| int32_t imm = target_pos - pos; |
| DCHECK_EQ(imm & 1, 0); |
| DCHECK(is_intn(imm, Assembler::kJumpOffsetBits)); |
| |
| instr &= ~kImm20Mask; |
| int32_t imm20 = (imm & 0xff000) | // bits 19-12 |
| ((imm & 0x800) << 9) | // bit 11 |
| ((imm & 0x7fe) << 20) | // bits 10-1 |
| ((imm & 0x100000) << 11); // bit 20 |
| |
| return instr | (imm20 & kImm20Mask); |
| } |
| |
| static inline ShortInstr SetCJalOffset(int32_t pos, int32_t target_pos, |
| Instr instr) { |
| DCHECK(Assembler::IsCJal(instr)); |
| int32_t imm = target_pos - pos; |
| DCHECK_EQ(imm & 1, 0); |
| DCHECK(is_intn(imm, Assembler::kCJalOffsetBits)); |
| instr &= ~kImm11Mask; |
| int16_t imm11 = ((imm & 0x800) >> 1) | ((imm & 0x400) >> 4) | |
| ((imm & 0x300) >> 1) | ((imm & 0x80) >> 3) | |
| ((imm & 0x40) >> 1) | ((imm & 0x20) >> 5) | |
| ((imm & 0x10) << 5) | (imm & 0xe); |
| imm11 = imm11 << kImm11Shift; |
| DCHECK(Assembler::IsCJal(instr | (imm11 & kImm11Mask))); |
| return instr | (imm11 & kImm11Mask); |
| } |
| static inline Instr SetCBranchOffset(int32_t pos, int32_t target_pos, |
| Instr instr) { |
| DCHECK(Assembler::IsCBranch(instr)); |
| int32_t imm = target_pos - pos; |
| DCHECK_EQ(imm & 1, 0); |
| DCHECK(is_intn(imm, Assembler::kCBranchOffsetBits)); |
| |
| instr &= ~kRvcBImm8Mask; |
| int32_t imm8 = ((imm & 0x20) >> 5) | ((imm & 0x6)) | ((imm & 0xc0) >> 3) | |
| ((imm & 0x18) << 2) | ((imm & 0x100) >> 1); |
| imm8 = ((imm8 & 0x1f) << 2) | ((imm8 & 0xe0) << 5); |
| DCHECK(Assembler::IsCBranch(instr | imm8 & kRvcBImm8Mask)); |
| |
| return instr | (imm8 & kRvcBImm8Mask); |
| } |
| |
| void Assembler::target_at_put(int pos, int target_pos, bool is_internal, |
| bool trampoline) { |
| if (is_internal) { |
| uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos; |
| *reinterpret_cast<uint64_t*>(buffer_start_ + pos) = imm; |
| return; |
| } |
| DEBUG_PRINTF("target_at_put: %p (%d) to %p (%d)\n", |
| reinterpret_cast<Instr*>(buffer_start_ + pos), pos, |
| reinterpret_cast<Instr*>(buffer_start_ + target_pos), |
| target_pos); |
| Instruction* instruction = Instruction::At(buffer_start_ + pos); |
| Instr instr = instruction->InstructionBits(); |
| |
| switch (instruction->InstructionOpcodeType()) { |
| case BRANCH: { |
| instr = SetBranchOffset(pos, target_pos, instr); |
| instr_at_put(pos, instr); |
| } break; |
| case JAL: { |
| DCHECK(IsJal(instr)); |
| instr = SetJalOffset(pos, target_pos, instr); |
| instr_at_put(pos, instr); |
| } break; |
| case LUI: { |
| Address pc = reinterpret_cast<Address>(buffer_start_ + pos); |
| set_target_value_at( |
| pc, reinterpret_cast<uint64_t>(buffer_start_ + target_pos)); |
| } break; |
| case AUIPC: { |
| Instr instr_auipc = instr; |
| Instr instr_I = instr_at(pos + 4); |
| DCHECK(IsJalr(instr_I) || IsAddi(instr_I)); |
| |
| int64_t offset = target_pos - pos; |
| if (is_int21(offset) && IsJalr(instr_I) && trampoline) { |
| DCHECK(is_int21(offset) && ((offset & 1) == 0)); |
| Instr instr = JAL; |
| instr = SetJalOffset(pos, target_pos, instr); |
| DCHECK(IsJal(instr)); |
| DCHECK(JumpOffset(instr) == offset); |
| instr_at_put(pos, instr); |
| instr_at_put(pos + 4, kNopByte); |
| } else { |
| CHECK(is_int32(offset + 0x800)); |
| |
| int32_t Hi20 = (((int32_t)offset + 0x800) >> 12); |
| int32_t Lo12 = (int32_t)offset << 20 >> 20; |
| |
| instr_auipc = |
| (instr_auipc & ~kImm31_12Mask) | ((Hi20 & kImm19_0Mask) << 12); |
| instr_at_put(pos, instr_auipc); |
| |
| const int kImm31_20Mask = ((1 << 12) - 1) << 20; |
| const int kImm11_0Mask = ((1 << 12) - 1); |
| instr_I = (instr_I & ~kImm31_20Mask) | ((Lo12 & kImm11_0Mask) << 20); |
| instr_at_put(pos + 4, instr_I); |
| } |
| } break; |
| case RO_C_J: { |
| ShortInstr short_instr = SetCJalOffset(pos, target_pos, instr); |
| instr_at_put(pos, short_instr); |
| } break; |
| case RO_C_BNEZ: |
| case RO_C_BEQZ: { |
| instr = SetCBranchOffset(pos, target_pos, instr); |
| instr_at_put(pos, instr); |
| } break; |
| default: { |
| // Emitted label constant, not part of a branch. |
| // Make label relative to Code pointer of generated Code object. |
| instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| } break; |
| } |
| disassembleInstr(instr); |
| } |
| |
| void Assembler::print(const Label* L) { |
| if (L->is_unused()) { |
| PrintF("unused label\n"); |
| } else if (L->is_bound()) { |
| PrintF("bound label to %d\n", L->pos()); |
| } else if (L->is_linked()) { |
| Label l; |
| l.link_to(L->pos()); |
| PrintF("unbound label"); |
| while (l.is_linked()) { |
| PrintF("@ %d ", l.pos()); |
| Instr instr = instr_at(l.pos()); |
| if ((instr & ~kImm16Mask) == 0) { |
| PrintF("value\n"); |
| } else { |
| PrintF("%d\n", instr); |
| } |
| next(&l, is_internal_reference(&l)); |
| } |
| } else { |
| PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| } |
| } |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position. |
| DEBUG_PRINTF("binding %d to label %p\n", pos, L); |
| int trampoline_pos = kInvalidSlotPos; |
| bool is_internal = false; |
| if (L->is_linked() && !trampoline_emitted_) { |
| unbound_labels_count_--; |
| if (!is_internal_reference(L)) { |
| next_buffer_check_ += kTrampolineSlotsSize; |
| } |
| } |
| |
| while (L->is_linked()) { |
| int fixup_pos = L->pos(); |
| int dist = pos - fixup_pos; |
| is_internal = is_internal_reference(L); |
| next(L, is_internal); // Call next before overwriting link with target |
| // at fixup_pos. |
| Instr instr = instr_at(fixup_pos); |
| DEBUG_PRINTF("\tfixup: %d to %d\n", fixup_pos, dist); |
| if (is_internal) { |
| target_at_put(fixup_pos, pos, is_internal); |
| } else { |
| if (IsBranch(instr)) { |
| if (dist > kMaxBranchOffset) { |
| if (trampoline_pos == kInvalidSlotPos) { |
| trampoline_pos = get_trampoline_entry(fixup_pos); |
| CHECK_NE(trampoline_pos, kInvalidSlotPos); |
| } |
| CHECK((trampoline_pos - fixup_pos) <= kMaxBranchOffset); |
| DEBUG_PRINTF("\t\ttrampolining: %d\n", trampoline_pos); |
| target_at_put(fixup_pos, trampoline_pos, false, true); |
| fixup_pos = trampoline_pos; |
| } |
| target_at_put(fixup_pos, pos, false); |
| } else if (IsJal(instr)) { |
| if (dist > kMaxJumpOffset) { |
| if (trampoline_pos == kInvalidSlotPos) { |
| trampoline_pos = get_trampoline_entry(fixup_pos); |
| CHECK_NE(trampoline_pos, kInvalidSlotPos); |
| } |
| CHECK((trampoline_pos - fixup_pos) <= kMaxJumpOffset); |
| DEBUG_PRINTF("\t\ttrampolining: %d\n", trampoline_pos); |
| target_at_put(fixup_pos, trampoline_pos, false, true); |
| fixup_pos = trampoline_pos; |
| } |
| target_at_put(fixup_pos, pos, false); |
| } else { |
| target_at_put(fixup_pos, pos, false); |
| } |
| } |
| } |
| L->bind_to(pos); |
| |
| // Keep track of the last bound label so we don't eliminate any instructions |
| // before a bound label. |
| if (pos > last_bound_pos_) last_bound_pos_ = pos; |
| } |
| |
| void Assembler::bind(Label* L) { |
| DCHECK(!L->is_bound()); // Label can only be bound once. |
| bind_to(L, pc_offset()); |
| } |
| |
| void Assembler::next(Label* L, bool is_internal) { |
| DCHECK(L->is_linked()); |
| int link = target_at(L->pos(), is_internal); |
| if (link == kEndOfChain) { |
| L->Unuse(); |
| } else { |
| DCHECK_GE(link, 0); |
| DEBUG_PRINTF("next: %p to %p (%d)\n", L, |
| reinterpret_cast<Instr*>(buffer_start_ + link), link); |
| L->link_to(link); |
| } |
| } |
| |
| bool Assembler::is_near(Label* L) { |
| DCHECK(L->is_bound()); |
| return is_intn((pc_offset() - L->pos()), kJumpOffsetBits); |
| } |
| |
| bool Assembler::is_near(Label* L, OffsetSize bits) { |
| if (L == nullptr || !L->is_bound()) return true; |
| return is_intn((pc_offset() - L->pos()), bits); |
| } |
| |
| bool Assembler::is_near_branch(Label* L) { |
| DCHECK(L->is_bound()); |
| return is_intn((pc_offset() - L->pos()), kBranchOffsetBits); |
| } |
| |
| int Assembler::BranchOffset(Instr instr) { |
| // | imm[12] | imm[10:5] | rs2 | rs1 | funct3 | imm[4:1|11] | opcode | |
| // 31 25 11 7 |
| int32_t imm13 = ((instr & 0xf00) >> 7) | ((instr & 0x7e000000) >> 20) | |
| ((instr & 0x80) << 4) | ((instr & 0x80000000) >> 19); |
| imm13 = imm13 << 19 >> 19; |
| return imm13; |
| } |
| |
| int Assembler::JumpOffset(Instr instr) { |
| int32_t imm21 = ((instr & 0x7fe00000) >> 20) | ((instr & 0x100000) >> 9) | |
| (instr & 0xff000) | ((instr & 0x80000000) >> 11); |
| imm21 = imm21 << 11 >> 11; |
| return imm21; |
| } |
| |
| int Assembler::CJumpOffset(Instr instr) { |
| int32_t imm12 = ((instr & 0x4) << 3) | ((instr & 0x38) >> 2) | |
| ((instr & 0x40) << 1) | ((instr & 0x80) >> 1) | |
| ((instr & 0x100) << 2) | ((instr & 0x600) >> 1) | |
| ((instr & 0x800) >> 7) | ((instr & 0x1000) >> 1); |
| imm12 = imm12 << 20 >> 20; |
| return imm12; |
| } |
| |
| int Assembler::BrachlongOffset(Instr auipc, Instr instr_I) { |
| DCHECK(reinterpret_cast<Instruction*>(&instr_I)->InstructionType() == |
| InstructionBase::kIType); |
| DCHECK(IsAuipc(auipc)); |
| DCHECK_EQ((auipc & kRdFieldMask) >> kRdShift, |
| (instr_I & kRs1FieldMask) >> kRs1Shift); |
| int32_t imm_auipc = AuipcOffset(auipc); |
| int32_t imm12 = static_cast<int32_t>(instr_I & kImm12Mask) >> 20; |
| int32_t offset = imm12 + imm_auipc; |
| return offset; |
| } |
| |
| int Assembler::PatchBranchlongOffset(Address pc, Instr instr_auipc, |
| Instr instr_jalr, int32_t offset) { |
| DCHECK(IsAuipc(instr_auipc)); |
| DCHECK(IsJalr(instr_jalr)); |
| CHECK(is_int32(offset + 0x800)); |
| int32_t Hi20 = (((int32_t)offset + 0x800) >> 12); |
| int32_t Lo12 = (int32_t)offset << 20 >> 20; |
| instr_at_put(pc, SetAuipcOffset(Hi20, instr_auipc)); |
| instr_at_put(pc + 4, SetJalrOffset(Lo12, instr_jalr)); |
| DCHECK(offset == |
| BrachlongOffset(Assembler::instr_at(pc), Assembler::instr_at(pc + 4))); |
| return 2; |
| } |
| |
| int Assembler::LdOffset(Instr instr) { |
| DCHECK(IsLd(instr)); |
| int32_t imm12 = static_cast<int32_t>(instr & kImm12Mask) >> 20; |
| return imm12; |
| } |
| |
| int Assembler::JalrOffset(Instr instr) { |
| DCHECK(IsJalr(instr)); |
| int32_t imm12 = static_cast<int32_t>(instr & kImm12Mask) >> 20; |
| return imm12; |
| } |
| |
| int Assembler::AuipcOffset(Instr instr) { |
| DCHECK(IsAuipc(instr)); |
| int32_t imm20 = static_cast<int32_t>(instr & kImm20Mask); |
| return imm20; |
| } |
| // We have to use a temporary register for things that can be relocated even |
| // if they can be encoded in RISC-V's 12 bits of immediate-offset instruction |
| // space. There is no guarantee that the relocated location can be similarly |
| // encoded. |
| bool Assembler::MustUseReg(RelocInfo::Mode rmode) { |
| return !RelocInfo::IsNoInfo(rmode); |
| } |
| |
| void Assembler::disassembleInstr(Instr instr) { |
| if (!FLAG_riscv_debug) return; |
| disasm::NameConverter converter; |
| disasm::Disassembler disasm(converter); |
| base::EmbeddedVector<char, 128> disasm_buffer; |
| |
| disasm.InstructionDecode(disasm_buffer, reinterpret_cast<byte*>(&instr)); |
| DEBUG_PRINTF("%s\n", disasm_buffer.begin()); |
| } |
| |
| // ----- Top-level instruction formats match those in the ISA manual |
| // (R, I, S, B, U, J). These match the formats defined in the compiler |
| void Assembler::GenInstrR(uint8_t funct7, uint8_t funct3, Opcode opcode, |
| Register rd, Register rs1, Register rs2) { |
| DCHECK(is_uint7(funct7) && is_uint3(funct3) && rd.is_valid() && |
| rs1.is_valid() && rs2.is_valid()); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (funct7 << kFunct7Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrR(uint8_t funct7, uint8_t funct3, Opcode opcode, |
| FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| DCHECK(is_uint7(funct7) && is_uint3(funct3) && rd.is_valid() && |
| rs1.is_valid() && rs2.is_valid()); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (funct7 << kFunct7Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrR(uint8_t funct7, uint8_t funct3, Opcode opcode, |
| Register rd, FPURegister rs1, Register rs2) { |
| DCHECK(is_uint7(funct7) && is_uint3(funct3) && rd.is_valid() && |
| rs1.is_valid() && rs2.is_valid()); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (funct7 << kFunct7Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrR(uint8_t funct7, uint8_t funct3, Opcode opcode, |
| FPURegister rd, Register rs1, Register rs2) { |
| DCHECK(is_uint7(funct7) && is_uint3(funct3) && rd.is_valid() && |
| rs1.is_valid() && rs2.is_valid()); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (funct7 << kFunct7Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrR(uint8_t funct7, uint8_t funct3, Opcode opcode, |
| FPURegister rd, FPURegister rs1, Register rs2) { |
| DCHECK(is_uint7(funct7) && is_uint3(funct3) && rd.is_valid() && |
| rs1.is_valid() && rs2.is_valid()); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (funct7 << kFunct7Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrR(uint8_t funct7, uint8_t funct3, Opcode opcode, |
| Register rd, FPURegister rs1, FPURegister rs2) { |
| DCHECK(is_uint7(funct7) && is_uint3(funct3) && rd.is_valid() && |
| rs1.is_valid() && rs2.is_valid()); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (funct7 << kFunct7Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrR4(uint8_t funct2, Opcode opcode, Register rd, |
| Register rs1, Register rs2, Register rs3, |
| FPURoundingMode frm) { |
| DCHECK(is_uint2(funct2) && rd.is_valid() && rs1.is_valid() && |
| rs2.is_valid() && rs3.is_valid() && is_uint3(frm)); |
| Instr instr = opcode | (rd.code() << kRdShift) | (frm << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (funct2 << kFunct2Shift) | (rs3.code() << kRs3Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrR4(uint8_t funct2, Opcode opcode, FPURegister rd, |
| FPURegister rs1, FPURegister rs2, FPURegister rs3, |
| FPURoundingMode frm) { |
| DCHECK(is_uint2(funct2) && rd.is_valid() && rs1.is_valid() && |
| rs2.is_valid() && rs3.is_valid() && is_uint3(frm)); |
| Instr instr = opcode | (rd.code() << kRdShift) | (frm << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (funct2 << kFunct2Shift) | (rs3.code() << kRs3Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrRAtomic(uint8_t funct5, bool aq, bool rl, |
| uint8_t funct3, Register rd, Register rs1, |
| Register rs2) { |
| DCHECK(is_uint5(funct5) && is_uint3(funct3) && rd.is_valid() && |
| rs1.is_valid() && rs2.is_valid()); |
| Instr instr = AMO | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (rl << kRlShift) | (aq << kAqShift) | (funct5 << kFunct5Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrRFrm(uint8_t funct7, Opcode opcode, Register rd, |
| Register rs1, Register rs2, FPURoundingMode frm) { |
| DCHECK(rd.is_valid() && rs1.is_valid() && rs2.is_valid() && is_uint3(frm)); |
| Instr instr = opcode | (rd.code() << kRdShift) | (frm << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (rs2.code() << kRs2Shift) | |
| (funct7 << kFunct7Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrI(uint8_t funct3, Opcode opcode, Register rd, |
| Register rs1, int16_t imm12) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && rs1.is_valid() && |
| (is_uint12(imm12) || is_int12(imm12))); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (imm12 << kImm12Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrI(uint8_t funct3, Opcode opcode, FPURegister rd, |
| Register rs1, int16_t imm12) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && rs1.is_valid() && |
| (is_uint12(imm12) || is_int12(imm12))); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (imm12 << kImm12Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrIShift(bool arithshift, uint8_t funct3, Opcode opcode, |
| Register rd, Register rs1, uint8_t shamt) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && rs1.is_valid() && |
| is_uint6(shamt)); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (shamt << kShamtShift) | |
| (arithshift << kArithShiftShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrIShiftW(bool arithshift, uint8_t funct3, Opcode opcode, |
| Register rd, Register rs1, uint8_t shamt) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && rs1.is_valid() && |
| is_uint5(shamt)); |
| Instr instr = opcode | (rd.code() << kRdShift) | (funct3 << kFunct3Shift) | |
| (rs1.code() << kRs1Shift) | (shamt << kShamtWShift) | |
| (arithshift << kArithShiftShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrS(uint8_t funct3, Opcode opcode, Register rs1, |
| Register rs2, int16_t imm12) { |
| DCHECK(is_uint3(funct3) && rs1.is_valid() && rs2.is_valid() && |
| is_int12(imm12)); |
| Instr instr = opcode | ((imm12 & 0x1f) << 7) | // bits 4-0 |
| (funct3 << kFunct3Shift) | (rs1.code() << kRs1Shift) | |
| (rs2.code() << kRs2Shift) | |
| ((imm12 & 0xfe0) << 20); // bits 11-5 |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrS(uint8_t funct3, Opcode opcode, Register rs1, |
| FPURegister rs2, int16_t imm12) { |
| DCHECK(is_uint3(funct3) && rs1.is_valid() && rs2.is_valid() && |
| is_int12(imm12)); |
| Instr instr = opcode | ((imm12 & 0x1f) << 7) | // bits 4-0 |
| (funct3 << kFunct3Shift) | (rs1.code() << kRs1Shift) | |
| (rs2.code() << kRs2Shift) | |
| ((imm12 & 0xfe0) << 20); // bits 11-5 |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrB(uint8_t funct3, Opcode opcode, Register rs1, |
| Register rs2, int16_t imm13) { |
| DCHECK(is_uint3(funct3) && rs1.is_valid() && rs2.is_valid() && |
| is_int13(imm13) && ((imm13 & 1) == 0)); |
| Instr instr = opcode | ((imm13 & 0x800) >> 4) | // bit 11 |
| ((imm13 & 0x1e) << 7) | // bits 4-1 |
| (funct3 << kFunct3Shift) | (rs1.code() << kRs1Shift) | |
| (rs2.code() << kRs2Shift) | |
| ((imm13 & 0x7e0) << 20) | // bits 10-5 |
| ((imm13 & 0x1000) << 19); // bit 12 |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrU(Opcode opcode, Register rd, int32_t imm20) { |
| DCHECK(rd.is_valid() && (is_int20(imm20) || is_uint20(imm20))); |
| Instr instr = opcode | (rd.code() << kRdShift) | (imm20 << kImm20Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrJ(Opcode opcode, Register rd, int32_t imm21) { |
| DCHECK(rd.is_valid() && is_int21(imm21) && ((imm21 & 1) == 0)); |
| Instr instr = opcode | (rd.code() << kRdShift) | |
| (imm21 & 0xff000) | // bits 19-12 |
| ((imm21 & 0x800) << 9) | // bit 11 |
| ((imm21 & 0x7fe) << 20) | // bits 10-1 |
| ((imm21 & 0x100000) << 11); // bit 20 |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCR(uint8_t funct4, Opcode opcode, Register rd, |
| Register rs2) { |
| DCHECK(is_uint4(funct4) && rd.is_valid() && rs2.is_valid()); |
| ShortInstr instr = opcode | (rs2.code() << kRvcRs2Shift) | |
| (rd.code() << kRvcRdShift) | (funct4 << kRvcFunct4Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCA(uint8_t funct6, Opcode opcode, Register rd, |
| uint8_t funct, Register rs2) { |
| DCHECK(is_uint6(funct6) && rd.is_valid() && rs2.is_valid() && |
| is_uint2(funct)); |
| ShortInstr instr = opcode | ((rs2.code() & 0x7) << kRvcRs2sShift) | |
| ((rd.code() & 0x7) << kRvcRs1sShift) | |
| (funct6 << kRvcFunct6Shift) | (funct << kRvcFunct2Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCI(uint8_t funct3, Opcode opcode, Register rd, |
| int8_t imm6) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && is_int6(imm6)); |
| ShortInstr instr = opcode | ((imm6 & 0x1f) << 2) | |
| (rd.code() << kRvcRdShift) | ((imm6 & 0x20) << 7) | |
| (funct3 << kRvcFunct3Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCIU(uint8_t funct3, Opcode opcode, Register rd, |
| uint8_t uimm6) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && is_uint6(uimm6)); |
| ShortInstr instr = opcode | ((uimm6 & 0x1f) << 2) | |
| (rd.code() << kRvcRdShift) | ((uimm6 & 0x20) << 7) | |
| (funct3 << kRvcFunct3Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCIU(uint8_t funct3, Opcode opcode, FPURegister rd, |
| uint8_t uimm6) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && is_uint6(uimm6)); |
| ShortInstr instr = opcode | ((uimm6 & 0x1f) << 2) | |
| (rd.code() << kRvcRdShift) | ((uimm6 & 0x20) << 7) | |
| (funct3 << kRvcFunct3Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCIW(uint8_t funct3, Opcode opcode, Register rd, |
| uint8_t uimm8) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && is_uint8(uimm8)); |
| ShortInstr instr = opcode | ((uimm8) << 5) | |
| ((rd.code() & 0x7) << kRvcRs2sShift) | |
| (funct3 << kRvcFunct3Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCSS(uint8_t funct3, Opcode opcode, Register rs2, |
| uint8_t uimm6) { |
| DCHECK(is_uint3(funct3) && rs2.is_valid() && is_uint6(uimm6)); |
| ShortInstr instr = opcode | (uimm6 << 7) | (rs2.code() << kRvcRs2Shift) | |
| (funct3 << kRvcFunct3Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCSS(uint8_t funct3, Opcode opcode, FPURegister rs2, |
| uint8_t uimm6) { |
| DCHECK(is_uint3(funct3) && rs2.is_valid() && is_uint6(uimm6)); |
| ShortInstr instr = opcode | (uimm6 << 7) | (rs2.code() << kRvcRs2Shift) | |
| (funct3 << kRvcFunct3Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCL(uint8_t funct3, Opcode opcode, Register rd, |
| Register rs1, uint8_t uimm5) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && rs1.is_valid() && |
| is_uint5(uimm5)); |
| ShortInstr instr = opcode | ((uimm5 & 0x3) << 5) | |
| ((rd.code() & 0x7) << kRvcRs2sShift) | |
| ((uimm5 & 0x1c) << 8) | (funct3 << kRvcFunct3Shift) | |
| ((rs1.code() & 0x7) << kRvcRs1sShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCL(uint8_t funct3, Opcode opcode, FPURegister rd, |
| Register rs1, uint8_t uimm5) { |
| DCHECK(is_uint3(funct3) && rd.is_valid() && rs1.is_valid() && |
| is_uint5(uimm5)); |
| ShortInstr instr = opcode | ((uimm5 & 0x3) << 5) | |
| ((rd.code() & 0x7) << kRvcRs2sShift) | |
| ((uimm5 & 0x1c) << 8) | (funct3 << kRvcFunct3Shift) | |
| ((rs1.code() & 0x7) << kRvcRs1sShift); |
| emit(instr); |
| } |
| void Assembler::GenInstrCJ(uint8_t funct3, Opcode opcode, uint16_t uint11) { |
| DCHECK(is_uint11(uint11)); |
| ShortInstr instr = opcode | (funct3 << kRvcFunct3Shift) | (uint11 << 2); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCS(uint8_t funct3, Opcode opcode, Register rs2, |
| Register rs1, uint8_t uimm5) { |
| DCHECK(is_uint3(funct3) && rs2.is_valid() && rs1.is_valid() && |
| is_uint5(uimm5)); |
| ShortInstr instr = opcode | ((uimm5 & 0x3) << 5) | |
| ((rs2.code() & 0x7) << kRvcRs2sShift) | |
| ((uimm5 & 0x1c) << 8) | (funct3 << kRvcFunct3Shift) | |
| ((rs1.code() & 0x7) << kRvcRs1sShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCS(uint8_t funct3, Opcode opcode, FPURegister rs2, |
| Register rs1, uint8_t uimm5) { |
| DCHECK(is_uint3(funct3) && rs2.is_valid() && rs1.is_valid() && |
| is_uint5(uimm5)); |
| ShortInstr instr = opcode | ((uimm5 & 0x3) << 5) | |
| ((rs2.code() & 0x7) << kRvcRs2sShift) | |
| ((uimm5 & 0x1c) << 8) | (funct3 << kRvcFunct3Shift) | |
| ((rs1.code() & 0x7) << kRvcRs1sShift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCB(uint8_t funct3, Opcode opcode, Register rs1, |
| uint8_t uimm8) { |
| DCHECK(is_uint3(funct3) && is_uint8(uimm8)); |
| ShortInstr instr = opcode | ((uimm8 & 0x1f) << 2) | ((uimm8 & 0xe0) << 5) | |
| ((rs1.code() & 0x7) << kRvcRs1sShift) | |
| (funct3 << kRvcFunct3Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrCBA(uint8_t funct3, uint8_t funct2, Opcode opcode, |
| Register rs1, int8_t imm6) { |
| DCHECK(is_uint3(funct3) && is_uint2(funct2) && is_int6(imm6)); |
| ShortInstr instr = opcode | ((imm6 & 0x1f) << 2) | ((imm6 & 0x20) << 7) | |
| ((rs1.code() & 0x7) << kRvcRs1sShift) | |
| (funct3 << kRvcFunct3Shift) | (funct2 << 10); |
| emit(instr); |
| } |
| |
| // OPIVV OPFVV OPMVV |
| void Assembler::GenInstrV(uint8_t funct6, Opcode opcode, VRegister vd, |
| VRegister vs1, VRegister vs2, MaskType mask) { |
| DCHECK(opcode == OP_MVV || opcode == OP_FVV || opcode == OP_IVV); |
| Instr instr = (funct6 << kRvvFunct6Shift) | opcode | (mask << kRvvVmShift) | |
| ((vd.code() & 0x1F) << kRvvVdShift) | |
| ((vs1.code() & 0x1F) << kRvvVs1Shift) | |
| ((vs2.code() & 0x1F) << kRvvVs2Shift); |
| emit(instr); |
| } |
| |
| void Assembler::GenInstrV(uint8_t funct6, Opcode opcode, VRegister vd, |
| int8_t vs1, VRegister vs2, MaskType mask) { |
| DCHECK(opcode == OP_MVV || opcode == OP_FVV || opcode == OP_IVV); |
| Instr instr = (funct6 << kRvvFunct6Shift) | opcode | (mask << kRvvVmShift) | |
| ((vd.code() & 0x1F) << kRvvVdShift) | |
| ((vs1 & 0x1F) << kRvvVs1Shift) | |
| ((vs2.code() & 0x1F) << kRvvVs2Shift); |
| emit(instr); |
| } |
| // OPMVV OPFVV |
| void Assembler::GenInstrV(uint8_t funct6, Opcode opcode, Register rd, |
| VRegister vs1, VRegister vs2, MaskType mask) { |
| DCHECK(opcode == OP_MVV || opcode == OP_FVV); |
| Instr instr = (funct6 << kRvvFunct6Shift) | opcode | (mask << kRvvVmShift) | |
| ((rd.code() & 0x1F) << kRvvVdShift) | |
| ((vs1.code() & 0x1F) << kRvvVs1Shift) | |
| ((vs2.code() & 0x1F) << kRvvVs2Shift); |
| emit(instr); |
| } |
| |
| // OPFVV |
| void Assembler::GenInstrV(uint8_t funct6, Opcode opcode, FPURegister fd, |
| VRegister vs1, VRegister vs2, MaskType mask) { |
| DCHECK(opcode == OP_FVV); |
| Instr instr = (funct6 << kRvvFunct6Shift) | opcode | (mask << kRvvVmShift) | |
| ((fd.code() & 0x1F) << kRvvVdShift) | |
| ((vs1.code() & 0x1F) << kRvvVs1Shift) | |
| ((vs2.code() & 0x1F) << kRvvVs2Shift); |
| emit(instr); |
| } |
| |
| // OPIVX OPMVX |
| void Assembler::GenInstrV(uint8_t funct6, Opcode opcode, VRegister vd, |
| Register rs1, VRegister vs2, MaskType mask) { |
| DCHECK(opcode == OP_IVX || opcode == OP_MVX); |
| Instr instr = (funct6 << kRvvFunct6Shift) | opcode | (mask << kRvvVmShift) | |
| ((vd.code() & 0x1F) << kRvvVdShift) | |
| ((rs1.code() & 0x1F) << kRvvRs1Shift) | |
| ((vs2.code() & 0x1F) << kRvvVs2Shift); |
| emit(instr); |
| } |
| |
| // OPFVF |
| void Assembler::GenInstrV(uint8_t funct6, Opcode opcode, VRegister vd, |
| FPURegister fs1, VRegister vs2, MaskType mask) { |
| DCHECK(opcode == OP_FVF); |
| Instr instr = (funct6 << kRvvFunct6Shift) | opcode | (mask << kRvvVmShift) | |
| ((vd.code() & 0x1F) << kRvvVdShift) | |
| ((fs1.code() & 0x1F) << kRvvRs1Shift) | |
| ((vs2.code() & 0x1F) << kRvvVs2Shift); |
| emit(instr); |
| } |
| |
| // OPMVX |
| void Assembler::GenInstrV(uint8_t funct6, Register rd, Register rs1, |
| VRegister vs2, MaskType mask) { |
| Instr instr = (funct6 << kRvvFunct6Shift) | OP_MVX | (mask << kRvvVmShift) | |
| ((rd.code() & 0x1F) << kRvvVdShift) | |
| ((rs1.code() & 0x1F) << kRvvRs1Shift) | |
| ((vs2.code() & 0x1F) << kRvvVs2Shift); |
| emit(instr); |
| } |
| // OPIVI |
| void Assembler::GenInstrV(uint8_t funct6, VRegister vd, int8_t imm5, |
| VRegister vs2, MaskType mask) { |
| DCHECK(is_uint5(imm5) || is_int5(imm5)); |
| Instr instr = (funct6 << kRvvFunct6Shift) | OP_IVI | (mask << kRvvVmShift) | |
| ((vd.code() & 0x1F) << kRvvVdShift) | |
| (((uint32_t)imm5 << kRvvImm5Shift) & kRvvImm5Mask) | |
| ((vs2.code() & 0x1F) << kRvvVs2Shift); |
| emit(instr); |
| } |
| |
| // VL VS |
| void Assembler::GenInstrV(Opcode opcode, uint8_t width, VRegister vd, |
| Register rs1, uint8_t umop, MaskType mask, |
| uint8_t IsMop, bool IsMew, uint8_t Nf) { |
| DCHECK(opcode == LOAD_FP || opcode == STORE_FP); |
| Instr instr = opcode | ((vd.code() << kRvvVdShift) & kRvvVdMask) | |
| ((width << kRvvWidthShift) & kRvvWidthMask) | |
| ((rs1.code() << kRvvRs1Shift) & kRvvRs1Mask) | |
| ((umop << kRvvRs2Shift) & kRvvRs2Mask) | |
| ((mask << kRvvVmShift) & kRvvVmMask) | |
| ((IsMop << kRvvMopShift) & kRvvMopMask) | |
| ((IsMew << kRvvMewShift) & kRvvMewMask) | |
| ((Nf << kRvvNfShift) & kRvvNfMask); |
| emit(instr); |
| } |
| void Assembler::GenInstrV(Opcode opcode, uint8_t width, VRegister vd, |
| Register rs1, Register rs2, MaskType mask, |
| uint8_t IsMop, bool IsMew, uint8_t Nf) { |
| DCHECK(opcode == LOAD_FP || opcode == STORE_FP); |
| Instr instr = opcode | ((vd.code() << kRvvVdShift) & kRvvVdMask) | |
| ((width << kRvvWidthShift) & kRvvWidthMask) | |
| ((rs1.code() << kRvvRs1Shift) & kRvvRs1Mask) | |
| ((rs2.code() << kRvvRs2Shift) & kRvvRs2Mask) | |
| ((mask << kRvvVmShift) & kRvvVmMask) | |
| ((IsMop << kRvvMopShift) & kRvvMopMask) | |
| ((IsMew << kRvvMewShift) & kRvvMewMask) | |
| ((Nf << kRvvNfShift) & kRvvNfMask); |
| emit(instr); |
| } |
| // VL VS AMO |
| void Assembler::GenInstrV(Opcode opcode, uint8_t width, VRegister vd, |
| Register rs1, VRegister vs2, MaskType mask, |
| uint8_t IsMop, bool IsMew, uint8_t Nf) { |
| DCHECK(opcode == LOAD_FP || opcode == STORE_FP || opcode == AMO); |
| Instr instr = opcode | ((vd.code() << kRvvVdShift) & kRvvVdMask) | |
| ((width << kRvvWidthShift) & kRvvWidthMask) | |
| ((rs1.code() << kRvvRs1Shift) & kRvvRs1Mask) | |
| ((vs2.code() << kRvvRs2Shift) & kRvvRs2Mask) | |
| ((mask << kRvvVmShift) & kRvvVmMask) | |
| ((IsMop << kRvvMopShift) & kRvvMopMask) | |
| ((IsMew << kRvvMewShift) & kRvvMewMask) | |
| ((Nf << kRvvNfShift) & kRvvNfMask); |
| emit(instr); |
| } |
| // vmv_xs vcpop_m vfirst_m |
| void Assembler::GenInstrV(uint8_t funct6, Opcode opcode, Register rd, |
| uint8_t vs1, VRegister vs2, MaskType mask) { |
| DCHECK(opcode == OP_MVV); |
| Instr instr = (funct6 << kRvvFunct6Shift) | opcode | (mask << kRvvVmShift) | |
| ((rd.code() & 0x1F) << kRvvVdShift) | |
| ((vs1 & 0x1F) << kRvvVs1Shift) | |
| ((vs2.code() & 0x1F) << kRvvVs2Shift); |
| emit(instr); |
| } |
| // ----- Instruction class templates match those in the compiler |
| |
| void Assembler::GenInstrBranchCC_rri(uint8_t funct3, Register rs1, Register rs2, |
| int16_t imm13) { |
| GenInstrB(funct3, BRANCH, rs1, rs2, imm13); |
| } |
| |
| void Assembler::GenInstrLoad_ri(uint8_t funct3, Register rd, Register rs1, |
| int16_t imm12) { |
| GenInstrI(funct3, LOAD, rd, rs1, imm12); |
| } |
| |
| void Assembler::GenInstrStore_rri(uint8_t funct3, Register rs1, Register rs2, |
| int16_t imm12) { |
| GenInstrS(funct3, STORE, rs1, rs2, imm12); |
| } |
| |
| void Assembler::GenInstrALU_ri(uint8_t funct3, Register rd, Register rs1, |
| int16_t imm12) { |
| GenInstrI(funct3, OP_IMM, rd, rs1, imm12); |
| } |
| |
| void Assembler::GenInstrShift_ri(bool arithshift, uint8_t funct3, Register rd, |
| Register rs1, uint8_t shamt) { |
| DCHECK(is_uint6(shamt)); |
| GenInstrI(funct3, OP_IMM, rd, rs1, (arithshift << 10) | shamt); |
| } |
| |
| void Assembler::GenInstrALU_rr(uint8_t funct7, uint8_t funct3, Register rd, |
| Register rs1, Register rs2) { |
| GenInstrR(funct7, funct3, OP, rd, rs1, rs2); |
| } |
| |
| void Assembler::GenInstrCSR_ir(uint8_t funct3, Register rd, |
| ControlStatusReg csr, Register rs1) { |
| GenInstrI(funct3, SYSTEM, rd, rs1, csr); |
| } |
| |
| void Assembler::GenInstrCSR_ii(uint8_t funct3, Register rd, |
| ControlStatusReg csr, uint8_t imm5) { |
| GenInstrI(funct3, SYSTEM, rd, ToRegister(imm5), csr); |
| } |
| |
| void Assembler::GenInstrShiftW_ri(bool arithshift, uint8_t funct3, Register rd, |
| Register rs1, uint8_t shamt) { |
| GenInstrIShiftW(arithshift, funct3, OP_IMM_32, rd, rs1, shamt); |
| } |
| |
| void Assembler::GenInstrALUW_rr(uint8_t funct7, uint8_t funct3, Register rd, |
| Register rs1, Register rs2) { |
| GenInstrR(funct7, funct3, OP_32, rd, rs1, rs2); |
| } |
| |
| void Assembler::GenInstrPriv(uint8_t funct7, Register rs1, Register rs2) { |
| GenInstrR(funct7, 0b000, SYSTEM, ToRegister(0), rs1, rs2); |
| } |
| |
| void Assembler::GenInstrLoadFP_ri(uint8_t funct3, FPURegister rd, Register rs1, |
| int16_t imm12) { |
| GenInstrI(funct3, LOAD_FP, rd, rs1, imm12); |
| } |
| |
| void Assembler::GenInstrStoreFP_rri(uint8_t funct3, Register rs1, |
| FPURegister rs2, int16_t imm12) { |
| GenInstrS(funct3, STORE_FP, rs1, rs2, imm12); |
| } |
| |
| void Assembler::GenInstrALUFP_rr(uint8_t funct7, uint8_t funct3, FPURegister rd, |
| FPURegister rs1, FPURegister rs2) { |
| GenInstrR(funct7, funct3, OP_FP, rd, rs1, rs2); |
| } |
| |
| void Assembler::GenInstrALUFP_rr(uint8_t funct7, uint8_t funct3, FPURegister rd, |
| Register rs1, Register rs2) { |
| GenInstrR(funct7, funct3, OP_FP, rd, rs1, rs2); |
| } |
| |
| void Assembler::GenInstrALUFP_rr(uint8_t funct7, uint8_t funct3, FPURegister rd, |
| FPURegister rs1, Register rs2) { |
| GenInstrR(funct7, funct3, OP_FP, rd, rs1, rs2); |
| } |
| |
| void Assembler::GenInstrALUFP_rr(uint8_t funct7, uint8_t funct3, Register rd, |
| FPURegister rs1, Register rs2) { |
| GenInstrR(funct7, funct3, OP_FP, rd, rs1, rs2); |
| } |
| |
| void Assembler::GenInstrALUFP_rr(uint8_t funct7, uint8_t funct3, Register rd, |
| FPURegister rs1, FPURegister rs2) { |
| GenInstrR(funct7, funct3, OP_FP, rd, rs1, rs2); |
| } |
| |
| // Returns the next free trampoline entry. |
| int32_t Assembler::get_trampoline_entry(int32_t pos) { |
| int32_t trampoline_entry = kInvalidSlotPos; |
| if (!internal_trampoline_exception_) { |
| DEBUG_PRINTF("\tstart: %d,pos: %d\n", trampoline_.start(), pos); |
| if (trampoline_.start() > pos) { |
| trampoline_entry = trampoline_.take_slot(); |
| } |
| |
| if (kInvalidSlotPos == trampoline_entry) { |
| internal_trampoline_exception_ = true; |
| } |
| } |
| return trampoline_entry; |
| } |
| |
| uint64_t Assembler::jump_address(Label* L) { |
| int64_t target_pos; |
| DEBUG_PRINTF("jump_address: %p to %p (%d)\n", L, |
| reinterpret_cast<Instr*>(buffer_start_ + pc_offset()), |
| pc_offset()); |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| L->link_to(pc_offset()); |
| } else { |
| L->link_to(pc_offset()); |
| if (!trampoline_emitted_) { |
| unbound_labels_count_++; |
| next_buffer_check_ -= kTrampolineSlotsSize; |
| } |
| DEBUG_PRINTF("\tstarted link\n"); |
| return kEndOfJumpChain; |
| } |
| } |
| uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos; |
| if (FLAG_riscv_c_extension) |
| DCHECK_EQ(imm & 1, 0); |
| else |
| DCHECK_EQ(imm & 3, 0); |
| |
| return imm; |
| } |
| |
| uint64_t Assembler::branch_long_offset(Label* L) { |
| int64_t target_pos; |
| |
| DEBUG_PRINTF("branch_long_offset: %p to %p (%d)\n", L, |
| reinterpret_cast<Instr*>(buffer_start_ + pc_offset()), |
| pc_offset()); |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| L->link_to(pc_offset()); |
| } else { |
| L->link_to(pc_offset()); |
| if (!trampoline_emitted_) { |
| unbound_labels_count_++; |
| next_buffer_check_ -= kTrampolineSlotsSize; |
| } |
| DEBUG_PRINTF("\tstarted link\n"); |
| return kEndOfJumpChain; |
| } |
| } |
| int64_t offset = target_pos - pc_offset(); |
| if (FLAG_riscv_c_extension) |
| DCHECK_EQ(offset & 1, 0); |
| else |
| DCHECK_EQ(offset & 3, 0); |
| |
| return static_cast<uint64_t>(offset); |
| } |
| |
| int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) { |
| int32_t target_pos; |
| |
| DEBUG_PRINTF("branch_offset_helper: %p to %p (%d)\n", L, |
| reinterpret_cast<Instr*>(buffer_start_ + pc_offset()), |
| pc_offset()); |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| DEBUG_PRINTF("\tbound: %d", target_pos); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); |
| L->link_to(pc_offset()); |
| DEBUG_PRINTF("\tadded to link: %d\n", target_pos); |
| } else { |
| L->link_to(pc_offset()); |
| if (!trampoline_emitted_) { |
| unbound_labels_count_++; |
| next_buffer_check_ -= kTrampolineSlotsSize; |
| } |
| DEBUG_PRINTF("\tstarted link\n"); |
| return kEndOfJumpChain; |
| } |
| } |
| |
| int32_t offset = target_pos - pc_offset(); |
| DCHECK(is_intn(offset, bits)); |
| DCHECK_EQ(offset & 1, 0); |
| DEBUG_PRINTF("\toffset = %d\n", offset); |
| return offset; |
| } |
| |
| void Assembler::label_at_put(Label* L, int at_offset) { |
| int target_pos; |
| DEBUG_PRINTF("label_at_put: %p @ %p (%d)\n", L, |
| reinterpret_cast<Instr*>(buffer_start_ + at_offset), at_offset); |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| int32_t imm18 = target_pos - at_offset; |
| DCHECK_EQ(imm18 & 3, 0); |
| int32_t imm16 = imm18 >> 2; |
| DCHECK(is_int16(imm16)); |
| instr_at_put(at_offset, (int32_t)(imm16 & kImm16Mask)); |
| } else { |
| target_pos = kEndOfJumpChain; |
| instr_at_put(at_offset, target_pos); |
| if (!trampoline_emitted_) { |
| unbound_labels_count_++; |
| next_buffer_check_ -= kTrampolineSlotsSize; |
| } |
| } |
| L->link_to(at_offset); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instructions |
| //===----------------------------------------------------------------------===// |
| |
| void Assembler::lui(Register rd, int32_t imm20) { GenInstrU(LUI, rd, imm20); } |
| |
| void Assembler::auipc(Register rd, int32_t imm20) { |
| GenInstrU(AUIPC, rd, imm20); |
| } |
| |
| // Jumps |
| |
| void Assembler::jal(Register rd, int32_t imm21) { |
| GenInstrJ(JAL, rd, imm21); |
| BlockTrampolinePoolFor(1); |
| } |
| |
| void Assembler::jalr(Register rd, Register rs1, int16_t imm12) { |
| GenInstrI(0b000, JALR, rd, rs1, imm12); |
| BlockTrampolinePoolFor(1); |
| } |
| |
| // Branches |
| |
| void Assembler::beq(Register rs1, Register rs2, int16_t imm13) { |
| GenInstrBranchCC_rri(0b000, rs1, rs2, imm13); |
| } |
| |
| void Assembler::bne(Register rs1, Register rs2, int16_t imm13) { |
| GenInstrBranchCC_rri(0b001, rs1, rs2, imm13); |
| } |
| |
| void Assembler::blt(Register rs1, Register rs2, int16_t imm13) { |
| GenInstrBranchCC_rri(0b100, rs1, rs2, imm13); |
| } |
| |
| void Assembler::bge(Register rs1, Register rs2, int16_t imm13) { |
| GenInstrBranchCC_rri(0b101, rs1, rs2, imm13); |
| } |
| |
| void Assembler::bltu(Register rs1, Register rs2, int16_t imm13) { |
| GenInstrBranchCC_rri(0b110, rs1, rs2, imm13); |
| } |
| |
| void Assembler::bgeu(Register rs1, Register rs2, int16_t imm13) { |
| GenInstrBranchCC_rri(0b111, rs1, rs2, imm13); |
| } |
| |
| // Loads |
| |
| void Assembler::lb(Register rd, Register rs1, int16_t imm12) { |
| GenInstrLoad_ri(0b000, rd, rs1, imm12); |
| } |
| |
| void Assembler::lh(Register rd, Register rs1, int16_t imm12) { |
| GenInstrLoad_ri(0b001, rd, rs1, imm12); |
| } |
| |
| void Assembler::lw(Register rd, Register rs1, int16_t imm12) { |
| GenInstrLoad_ri(0b010, rd, rs1, imm12); |
| } |
| |
| void Assembler::lbu(Register rd, Register rs1, int16_t imm12) { |
| GenInstrLoad_ri(0b100, rd, rs1, imm12); |
| } |
| |
| void Assembler::lhu(Register rd, Register rs1, int16_t imm12) { |
| GenInstrLoad_ri(0b101, rd, rs1, imm12); |
| } |
| |
| // Stores |
| |
| void Assembler::sb(Register source, Register base, int16_t imm12) { |
| GenInstrStore_rri(0b000, base, source, imm12); |
| } |
| |
| void Assembler::sh(Register source, Register base, int16_t imm12) { |
| GenInstrStore_rri(0b001, base, source, imm12); |
| } |
| |
| void Assembler::sw(Register source, Register base, int16_t imm12) { |
| GenInstrStore_rri(0b010, base, source, imm12); |
| } |
| |
| // Arithmetic with immediate |
| |
| void Assembler::addi(Register rd, Register rs1, int16_t imm12) { |
| GenInstrALU_ri(0b000, rd, rs1, imm12); |
| } |
| |
| void Assembler::slti(Register rd, Register rs1, int16_t imm12) { |
| GenInstrALU_ri(0b010, rd, rs1, imm12); |
| } |
| |
| void Assembler::sltiu(Register rd, Register rs1, int16_t imm12) { |
| GenInstrALU_ri(0b011, rd, rs1, imm12); |
| } |
| |
| void Assembler::xori(Register rd, Register rs1, int16_t imm12) { |
| GenInstrALU_ri(0b100, rd, rs1, imm12); |
| } |
| |
| void Assembler::ori(Register rd, Register rs1, int16_t imm12) { |
| GenInstrALU_ri(0b110, rd, rs1, imm12); |
| } |
| |
| void Assembler::andi(Register rd, Register rs1, int16_t imm12) { |
| GenInstrALU_ri(0b111, rd, rs1, imm12); |
| } |
| |
| void Assembler::slli(Register rd, Register rs1, uint8_t shamt) { |
| GenInstrShift_ri(0, 0b001, rd, rs1, shamt & 0x3f); |
| } |
| |
| void Assembler::srli(Register rd, Register rs1, uint8_t shamt) { |
| GenInstrShift_ri(0, 0b101, rd, rs1, shamt & 0x3f); |
| } |
| |
| void Assembler::srai(Register rd, Register rs1, uint8_t shamt) { |
| GenInstrShift_ri(1, 0b101, rd, rs1, shamt & 0x3f); |
| } |
| |
| // Arithmetic |
| |
| void Assembler::add(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000000, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::sub(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0100000, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::sll(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000000, 0b001, rd, rs1, rs2); |
| } |
| |
| void Assembler::slt(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000000, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::sltu(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000000, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::xor_(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000000, 0b100, rd, rs1, rs2); |
| } |
| |
| void Assembler::srl(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000000, 0b101, rd, rs1, rs2); |
| } |
| |
| void Assembler::sra(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0100000, 0b101, rd, rs1, rs2); |
| } |
| |
| void Assembler::or_(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000000, 0b110, rd, rs1, rs2); |
| } |
| |
| void Assembler::and_(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000000, 0b111, rd, rs1, rs2); |
| } |
| |
| // Memory fences |
| |
| void Assembler::fence(uint8_t pred, uint8_t succ) { |
| DCHECK(is_uint4(pred) && is_uint4(succ)); |
| uint16_t imm12 = succ | (pred << 4) | (0b0000 << 8); |
| GenInstrI(0b000, MISC_MEM, ToRegister(0), ToRegister(0), imm12); |
| } |
| |
| void Assembler::fence_tso() { |
| uint16_t imm12 = (0b0011) | (0b0011 << 4) | (0b1000 << 8); |
| GenInstrI(0b000, MISC_MEM, ToRegister(0), ToRegister(0), imm12); |
| } |
| |
| // Environment call / break |
| |
| void Assembler::ecall() { |
| GenInstrI(0b000, SYSTEM, ToRegister(0), ToRegister(0), 0); |
| } |
| |
| void Assembler::ebreak() { |
| GenInstrI(0b000, SYSTEM, ToRegister(0), ToRegister(0), 1); |
| } |
| |
| // This is a de facto standard (as set by GNU binutils) 32-bit unimplemented |
| // instruction (i.e., it should always trap, if your implementation has invalid |
| // instruction traps). |
| void Assembler::unimp() { |
| GenInstrI(0b001, SYSTEM, ToRegister(0), ToRegister(0), 0b110000000000); |
| } |
| |
| // CSR |
| |
| void Assembler::csrrw(Register rd, ControlStatusReg csr, Register rs1) { |
| GenInstrCSR_ir(0b001, rd, csr, rs1); |
| } |
| |
| void Assembler::csrrs(Register rd, ControlStatusReg csr, Register rs1) { |
| GenInstrCSR_ir(0b010, rd, csr, rs1); |
| } |
| |
| void Assembler::csrrc(Register rd, ControlStatusReg csr, Register rs1) { |
| GenInstrCSR_ir(0b011, rd, csr, rs1); |
| } |
| |
| void Assembler::csrrwi(Register rd, ControlStatusReg csr, uint8_t imm5) { |
| GenInstrCSR_ii(0b101, rd, csr, imm5); |
| } |
| |
| void Assembler::csrrsi(Register rd, ControlStatusReg csr, uint8_t imm5) { |
| GenInstrCSR_ii(0b110, rd, csr, imm5); |
| } |
| |
| void Assembler::csrrci(Register rd, ControlStatusReg csr, uint8_t imm5) { |
| GenInstrCSR_ii(0b111, rd, csr, imm5); |
| } |
| |
| // RV64I |
| |
| void Assembler::lwu(Register rd, Register rs1, int16_t imm12) { |
| GenInstrLoad_ri(0b110, rd, rs1, imm12); |
| } |
| |
| void Assembler::ld(Register rd, Register rs1, int16_t imm12) { |
| GenInstrLoad_ri(0b011, rd, rs1, imm12); |
| } |
| |
| void Assembler::sd(Register source, Register base, int16_t imm12) { |
| GenInstrStore_rri(0b011, base, source, imm12); |
| } |
| |
| void Assembler::addiw(Register rd, Register rs1, int16_t imm12) { |
| GenInstrI(0b000, OP_IMM_32, rd, rs1, imm12); |
| } |
| |
| void Assembler::slliw(Register rd, Register rs1, uint8_t shamt) { |
| GenInstrShiftW_ri(0, 0b001, rd, rs1, shamt & 0x1f); |
| } |
| |
| void Assembler::srliw(Register rd, Register rs1, uint8_t shamt) { |
| GenInstrShiftW_ri(0, 0b101, rd, rs1, shamt & 0x1f); |
| } |
| |
| void Assembler::sraiw(Register rd, Register rs1, uint8_t shamt) { |
| GenInstrShiftW_ri(1, 0b101, rd, rs1, shamt & 0x1f); |
| } |
| |
| void Assembler::addw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0000000, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::subw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0100000, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::sllw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0000000, 0b001, rd, rs1, rs2); |
| } |
| |
| void Assembler::srlw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0000000, 0b101, rd, rs1, rs2); |
| } |
| |
| void Assembler::sraw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0100000, 0b101, rd, rs1, rs2); |
| } |
| |
| // RV32M Standard Extension |
| |
| void Assembler::mul(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000001, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::mulh(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000001, 0b001, rd, rs1, rs2); |
| } |
| |
| void Assembler::mulhsu(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000001, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::mulhu(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000001, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::div(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000001, 0b100, rd, rs1, rs2); |
| } |
| |
| void Assembler::divu(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000001, 0b101, rd, rs1, rs2); |
| } |
| |
| void Assembler::rem(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000001, 0b110, rd, rs1, rs2); |
| } |
| |
| void Assembler::remu(Register rd, Register rs1, Register rs2) { |
| GenInstrALU_rr(0b0000001, 0b111, rd, rs1, rs2); |
| } |
| |
| // RV64M Standard Extension (in addition to RV32M) |
| |
| void Assembler::mulw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0000001, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::divw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0000001, 0b100, rd, rs1, rs2); |
| } |
| |
| void Assembler::divuw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0000001, 0b101, rd, rs1, rs2); |
| } |
| |
| void Assembler::remw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0000001, 0b110, rd, rs1, rs2); |
| } |
| |
| void Assembler::remuw(Register rd, Register rs1, Register rs2) { |
| GenInstrALUW_rr(0b0000001, 0b111, rd, rs1, rs2); |
| } |
| |
| // RV32A Standard Extension |
| |
| void Assembler::lr_w(bool aq, bool rl, Register rd, Register rs1) { |
| GenInstrRAtomic(0b00010, aq, rl, 0b010, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::sc_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b00011, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoswap_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b00001, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoadd_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b00000, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoxor_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b00100, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoand_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b01100, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoor_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b01000, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::amomin_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b10000, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::amomax_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b10100, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::amominu_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b11000, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::amomaxu_w(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b11100, aq, rl, 0b010, rd, rs1, rs2); |
| } |
| |
| // RV64A Standard Extension (in addition to RV32A) |
| |
| void Assembler::lr_d(bool aq, bool rl, Register rd, Register rs1) { |
| GenInstrRAtomic(0b00010, aq, rl, 0b011, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::sc_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b00011, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoswap_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b00001, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoadd_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b00000, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoxor_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b00100, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoand_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b01100, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::amoor_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b01000, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::amomin_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b10000, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::amomax_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b10100, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::amominu_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b11000, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| void Assembler::amomaxu_d(bool aq, bool rl, Register rd, Register rs1, |
| Register rs2) { |
| GenInstrRAtomic(0b11100, aq, rl, 0b011, rd, rs1, rs2); |
| } |
| |
| // RV32F Standard Extension |
| |
| void Assembler::flw(FPURegister rd, Register rs1, int16_t imm12) { |
| GenInstrLoadFP_ri(0b010, rd, rs1, imm12); |
| } |
| |
| void Assembler::fsw(FPURegister source, Register base, int16_t imm12) { |
| GenInstrStoreFP_rri(0b010, base, source, imm12); |
| } |
| |
| void Assembler::fmadd_s(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURegister rs3, FPURoundingMode frm) { |
| GenInstrR4(0b00, MADD, rd, rs1, rs2, rs3, frm); |
| } |
| |
| void Assembler::fmsub_s(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURegister rs3, FPURoundingMode frm) { |
| GenInstrR4(0b00, MSUB, rd, rs1, rs2, rs3, frm); |
| } |
| |
| void Assembler::fnmsub_s(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURegister rs3, FPURoundingMode frm) { |
| GenInstrR4(0b00, NMSUB, rd, rs1, rs2, rs3, frm); |
| } |
| |
| void Assembler::fnmadd_s(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURegister rs3, FPURoundingMode frm) { |
| GenInstrR4(0b00, NMADD, rd, rs1, rs2, rs3, frm); |
| } |
| |
| void Assembler::fadd_s(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0000000, frm, rd, rs1, rs2); |
| } |
| |
| void Assembler::fsub_s(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0000100, frm, rd, rs1, rs2); |
| } |
| |
| void Assembler::fmul_s(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0001000, frm, rd, rs1, rs2); |
| } |
| |
| void Assembler::fdiv_s(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0001100, frm, rd, rs1, rs2); |
| } |
| |
| void Assembler::fsqrt_s(FPURegister rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0101100, frm, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::fsgnj_s(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010000, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::fsgnjn_s(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010000, 0b001, rd, rs1, rs2); |
| } |
| |
| void Assembler::fsgnjx_s(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010000, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::fmin_s(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010100, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::fmax_s(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010100, 0b001, rd, rs1, rs2); |
| } |
| |
| void Assembler::fcvt_w_s(Register rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1100000, frm, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::fcvt_wu_s(Register rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1100000, frm, rd, rs1, ToRegister(1)); |
| } |
| |
| void Assembler::fmv_x_w(Register rd, FPURegister rs1) { |
| GenInstrALUFP_rr(0b1110000, 0b000, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::feq_s(Register rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b1010000, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::flt_s(Register rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b1010000, 0b001, rd, rs1, rs2); |
| } |
| |
| void Assembler::fle_s(Register rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b1010000, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::fclass_s(Register rd, FPURegister rs1) { |
| GenInstrALUFP_rr(0b1110000, 0b001, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::fcvt_s_w(FPURegister rd, Register rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1101000, frm, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::fcvt_s_wu(FPURegister rd, Register rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1101000, frm, rd, rs1, ToRegister(1)); |
| } |
| |
| void Assembler::fmv_w_x(FPURegister rd, Register rs1) { |
| GenInstrALUFP_rr(0b1111000, 0b000, rd, rs1, zero_reg); |
| } |
| |
| // RV64F Standard Extension (in addition to RV32F) |
| |
| void Assembler::fcvt_l_s(Register rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1100000, frm, rd, rs1, ToRegister(2)); |
| } |
| |
| void Assembler::fcvt_lu_s(Register rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1100000, frm, rd, rs1, ToRegister(3)); |
| } |
| |
| void Assembler::fcvt_s_l(FPURegister rd, Register rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1101000, frm, rd, rs1, ToRegister(2)); |
| } |
| |
| void Assembler::fcvt_s_lu(FPURegister rd, Register rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1101000, frm, rd, rs1, ToRegister(3)); |
| } |
| |
| // RV32D Standard Extension |
| |
| void Assembler::fld(FPURegister rd, Register rs1, int16_t imm12) { |
| GenInstrLoadFP_ri(0b011, rd, rs1, imm12); |
| } |
| |
| void Assembler::fsd(FPURegister source, Register base, int16_t imm12) { |
| GenInstrStoreFP_rri(0b011, base, source, imm12); |
| } |
| |
| void Assembler::fmadd_d(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURegister rs3, FPURoundingMode frm) { |
| GenInstrR4(0b01, MADD, rd, rs1, rs2, rs3, frm); |
| } |
| |
| void Assembler::fmsub_d(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURegister rs3, FPURoundingMode frm) { |
| GenInstrR4(0b01, MSUB, rd, rs1, rs2, rs3, frm); |
| } |
| |
| void Assembler::fnmsub_d(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURegister rs3, FPURoundingMode frm) { |
| GenInstrR4(0b01, NMSUB, rd, rs1, rs2, rs3, frm); |
| } |
| |
| void Assembler::fnmadd_d(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURegister rs3, FPURoundingMode frm) { |
| GenInstrR4(0b01, NMADD, rd, rs1, rs2, rs3, frm); |
| } |
| |
| void Assembler::fadd_d(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0000001, frm, rd, rs1, rs2); |
| } |
| |
| void Assembler::fsub_d(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0000101, frm, rd, rs1, rs2); |
| } |
| |
| void Assembler::fmul_d(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0001001, frm, rd, rs1, rs2); |
| } |
| |
| void Assembler::fdiv_d(FPURegister rd, FPURegister rs1, FPURegister rs2, |
| FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0001101, frm, rd, rs1, rs2); |
| } |
| |
| void Assembler::fsqrt_d(FPURegister rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0101101, frm, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::fsgnj_d(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010001, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::fsgnjn_d(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010001, 0b001, rd, rs1, rs2); |
| } |
| |
| void Assembler::fsgnjx_d(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010001, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::fmin_d(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010101, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::fmax_d(FPURegister rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b0010101, 0b001, rd, rs1, rs2); |
| } |
| |
| void Assembler::fcvt_s_d(FPURegister rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0100000, frm, rd, rs1, ToRegister(1)); |
| } |
| |
| void Assembler::fcvt_d_s(FPURegister rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b0100001, frm, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::feq_d(Register rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b1010001, 0b010, rd, rs1, rs2); |
| } |
| |
| void Assembler::flt_d(Register rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b1010001, 0b001, rd, rs1, rs2); |
| } |
| |
| void Assembler::fle_d(Register rd, FPURegister rs1, FPURegister rs2) { |
| GenInstrALUFP_rr(0b1010001, 0b000, rd, rs1, rs2); |
| } |
| |
| void Assembler::fclass_d(Register rd, FPURegister rs1) { |
| GenInstrALUFP_rr(0b1110001, 0b001, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::fcvt_w_d(Register rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1100001, frm, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::fcvt_wu_d(Register rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1100001, frm, rd, rs1, ToRegister(1)); |
| } |
| |
| void Assembler::fcvt_d_w(FPURegister rd, Register rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1101001, frm, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::fcvt_d_wu(FPURegister rd, Register rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1101001, frm, rd, rs1, ToRegister(1)); |
| } |
| |
| // RV64D Standard Extension (in addition to RV32D) |
| |
| void Assembler::fcvt_l_d(Register rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1100001, frm, rd, rs1, ToRegister(2)); |
| } |
| |
| void Assembler::fcvt_lu_d(Register rd, FPURegister rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1100001, frm, rd, rs1, ToRegister(3)); |
| } |
| |
| void Assembler::fmv_x_d(Register rd, FPURegister rs1) { |
| GenInstrALUFP_rr(0b1110001, 0b000, rd, rs1, zero_reg); |
| } |
| |
| void Assembler::fcvt_d_l(FPURegister rd, Register rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1101001, frm, rd, rs1, ToRegister(2)); |
| } |
| |
| void Assembler::fcvt_d_lu(FPURegister rd, Register rs1, FPURoundingMode frm) { |
| GenInstrALUFP_rr(0b1101001, frm, rd, rs1, ToRegister(3)); |
| } |
| |
| void Assembler::fmv_d_x(FPURegister rd, Register rs1) { |
| GenInstrALUFP_rr(0b1111001, 0b000, rd, rs1, zero_reg); |
| } |
| |
| // RV64C Standard Extension |
| void Assembler::c_nop() { GenInstrCI(0b000, C1, zero_reg, 0); } |
| |
| void Assembler::c_addi(Register rd, int8_t imm6) { |
| DCHECK(rd != zero_reg && imm6 != 0); |
| GenInstrCI(0b000, C1, rd, imm6); |
| } |
| |
| void Assembler::c_addiw(Register rd, int8_t imm6) { |
| DCHECK(rd != zero_reg); |
| GenInstrCI(0b001, C1, rd, imm6); |
| } |
| |
| void Assembler::c_addi16sp(int16_t imm10) { |
| DCHECK(is_int10(imm10) && (imm10 & 0xf) == 0); |
| uint8_t uimm6 = ((imm10 & 0x200) >> 4) | (imm10 & 0x10) | |
| ((imm10 & 0x40) >> 3) | ((imm10 & 0x180) >> 6) | |
| ((imm10 & 0x20) >> 5); |
| GenInstrCIU(0b011, C1, sp, uimm6); |
| } |
| |
| void Assembler::c_addi4spn(Register rd, int16_t uimm10) { |
| DCHECK(is_uint10(uimm10) && (uimm10 != 0)); |
| uint8_t uimm8 = ((uimm10 & 0x4) >> 1) | ((uimm10 & 0x8) >> 3) | |
| ((uimm10 & 0x30) << 2) | ((uimm10 & 0x3c0) >> 4); |
| GenInstrCIW(0b000, C0, rd, uimm8); |
| } |
| |
| void Assembler::c_li(Register rd, int8_t imm6) { |
| DCHECK(rd != zero_reg); |
| GenInstrCI(0b010, C1, rd, imm6); |
| } |
| |
| void Assembler::c_lui(Register rd, int8_t imm6) { |
| DCHECK(rd != zero_reg && rd != sp && imm6 != 0); |
| GenInstrCI(0b011, C1, rd, imm6); |
| } |
| |
| void Assembler::c_slli(Register rd, uint8_t shamt6) { |
| DCHECK(rd != zero_reg && shamt6 != 0); |
| GenInstrCIU(0b000, C2, rd, shamt6); |
| } |
| |
| void Assembler::c_fldsp(FPURegister rd, uint16_t uimm9) { |
| DCHECK(is_uint9(uimm9) && (uimm9 & 0x7) == 0); |
| uint8_t uimm6 = (uimm9 & 0x38) | ((uimm9 & 0x1c0) >> 6); |
| GenInstrCIU(0b001, C2, rd, uimm6); |
| } |
| |
| void Assembler::c_lwsp(Register rd, uint16_t uimm8) { |
| DCHECK(rd != zero_reg && is_uint8(uimm8) && (uimm8 & 0x3) == 0); |
| uint8_t uimm6 = (uimm8 & 0x3c) | ((uimm8 & 0xc0) >> 6); |
| GenInstrCIU(0b010, C2, rd, uimm6); |
| } |
| |
| void Assembler::c_ldsp(Register rd, uint16_t uimm9) { |
| DCHECK(rd != zero_reg && is_uint9(uimm9) && (uimm9 & 0x7) == 0); |
| uint8_t uimm6 = (uimm9 & 0x38) | ((uimm9 & 0x1c0) >> 6); |
| GenInstrCIU(0b011, C2, rd, uimm6); |
| } |
| |
| void Assembler::c_jr(Register rs1) { |
| DCHECK(rs1 != zero_reg); |
| GenInstrCR(0b1000, C2, rs1, zero_reg); |
| BlockTrampolinePoolFor(1); |
| } |
| |
| void Assembler::c_mv(Register rd, Register rs2) { |
| DCHECK(rd != zero_reg && rs2 != zero_reg); |
| GenInstrCR(0b1000, C2, rd, rs2); |
| } |
| |
| void Assembler::c_ebreak() { GenInstrCR(0b1001, C2, zero_reg, zero_reg); } |
| |
| void Assembler::c_jalr(Register rs1) { |
| DCHECK(rs1 != zero_reg); |
| GenInstrCR(0b1001, C2, rs1, zero_reg); |
| BlockTrampolinePoolFor(1); |
| } |
| |
| void Assembler::c_add(Register rd, Register rs2) { |
| DCHECK(rd != zero_reg && rs2 != zero_reg); |
| GenInstrCR(0b1001, C2, rd, rs2); |
| } |
| |
| // CA Instructions |
| void Assembler::c_sub(Register rd, Register rs2) { |
| DCHECK(((rd.code() & 0b11000) == 0b01000) && |
| ((rs2.code() & 0b11000) == 0b01000)); |
| GenInstrCA(0b100011, C1, rd, 0b00, rs2); |
| } |
| |
| void Assembler::c_xor(Register rd, Register rs2) { |
| DCHECK(((rd.code() & 0b11000) == 0b01000) && |
| ((rs2.code() & 0b11000) == 0b01000)); |
| GenInstrCA(0b100011, C1, rd, 0b01, rs2); |
| } |
| |
| void Assembler::c_or(Register rd, Register rs2) { |
| DCHECK(((rd.code() & 0b11000) == 0b01000) && |
| ((rs2.code() & 0b11000) == 0b01000)); |
| GenInstrCA(0b100011, C1, rd, 0b10, rs2); |
| } |
| |
| void Assembler::c_and(Register rd, Register rs2) { |
| DCHECK(((rd.code() & 0b11000) == 0b01000) && |
| ((rs2.code() & 0b11000) == 0b01000)); |
| GenInstrCA(0b100011, C1, rd, 0b11, rs2); |
| } |
| |
| void Assembler::c_subw(Register rd, Register rs2) { |
| DCHECK(((rd.code() & 0b11000) == 0b01000) && |
| ((rs2.code() & 0b11000) == 0b01000)); |
| GenInstrCA(0b100111, C1, rd, 0b00, rs2); |
| } |
| |
| void Assembler::c_addw(Register rd, Register rs2) { |
| DCHECK(((rd.code() & 0b11000) == 0b01000) && |
| ((rs2.code() & 0b11000) == 0b01000)); |
| GenInstrCA(0b100111, C1, rd, 0b01, rs2); |
| } |
| |
| void Assembler::c_swsp(Register rs2, uint16_t uimm8) { |
| DCHECK(is_uint8(uimm8) && (uimm8 & 0x3) == 0); |
| uint8_t uimm6 = (uimm8 & 0x3c) | ((uimm8 & 0xc0) >> 6); |
| GenInstrCSS(0b110, C2, rs2, uimm6); |
| } |
| |
| void Assembler::c_sdsp(Register rs2, uint16_t uimm9) { |
| DCHECK(is_uint9(uimm9) && (uimm9 & 0x7) == 0); |
| uint8_t uimm6 = (uimm9 & 0x38) | ((uimm9 & 0x1c0) >> 6); |
| GenInstrCSS(0b111, C2, rs2, uimm6); |
| } |
| |
| void Assembler::c_fsdsp(FPURegister rs2, uint16_t uimm9) { |
| DCHECK(is_uint9(uimm9) && (uimm9 & 0x7) == 0); |
| uint8_t uimm6 = (uimm9 & 0x38) | ((uimm9 & 0x1c0) >> 6); |
| GenInstrCSS(0b101, C2, rs2, uimm6); |
| } |
| |
| // CL Instructions |
| |
| void Assembler::c_lw(Register rd, Register rs1, uint16_t uimm7) { |
| DCHECK(((rd.code() & 0b11000) == 0b01000) && |
| ((rs1.code() & 0b11000) == 0b01000) && is_uint7(uimm7) && |
| ((uimm7 & 0x3) == 0)); |
| uint8_t uimm5 = |
| ((uimm7 & 0x4) >> 1) | ((uimm7 & 0x40) >> 6) | ((uimm7 & 0x38) >> 1); |
| GenInstrCL(0b010, C0, rd, rs1, uimm5); |
| } |
| |
| void Assembler::c_ld(Register rd, Register rs1, uint16_t uimm8) { |
| DCHECK(((rd.code() & 0b11000) == 0b01000) && |
| ((rs1.code() & 0b11000) == 0b01000) && is_uint8(uimm8) && |
| ((uimm8 & 0x7) == 0)); |
| uint8_t uimm5 = ((uimm8 & 0x38) >> 1) | ((uimm8 & 0xc0) >> 6); |
| GenInstrCL(0b011, C0, rd, rs1, uimm5); |
| } |
| |
| void Assembler::c_fld(FPURegister rd, Register rs1, uint16_t uimm8) { |
| DCHECK(((rd.code() & 0b11000) == 0b01000) && |
| ((rs1.code() & 0b11000) == 0b01000) && is_uint8(uimm8) && |
| ((uimm8 & 0x7) == 0)); |
| uint8_t uimm5 = ((uimm8 & 0x38) >> 1) | ((uimm8 & 0xc0) >> 6); |
| GenInstrCL(0b001, C0, rd, rs1, uimm5); |
| } |
| |
| // CS Instructions |
| |
| void Assembler::c_sw(Register rs2, Register rs1, uint16_t uimm7) { |
| DCHECK(((rs2.code() & 0b11000) == 0b01000) && |
| ((rs1.code() & 0b11000) == 0b01000) && is_uint7(uimm7) && |
| ((uimm7 & 0x3) == 0)); |
| uint8_t uimm5 = |
| ((uimm7 & 0x4) >> 1) | ((uimm7 & 0x40) >> 6) | ((uimm7 & 0x38) >> 1); |
| GenInstrCS(0b110, C0, rs2, rs1, uimm5); |
| } |
| |
| void Assembler::c_sd(Register rs2, Register rs1, uint16_t uimm8) { |
| DCHECK(((rs2.code() & 0b11000) == 0b01000) && |
| ((rs1.code() & 0b11000) == 0b01000) && is_uint8(uimm8) && |
| ((uimm8 & 0x7) == 0)); |
| uint8_t uimm5 = ((uimm8 & 0x38) >> 1) | ((uimm8 & 0xc0) >> 6); |
| GenInstrCS(0b111, C0, rs2, rs1, uimm5); |
| } |
| |
| void Assembler::c_fsd(FPURegister rs2, Register rs1, uint16_t uimm8) { |
| DCHECK(((rs2.code() & 0b11000) == 0b01000) && |
| ((rs1.code() & 0b11000) == 0b01000) && is_uint8(uimm8) && |
| ((uimm8 & 0x7) == 0)); |
| uint8_t uimm5 = ((uimm8 & 0x38) >> 1) | ((uimm8 & 0xc0) >> 6); |
| GenInstrCS(0b101, C0, rs2, rs1, uimm5); |
| } |
| |
| // CJ Instructions |
| |
| void Assembler::c_j(int16_t imm12) { |
| DCHECK(is_int12(imm12)); |
| int16_t uimm11 = ((imm12 & 0x800) >> 1) | ((imm12 & 0x400) >> 4) | |
| ((imm12 & 0x300) >> 1) | ((imm12 & 0x80) >> 3) | |
| ((imm12 & 0x40) >> 1) | ((imm12 & 0x20) >> 5) | |
| ((imm12 & 0x10) << 5) | (imm12 & 0xe); |
| GenInstrCJ(0b101, C1, uimm11); |
| BlockTrampolinePoolFor(1); |
| } |
| |
| // CB Instructions |
| |
| void Assembler::c_bnez(Register rs1, int16_t imm9) { |
| DCHECK(((rs1.code() & 0b11000) == 0b01000) && is_int9(imm9)); |
| uint8_t uimm8 = ((imm9 & 0x20) >> 5) | ((imm9 & 0x6)) | ((imm9 & 0xc0) >> 3) | |
| ((imm9 & 0x18) << 2) | ((imm9 & 0x100) >> 1); |
| GenInstrCB(0b111, C1, rs1, uimm8); |
| } |
| |
| void Assembler::c_beqz(Register rs1, int16_t imm9) { |
| DCHECK(((rs1.code() & 0b11000) == 0b01000) && is_int9(imm9)); |
| uint8_t uimm8 = ((imm9 & 0x20) >> 5) | ((imm9 & 0x6)) | ((imm9 & 0xc0) >> 3) | |
| ((imm9 & 0x18) << 2) | ((imm9 & 0x100) >> 1); |
| GenInstrCB(0b110, C1, rs1, uimm8); |
| } |
| |
| void Assembler::c_srli(Register rs1, int8_t shamt6) { |
| DCHECK(((rs1.code() & 0b11000) == 0b01000) && is_int6(shamt6)); |
| GenInstrCBA(0b100, 0b00, C1, rs1, shamt6); |
| } |
| |
| void Assembler::c_srai(Register rs1, int8_t shamt6) { |
| DCHECK(((rs1.code() & 0b11000) == 0b01000) && is_int6(shamt6)); |
| GenInstrCBA(0b100, 0b01, C1, rs1, shamt6); |
| } |
| |
| void Assembler::c_andi(Register rs1, int8_t imm6) { |
| DCHECK(((rs1.code() & 0b11000) == 0b01000) && is_int6(imm6)); |
| GenInstrCBA(0b100, 0b10, C1, rs1, imm6); |
| } |
| |
| // Definitions for using compressed vs non compressed |
| |
| void Assembler::NOP() { |
| if (FLAG_riscv_c_extension) |
| c_nop(); |
| else |
| nop(); |
| } |
| |
| void Assembler::EBREAK() { |
| if (FLAG_riscv_c_extension) |
| c_ebreak(); |
| else |
| ebreak(); |
| } |
| |
| // RVV |
| |
| void Assembler::vredmaxu_vs(VRegister vd, VRegister vs2, VRegister vs1, |
| MaskType mask) { |
| GenInstrV(VREDMAXU_FUNCT6, OP_MVV, vd, vs1, vs2, mask); |
| } |
| |
| void Assembler::vredmax_vs(VRegister vd, VRegister vs2, VRegister vs1, |
| MaskType mask) { |
| GenInstrV(VREDMAX_FUNCT6, OP_MVV, vd, vs1, vs2, mask); |
| } |
| |
| void Assembler::vredmin_vs(VRegister vd, VRegister vs2, VRegister vs1, |
| MaskType mask) { |
| GenInstrV(VREDMIN_FUNCT6, OP_MVV, vd, vs1, vs2, mask); |
| } |
| |
| void Assembler::vredminu_vs(VRegister vd, VRegister vs2, VRegister vs1, |
| MaskType mask) { |
| GenInstrV(VREDMINU_FUNCT6, OP_MVV, vd, vs1, vs2, mask); |
| } |
| |
| void Assembler::vmv_vv(VRegister vd, VRegister vs1) { |
| GenInstrV(VMV_FUNCT6, OP_IVV, vd, vs1, v0, NoMask); |
| } |
| |
| void Assembler::vmv_vx(VRegister vd, Register rs1) { |
| GenInstrV(VMV_FUNCT6, OP_IVX, vd, rs1, v0, NoMask); |
| } |
| |
| void Assembler::vmv_vi(VRegister vd, uint8_t simm5) { |
| GenInstrV(VMV_FUNCT6, vd, simm5, v0, NoMask); |
| } |
| |
| void Assembler::vmv_xs(Register rd, VRegister vs2) { |
| GenInstrV(VWXUNARY0_FUNCT6, OP_MVV, rd, 0b00000, vs2, NoMask); |
| } |
| |
| void Assembler::vmv_sx(VRegister vd, Register rs1) { |
| GenInstrV(VRXUNARY0_FUNCT6, OP_MVX, vd, rs1, v0, NoMask); |
| } |
| |
| void Assembler::vmerge_vv(VRegister vd, VRegister vs1, VRegister vs2) { |
| GenInstrV(VMV_FUNCT6, OP_IVV, vd, vs1, vs2, Mask); |
| } |
| |
| void Assembler::vmerge_vx(VRegister vd, Register rs1, VRegister vs2) { |
| GenInstrV(VMV_FUNCT6, OP_IVX, vd, rs1, vs2, Mask); |
| } |
| |
| void Assembler::vmerge_vi(VRegister vd, uint8_t imm5, VRegister vs2) { |
| GenInstrV(VMV_FUNCT6, vd, imm5, vs2, Mask); |
| } |
| |
| void Assembler::vadc_vv(VRegister vd, VRegister vs1, VRegister vs2) { |
| GenInstrV(VADC_FUNCT6, OP_IVV, vd, vs1, vs2, Mask); |
| } |
| |
| void Assembler::vadc_vx(VRegister vd, Register rs1, VRegister vs2) { |
| GenInstrV(VADC_FUNCT6, OP_IVX, vd, rs1, vs2, Mask); |
| } |
| |
| void Assembler::vadc_vi(VRegister vd, uint8_t imm5, VRegister vs2) { |
| GenInstrV(VADC_FUNCT6, vd, imm5, vs2, Mask); |
| } |
| |
| void Assembler::vmadc_vv(VRegister vd, VRegister vs1, VRegister vs2) { |
| GenInstrV(VMADC_FUNCT6, OP_IVV, vd, vs1, vs2, Mask); |
| } |
| |
| void Assembler::vmadc_vx(VRegister vd, Register rs1, VRegister vs2) { |
| GenInstrV(VMADC_FUNCT6, OP_IVX, vd, rs1, vs2, Mask); |
| } |
| |
| void Assembler::vmadc_vi(VRegister vd, uint8_t imm5, VRegister vs2) { |
| GenInstrV(VMADC_FUNCT6, vd, imm5, vs2, Mask); |
| } |
| |
| void Assembler::vrgather_vv(VRegister vd, VRegister vs2, VRegister vs1, |
| MaskType mask) { |
| DCHECK_NE(vd, vs1); |
| DCHECK_NE(vd, vs2); |
| GenInstrV(VRGATHER_FUNCT6, OP_IVV, vd, vs1, vs2, mask); |
| } |
| |
| void Assembler::vrgather_vi(VRegister vd, VRegister vs2, int8_t imm5, |
| MaskType mask) { |
| DCHECK_NE(vd, vs2); |
| GenInstrV(VRGATHER_FUNCT6, vd, imm5, vs2, mask); |
| } |
| |
| void Assembler::vrgather_vx(VRegister vd, VRegister vs2, Register rs1, |
| MaskType mask) { |
| DCHECK_NE(vd, vs2); |
| GenInstrV(VRGATHER_FUNCT6, OP_IVX, vd, rs1, vs2, mask); |
| } |
| |
| void Assembler::vwaddu_wx(VRegister vd, VRegister vs2, Register rs1, |
| MaskType mask) { |
| GenInstrV(VWADDUW_FUNCT6, OP_MVX, vd, rs1, vs2, mask); |
| } |
| |
| void Assembler::vid_v(VRegister vd, MaskType mask) { |
| GenInstrV(VMUNARY0_FUNCT6, OP_MVV, vd, VID_V, v0, mask); |
| } |
| |
| #define DEFINE_OPIVV(name, funct6) \ |
| void Assembler::name##_vv(VRegister vd, VRegister vs2, VRegister vs1, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_IVV, vd, vs1, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPFVV(name, funct6) \ |
| void Assembler::name##_vv(VRegister vd, VRegister vs2, VRegister vs1, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_FVV, vd, vs1, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPFWV(name, funct6) \ |
| void Assembler::name##_wv(VRegister vd, VRegister vs2, VRegister vs1, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_FVV, vd, vs1, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPFRED(name, funct6) \ |
| void Assembler::name##_vs(VRegister vd, VRegister vs2, VRegister vs1, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_FVV, vd, vs1, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPIVX(name, funct6) \ |
| void Assembler::name##_vx(VRegister vd, VRegister vs2, Register rs1, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_IVX, vd, rs1, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPIVI(name, funct6) \ |
| void Assembler::name##_vi(VRegister vd, VRegister vs2, int8_t imm5, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, vd, imm5, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPMVV(name, funct6) \ |
| void Assembler::name##_vv(VRegister vd, VRegister vs2, VRegister vs1, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_MVV, vd, vs1, vs2, mask); \ |
| } |
| |
| // void GenInstrV(uint8_t funct6, Opcode opcode, VRegister vd, Register rs1, |
| // VRegister vs2, MaskType mask = NoMask); |
| #define DEFINE_OPMVX(name, funct6) \ |
| void Assembler::name##_vx(VRegister vd, VRegister vs2, Register rs1, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_MVX, vd, rs1, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPFVF(name, funct6) \ |
| void Assembler::name##_vf(VRegister vd, VRegister vs2, FPURegister fs1, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_FVF, vd, fs1, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPFWF(name, funct6) \ |
| void Assembler::name##_wf(VRegister vd, VRegister vs2, FPURegister fs1, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_FVF, vd, fs1, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPFVV_FMA(name, funct6) \ |
| void Assembler::name##_vv(VRegister vd, VRegister vs1, VRegister vs2, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_FVV, vd, vs1, vs2, mask); \ |
| } |
| |
| #define DEFINE_OPFVF_FMA(name, funct6) \ |
| void Assembler::name##_vf(VRegister vd, FPURegister fs1, VRegister vs2, \ |
| MaskType mask) { \ |
| GenInstrV(funct6, OP_FVF, vd, fs1, vs2, mask); \ |
| } |
| |
| // vector integer extension |
| #define DEFINE_OPMVV_VIE(name, vs1) \ |
| void Assembler::name(VRegister vd, VRegister vs2, MaskType mask) { \ |
| GenInstrV(VXUNARY0_FUNCT6, OP_MVV, vd, vs1, vs2, mask); \ |
| } |
| |
| void Assembler::vfmv_vf(VRegister vd, FPURegister fs1, MaskType mask) { |
| GenInstrV(VMV_FUNCT6, OP_FVF, vd, fs1, v0, mask); |
| } |
| |
| void Assembler::vfmv_fs(FPURegister fd, VRegister vs2) { |
| GenInstrV(VWFUNARY0_FUNCT6, OP_FVV, fd, v0, vs2, NoMask); |
| } |
| |
| void Assembler::vfmv_sf(VRegister vd, FPURegister fs) { |
| GenInstrV(VRFUNARY0_FUNCT6, OP_FVF, vd, fs, v0, NoMask); |
| } |
| |
| DEFINE_OPIVV(vadd, VADD_FUNCT6) |
| DEFINE_OPIVX(vadd, VADD_FUNCT6) |
| DEFINE_OPIVI(vadd, VADD_FUNCT6) |
| DEFINE_OPIVV(vsub, VSUB_FUNCT6) |
| DEFINE_OPIVX(vsub, VSUB_FUNCT6) |
| DEFINE_OPMVX(vdiv, VDIV_FUNCT6) |
| DEFINE_OPMVX(vdivu, VDIVU_FUNCT6) |
| DEFINE_OPMVX(vmul, VMUL_FUNCT6) |
| DEFINE_OPMVX(vmulhu, VMULHU_FUNCT6) |
| DEFINE_OPMVX(vmulhsu, VMULHSU_FUNCT6) |
| DEFINE_OPMVX(vmulh, VMULH_FUNCT6) |
| DEFINE_OPMVV(vdiv, VDIV_FUNCT6) |
| DEFINE_OPMVV(vdivu, VDIVU_FUNCT6) |
| DEFINE_OPMVV(vmul, VMUL_FUNCT6) |
| DEFINE_OPMVV(vmulhu, VMULHU_FUNCT6) |
| DEFINE_OPMVV(vmulhsu, VMULHSU_FUNCT6) |
| DEFINE_OPMVV(vwmul, VWMUL_FUNCT6) |
| DEFINE_OPMVV(vwmulu, VWMULU_FUNCT6) |
| DEFINE_OPMVV(vmulh, VMULH_FUNCT6) |
| DEFINE_OPMVV(vwadd, VWADD_FUNCT6) |
| DEFINE_OPMVV(vwaddu, VWADDU_FUNCT6) |
| DEFINE_OPMVV(vcompress, VCOMPRESS_FUNCT6) |
| DEFINE_OPIVX(vsadd, VSADD_FUNCT6) |
| DEFINE_OPIVV(vsadd, VSADD_FUNCT6) |
| DEFINE_OPIVI(vsadd, VSADD_FUNCT6) |
| DEFINE_OPIVX(vsaddu, VSADDU_FUNCT6) |
| DEFINE_OPIVV(vsaddu, VSADDU_FUNCT6) |
| DEFINE_OPIVI(vsaddu, VSADDU_FUNCT6) |
| DEFINE_OPIVX(vssub, VSSUB_FUNCT6) |
| DEFINE_OPIVV(vssub, VSSUB_FUNCT6) |
| DEFINE_OPIVX(vssubu, VSSUBU_FUNCT6) |
| DEFINE_OPIVV(vssubu, VSSUBU_FUNCT6) |
| DEFINE_OPIVX(vrsub, VRSUB_FUNCT6) |
| DEFINE_OPIVI(vrsub, VRSUB_FUNCT6) |
| DEFINE_OPIVV(vminu, VMINU_FUNCT6) |
| DEFINE_OPIVX(vminu, VMINU_FUNCT6) |
| DEFINE_OPIVV(vmin, VMIN_FUNCT6) |
| DEFINE_OPIVX(vmin, VMIN_FUNCT6) |
| DEFINE_OPIVV(vmaxu, VMAXU_FUNCT6) |
| DEFINE_OPIVX(vmaxu, VMAXU_FUNCT6) |
| DEFINE_OPIVV(vmax, VMAX_FUNCT6) |
| DEFINE_OPIVX(vmax, VMAX_FUNCT6) |
| DEFINE_OPIVV(vand, VAND_FUNCT6) |
| DEFINE_OPIVX(vand, VAND_FUNCT6) |
| DEFINE_OPIVI(vand, VAND_FUNCT6) |
| DEFINE_OPIVV(vor, VOR_FUNCT6) |
| DEFINE_OPIVX(vor, VOR_FUNCT6) |
| DEFINE_OPIVI(vor, VOR_FUNCT6) |
| DEFINE_OPIVV(vxor, VXOR_FUNCT6) |
| DEFINE_OPIVX(vxor, VXOR_FUNCT6) |
| DEFINE_OPIVI(vxor, VXOR_FUNCT6) |
| |
| DEFINE_OPIVX(vslidedown, VSLIDEDOWN_FUNCT6) |
| DEFINE_OPIVI(vslidedown, VSLIDEDOWN_FUNCT6) |
| DEFINE_OPIVX(vslideup, VSLIDEUP_FUNCT6) |
| DEFINE_OPIVI(vslideup, VSLIDEUP_FUNCT6) |
| |
| DEFINE_OPIVV(vmseq, VMSEQ_FUNCT6) |
| DEFINE_OPIVX(vmseq, VMSEQ_FUNCT6) |
| DEFINE_OPIVI(vmseq, VMSEQ_FUNCT6) |
| |
| DEFINE_OPIVV(vmsne, VMSNE_FUNCT6) |
| DEFINE_OPIVX(vmsne, VMSNE_FUNCT6) |
| DEFINE_OPIVI(vmsne, VMSNE_FUNCT6) |
| |
| DEFINE_OPIVV(vmsltu, VMSLTU_FUNCT6) |
| DEFINE_OPIVX(vmsltu, VMSLTU_FUNCT6) |
| |
| DEFINE_OPIVV(vmslt, VMSLT_FUNCT6) |
| DEFINE_OPIVX(vmslt, VMSLT_FUNCT6) |
| |
| DEFINE_OPIVV(vmsle, VMSLE_FUNCT6) |
| DEFINE_OPIVX(vmsle, VMSLE_FUNCT6) |
| DEFINE_OPIVI(vmsle, VMSLE_FUNCT6) |
| |
| DEFINE_OPIVV(vmsleu, VMSLEU_FUNCT6) |
| DEFINE_OPIVX(vmsleu, VMSLEU_FUNCT6) |
| DEFINE_OPIVI(vmsleu, VMSLEU_FUNCT6) |
| |
| DEFINE_OPIVI(vmsgt, VMSGT_FUNCT6) |
| DEFINE_OPIVX(vmsgt, VMSGT_FUNCT6) |
| |
| DEFINE_OPIVI(vmsgtu, VMSGTU_FUNCT6) |
| DEFINE_OPIVX(vmsgtu, VMSGTU_FUNCT6) |
| |
| DEFINE_OPIVV(vsrl, VSRL_FUNCT6) |
| DEFINE_OPIVX(vsrl, VSRL_FUNCT6) |
| DEFINE_OPIVI(vsrl, VSRL_FUNCT6) |
| |
| DEFINE_OPIVV(vsra, VSRA_FUNCT6) |
| DEFINE_OPIVX(vsra, VSRA_FUNCT6) |
| DEFINE_OPIVI(vsra, VSRA_FUNCT6) |
| |
| DEFINE_OPIVV(vsll, VSLL_FUNCT6) |
| DEFINE_OPIVX(vsll, VSLL_FUNCT6) |
| DEFINE_OPIVI(vsll, VSLL_FUNCT6) |
| |
| DEFINE_OPIVV(vsmul, VSMUL_FUNCT6) |
| DEFINE_OPIVX(vsmul, VSMUL_FUNCT6) |
| |
| DEFINE_OPFVV(vfadd, VFADD_FUNCT6) |
| DEFINE_OPFVF(vfadd, VFADD_FUNCT6) |
| DEFINE_OPFVV(vfsub, VFSUB_FUNCT6) |
| DEFINE_OPFVF(vfsub, VFSUB_FUNCT6) |
| DEFINE_OPFVV(vfdiv, VFDIV_FUNCT6) |
| DEFINE_OPFVF(vfdiv, VFDIV_FUNCT6) |
| DEFINE_OPFVV(vfmul, VFMUL_FUNCT6) |
| DEFINE_OPFVF(vfmul, VFMUL_FUNCT6) |
| DEFINE_OPFVV(vmfeq, VMFEQ_FUNCT6) |
| DEFINE_OPFVV(vmfne, VMFNE_FUNCT6) |
| DEFINE_OPFVV(vmflt, VMFLT_FUNCT6) |
| DEFINE_OPFVV(vmfle, VMFLE_FUNCT6) |
| DEFINE_OPFVV(vfmax, VFMAX_FUNCT6) |
| DEFINE_OPFVV(vfmin, VFMIN_FUNCT6) |
| |
| // Vector Widening Floating-Point Add/Subtract Instructions |
| DEFINE_OPFVV(vfwadd, VFWADD_FUNCT6) |
| DEFINE_OPFVF(vfwadd, VFWADD_FUNCT6) |
| DEFINE_OPFVV(vfwsub, VFWSUB_FUNCT6) |
| DEFINE_OPFVF(vfwsub, VFWSUB_FUNCT6) |
| DEFINE_OPFWV(vfwadd, VFWADD_W_FUNCT6) |
| DEFINE_OPFWF(vfwadd, VFWADD_W_FUNCT6) |
| DEFINE_OPFWV(vfwsub, VFWSUB_W_FUNCT6) |
| DEFINE_OPFWF(vfwsub, VFWSUB_W_FUNCT6) |
| |
| // Vector Widening Floating-Point Reduction Instructions |
| DEFINE_OPFVV(vfwredusum, VFWREDUSUM_FUNCT6) |
| DEFINE_OPFVV(vfwredosum, VFWREDOSUM_FUNCT6) |
| |
| // Vector Widening Floating-Point Multiply |
| DEFINE_OPFVV(vfwmul, VFWMUL_FUNCT6) |
| DEFINE_OPFVF(vfwmul, VFWMUL_FUNCT6) |
| |
| DEFINE_OPFRED(vfredmax, VFREDMAX_FUNCT6) |
| |
| DEFINE_OPFVV(vfsngj, VFSGNJ_FUNCT6) |
| DEFINE_OPFVF(vfsngj, VFSGNJ_FUNCT6) |
| DEFINE_OPFVV(vfsngjn, VFSGNJN_FUNCT6) |
| DEFINE_OPFVF(vfsngjn, VFSGNJN_FUNCT6) |
| DEFINE_OPFVV(vfsngjx, VFSGNJX_FUNCT6) |
| DEFINE_OPFVF(vfsngjx, VFSGNJX_FUNCT6) |
| |
| // Vector Single-Width Floating-Point Fused Multiply-Add Instructions |
| DEFINE_OPFVV_FMA(vfmadd, VFMADD_FUNCT6) |
| DEFINE_OPFVF_FMA(vfmadd, VFMADD_FUNCT6) |
| DEFINE_OPFVV_FMA(vfmsub, VFMSUB_FUNCT6) |
| DEFINE_OPFVF_FMA(vfmsub, VFMSUB_FUNCT6) |
| DEFINE_OPFVV_FMA(vfmacc, VFMACC_FUNCT6) |
| DEFINE_OPFVF_FMA(vfmacc, VFMACC_FUNCT6) |
| DEFINE_OPFVV_FMA(vfmsac, VFMSAC_FUNCT6) |
| DEFINE_OPFVF_FMA(vfmsac, VFMSAC_FUNCT6) |
| DEFINE_OPFVV_FMA(vfnmadd, VFNMADD_FUNCT6) |
| DEFINE_OPFVF_FMA(vfnmadd, VFNMADD_FUNCT6) |
| DEFINE_OPFVV_FMA(vfnmsub, VFNMSUB_FUNCT6) |
| DEFINE_OPFVF_FMA(vfnmsub, VFNMSUB_FUNCT6) |
| DEFINE_OPFVV_FMA(vfnmacc, VFNMACC_FUNCT6) |
| DEFINE_OPFVF_FMA(vfnmacc, VFNMACC_FUNCT6) |
| DEFINE_OPFVV_FMA(vfnmsac, VFNMSAC_FUNCT6) |
| DEFINE_OPFVF_FMA(vfnmsac, VFNMSAC_FUNCT6) |
| |
| // Vector Widening Floating-Point Fused Multiply-Add Instructions |
| DEFINE_OPFVV_FMA(vfwmacc, VFWMACC_FUNCT6) |
| DEFINE_OPFVF_FMA(vfwmacc, VFWMACC_FUNCT6) |
| DEFINE_OPFVV_FMA(vfwnmacc, VFWNMACC_FUNCT6) |
| DEFINE_OPFVF_FMA(vfwnmacc, VFWNMACC_FUNCT6) |
| DEFINE_OPFVV_FMA(vfwmsac, VFWMSAC_FUNCT6) |
| DEFINE_OPFVF_FMA(vfwmsac, VFWMSAC_FUNCT6) |
| DEFINE_OPFVV_FMA(vfwnmsac, VFWNMSAC_FUNCT6) |
| DEFINE_OPFVF_FMA(vfwnmsac, VFWNMSAC_FUNCT6) |
| |
| // Vector Narrowing Fixed-Point Clip Instructions |
| DEFINE_OPIVV(vnclip, VNCLIP_FUNCT6) |
| DEFINE_OPIVX(vnclip, VNCLIP_FUNCT6) |
| DEFINE_OPIVI(vnclip, VNCLIP_FUNCT6) |
| DEFINE_OPIVV(vnclipu, VNCLIPU_FUNCT6) |
| DEFINE_OPIVX(vnclipu, VNCLIPU_FUNCT6) |
| DEFINE_OPIVI(vnclipu, VNCLIPU_FUNCT6) |
| |
| // Vector Integer Extension |
| DEFINE_OPMVV_VIE(vzext_vf8, 0b00010) |
| DEFINE_OPMVV_VIE(vsext_vf8, 0b00011) |
| DEFINE_OPMVV_VIE(vzext_vf4, 0b00100) |
| DEFINE_OPMVV_VIE(vsext_vf4, 0b00101) |
| DEFINE_OPMVV_VIE(vzext_vf2, 0b00110) |
| DEFINE_OPMVV_VIE(vsext_vf2, 0b00111) |
| |
| #undef DEFINE_OPIVI |
| #undef DEFINE_OPIVV |
| #undef DEFINE_OPIVX |
| #undef DEFINE_OPFVV |
| #undef DEFINE_OPFWV |
| #undef DEFINE_OPFVF |
| #undef DEFINE_OPFWF |
| #undef DEFINE_OPFVV_FMA |
| #undef DEFINE_OPFVF_FMA |
| #undef DEFINE_OPMVV_VIE |
| |
| void Assembler::vsetvli(Register rd, Register rs1, VSew vsew, Vlmul vlmul, |
| TailAgnosticType tail, MaskAgnosticType mask) { |
| int32_t zimm = GenZimm(vsew, vlmul, tail, mask); |
| Instr instr = OP_V | ((rd.code() & 0x1F) << kRvvRdShift) | (0x7 << 12) | |
| ((rs1.code() & 0x1F) << kRvvRs1Shift) | |
| (((uint32_t)zimm << kRvvZimmShift) & kRvvZimmMask) | 0x0 << 31; |
| emit(instr); |
| } |
| |
| void Assembler::vsetivli(Register rd, uint8_t uimm, VSew vsew, Vlmul vlmul, |
| TailAgnosticType tail, MaskAgnosticType mask) { |
| DCHECK(is_uint5(uimm)); |
| int32_t zimm = GenZimm(vsew, vlmul, tail, mask) & 0x3FF; |
| Instr instr = OP_V | ((rd.code() & 0x1F) << kRvvRdShift) | (0x7 << 12) | |
| ((uimm & 0x1F) << kRvvUimmShift) | |
| (((uint32_t)zimm << kRvvZimmShift) & kRvvZimmMask) | 0x3 << 30; |
| emit(instr); |
| } |
| |
| void Assembler::vsetvl(Register rd, Register rs1, Register rs2) { |
| Instr instr = OP_V | ((rd.code() & 0x1F) << kRvvRdShift) | (0x7 << 12) | |
| ((rs1.code() & 0x1F) << kRvvRs1Shift) | |
| ((rs2.code() & 0x1F) << kRvvRs2Shift) | 0x40 << 25; |
| emit(instr); |
| } |
| |
| uint8_t vsew_switch(VSew vsew) { |
| uint8_t width; |
| switch (vsew) { |
| case E8: |
| width = 0b000; |
| break; |
| case E16: |
| width = 0b101; |
| break; |
| case E32: |
| width = 0b110; |
| break; |
| default: |
| width = 0b111; |
| break; |
| } |
| return width; |
| } |
| |
| void Assembler::vl(VRegister vd, Register rs1, uint8_t lumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, lumop, mask, 0b00, 0, 0b000); |
| } |
| void Assembler::vls(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b000); |
| } |
| void Assembler::vlx(VRegister vd, Register rs1, VRegister vs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, vs2, mask, 0b11, 0, 0); |
| } |
| |
| void Assembler::vs(VRegister vd, Register rs1, uint8_t sumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, sumop, mask, 0b00, 0, 0b000); |
| } |
| void Assembler::vss(VRegister vs3, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vs3, rs1, rs2, mask, 0b10, 0, 0b000); |
| } |
| |
| void Assembler::vsx(VRegister vd, Register rs1, VRegister vs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, vs2, mask, 0b11, 0, 0b000); |
| } |
| void Assembler::vsu(VRegister vd, Register rs1, VRegister vs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, vs2, mask, 0b01, 0, 0b000); |
| } |
| |
| void Assembler::vlseg2(VRegister vd, Register rs1, uint8_t lumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, lumop, mask, 0b00, 0, 0b001); |
| } |
| |
| void Assembler::vlseg3(VRegister vd, Register rs1, uint8_t lumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, lumop, mask, 0b00, 0, 0b010); |
| } |
| |
| void Assembler::vlseg4(VRegister vd, Register rs1, uint8_t lumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, lumop, mask, 0b00, 0, 0b011); |
| } |
| |
| void Assembler::vlseg5(VRegister vd, Register rs1, uint8_t lumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, lumop, mask, 0b00, 0, 0b100); |
| } |
| |
| void Assembler::vlseg6(VRegister vd, Register rs1, uint8_t lumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, lumop, mask, 0b00, 0, 0b101); |
| } |
| |
| void Assembler::vlseg7(VRegister vd, Register rs1, uint8_t lumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, lumop, mask, 0b00, 0, 0b110); |
| } |
| |
| void Assembler::vlseg8(VRegister vd, Register rs1, uint8_t lumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, lumop, mask, 0b00, 0, 0b111); |
| } |
| void Assembler::vsseg2(VRegister vd, Register rs1, uint8_t sumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, sumop, mask, 0b00, 0, 0b001); |
| } |
| void Assembler::vsseg3(VRegister vd, Register rs1, uint8_t sumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, sumop, mask, 0b00, 0, 0b010); |
| } |
| void Assembler::vsseg4(VRegister vd, Register rs1, uint8_t sumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, sumop, mask, 0b00, 0, 0b011); |
| } |
| void Assembler::vsseg5(VRegister vd, Register rs1, uint8_t sumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, sumop, mask, 0b00, 0, 0b100); |
| } |
| void Assembler::vsseg6(VRegister vd, Register rs1, uint8_t sumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, sumop, mask, 0b00, 0, 0b101); |
| } |
| void Assembler::vsseg7(VRegister vd, Register rs1, uint8_t sumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, sumop, mask, 0b00, 0, 0b110); |
| } |
| void Assembler::vsseg8(VRegister vd, Register rs1, uint8_t sumop, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, sumop, mask, 0b00, 0, 0b111); |
| } |
| |
| void Assembler::vlsseg2(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b001); |
| } |
| void Assembler::vlsseg3(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b010); |
| } |
| void Assembler::vlsseg4(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b011); |
| } |
| void Assembler::vlsseg5(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b100); |
| } |
| void Assembler::vlsseg6(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b101); |
| } |
| void Assembler::vlsseg7(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b110); |
| } |
| void Assembler::vlsseg8(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b111); |
| } |
| void Assembler::vssseg2(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b001); |
| } |
| void Assembler::vssseg3(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b010); |
| } |
| void Assembler::vssseg4(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b011); |
| } |
| void Assembler::vssseg5(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b100); |
| } |
| void Assembler::vssseg6(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b101); |
| } |
| void Assembler::vssseg7(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b110); |
| } |
| void Assembler::vssseg8(VRegister vd, Register rs1, Register rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b10, 0, 0b111); |
| } |
| |
| void Assembler::vlxseg2(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b001); |
| } |
| void Assembler::vlxseg3(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b010); |
| } |
| void Assembler::vlxseg4(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b011); |
| } |
| void Assembler::vlxseg5(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b100); |
| } |
| void Assembler::vlxseg6(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b101); |
| } |
| void Assembler::vlxseg7(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b110); |
| } |
| void Assembler::vlxseg8(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(LOAD_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b111); |
| } |
| void Assembler::vsxseg2(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b001); |
| } |
| void Assembler::vsxseg3(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b010); |
| } |
| void Assembler::vsxseg4(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b011); |
| } |
| void Assembler::vsxseg5(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b100); |
| } |
| void Assembler::vsxseg6(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b101); |
| } |
| void Assembler::vsxseg7(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b110); |
| } |
| void Assembler::vsxseg8(VRegister vd, Register rs1, VRegister rs2, VSew vsew, |
| MaskType mask) { |
| uint8_t width = vsew_switch(vsew); |
| GenInstrV(STORE_FP, width, vd, rs1, rs2, mask, 0b11, 0, 0b111); |
| } |
| |
| void Assembler::vfirst_m(Register rd, VRegister vs2, MaskType mask) { |
| GenInstrV(VWXUNARY0_FUNCT6, OP_MVV, rd, 0b10001, vs2, mask); |
| } |
| |
| void Assembler::vcpop_m(Register rd, VRegister vs2, MaskType mask) { |
| GenInstrV(VWXUNARY0_FUNCT6, OP_MVV, rd, 0b10000, vs2, mask); |
| } |
| |
| // Privileged |
| void Assembler::uret() { |
| GenInstrPriv(0b0000000, ToRegister(0), ToRegister(0b00010)); |
| } |
| |
| void Assembler::sret() { |
| GenInstrPriv(0b0001000, ToRegister(0), ToRegister(0b00010)); |
| } |
| |
| void Assembler::mret() { |
| GenInstrPriv(0b0011000, ToRegister(0), ToRegister(0b00010)); |
| } |
| |
| void Assembler::wfi() { |
| GenInstrPriv(0b0001000, ToRegister(0), ToRegister(0b00101)); |
| } |
| |
| void Assembler::sfence_vma(Register rs1, Register rs2) { |
| GenInstrR(0b0001001, 0b000, SYSTEM, ToRegister(0), rs1, rs2); |
| } |
| |
| // Assembler Pseudo Instructions (Tables 25.2 and 25.3, RISC-V Unprivileged ISA) |
| |
| void Assembler::nop() { addi(ToRegister(0), ToRegister(0), 0); } |
| |
| void Assembler::RV_li(Register rd, int64_t imm) { |
| // 64-bit imm is put in the register rd. |
| // In most cases the imm is 32 bit and 2 instructions are generated. If a |
| // temporary register is available, in the worst case, 6 instructions are |
| // generated for a full 64-bit immediate. If temporay register is not |
| // available the maximum will be 8 instructions. If imm is more than 32 bits |
| // and a temp register is available, imm is divided into two 32-bit parts, |
| // low_32 and up_32. Each part is built in a separate register. low_32 is |
| // built before up_32. If low_32 is negative (upper 32 bits are 1), 0xffffffff |
| // is subtracted from up_32 before up_32 is built. This compensates for 32 |
| // bits of 1's in the lower when the two registers are added. If no temp is |
| // available, the upper 32 bit is built in rd, and the lower 32 bits are |
| // devided to 3 parts (11, 11, and 10 bits). The parts are shifted and added |
| // to the upper part built in rd. |
| if (is_int32(imm + 0x800)) { |
| // 32-bit case. Maximum of 2 instructions generated |
| int64_t high_20 = ((imm + 0x800) >> 12); |
| int64_t low_12 = imm << 52 >> 52; |
| if (high_20) { |
| lui(rd, (int32_t)high_20); |
| if (low_12) { |
| addi(rd, rd, low_12); |
| } |
| } else { |
| addi(rd, zero_reg, low_12); |
| } |
| return; |
| } else { |
| // 64-bit case: divide imm into two 32-bit parts, upper and lower |
| int64_t up_32 = imm >> 32; |
| int64_t low_32 = imm & 0xffffffffull; |
| Register temp_reg = rd; |
| // Check if a temporary register is available |
| if (up_32 == 0 || low_32 == 0) { |
| // No temp register is needed |
| } else { |
| UseScratchRegisterScope temps(this); |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| temp_reg = temps.hasAvailable() ? temps.Acquire() : no_reg; |
| } |
| if (temp_reg != no_reg) { |
| // keep track of hardware behavior for lower part in sim_low |
| int64_t sim_low = 0; |
| // Build lower part |
| if (low_32 != 0) { |
| int64_t high_20 = ((low_32 + 0x800) >> 12); |
| int64_t low_12 = low_32 & 0xfff; |
| if (high_20) { |
| // Adjust to 20 bits for the case of overflow |
| high_20 &= 0xfffff; |
| sim_low = ((high_20 << 12) << 32) >> 32; |
| lui(rd, (int32_t)high_20); |
| if (low_12) { |
| sim_low += (low_12 << 52 >> 52) | low_12; |
| addi(rd, rd, low_12); |
| } |
| } else { |
| sim_low = low_12; |
| ori(rd, zero_reg, low_12); |
| } |
| } |
| if (sim_low & 0x100000000) { |
| // Bit 31 is 1. Either an overflow or a negative 64 bit |
| if (up_32 == 0) { |
| // Positive number, but overflow because of the add 0x800 |
| slli(rd, rd, 32); |
| srli(rd, rd, 32); |
| return; |
| } |
| // low_32 is a negative 64 bit after the build |
| up_32 = (up_32 - 0xffffffff) & 0xffffffff; |
| } |
| if (up_32 == 0) { |
| return; |
| } |
| // Build upper part in a temporary register |
| if (low_32 == 0) { |
| // Build upper part in rd |
| temp_reg = rd; |
| } |
| int64_t high_20 = (up_32 + 0x800) >> 12; |
| int64_t low_12 = up_32 & 0xfff; |
| if (high_20) { |
| // Adjust to 20 bits for the case of overflow |
| high_20 &= 0xfffff; |
| lui(temp_reg, (int32_t)high_20); |
| if (low_12) { |
| addi(temp_reg, temp_reg, low_12); |
| } |
| } else { |
| ori(temp_reg, zero_reg, low_12); |
| } |
| // Put it at the bgining of register |
| slli(temp_reg, temp_reg, 32); |
| if (low_32 != 0) { |
| add(rd, rd, temp_reg); |
| } |
| return; |
| } |
| // No temp register. Build imm in rd. |
| // Build upper 32 bits first in rd. Divide lower 32 bits parts and add |
| // parts to the upper part by doing shift and add. |
| // First build upper part in rd. |
| int64_t high_20 = (up_32 + 0x800) >> 12; |
| int64_t low_12 = up_32 & 0xfff; |
| if (high_20) { |
| // Adjust to 20 bits for the case of overflow |
| high_20 &= 0xfffff; |
| lui(rd, (int32_t)high_20); |
| if (low_12) { |
| addi(rd, rd, low_12); |
| } |
| } else { |
| ori(rd, zero_reg, low_12); |
| } |
| // upper part already in rd. Each part to be added to rd, has maximum of 11 |
| // bits, and always starts with a 1. rd is shifted by the size of the part |
| // plus the number of zeros between the parts. Each part is added after the |
| // left shift. |
| uint32_t mask = 0x80000000; |
| int32_t shift_val = 0; |
| int32_t i; |
| for (i = 0; i < 32; i++) { |
| if ((low_32 & mask) == 0) { |
| mask >>= 1; |
| shift_val++; |
| if (i == 31) { |
| // rest is zero |
| slli(rd, rd, shift_val); |
| } |
| continue; |
| } |
| // The first 1 seen |
| int32_t part; |
| if ((i + 11) < 32) { |
| // Pick 11 bits |
| part = ((uint32_t)(low_32 << i) >> i) >> (32 - (i + 11)); |
| slli(rd, rd, shift_val + 11); |
| ori(rd, rd, part); |
| i += 10; |
| mask >>= 11; |
| } else { |
| part = (uint32_t)(low_32 << i) >> i; |
| slli(rd, rd, shift_val + (32 - i)); |
| ori(rd, rd, part); |
| break; |
| } |
| shift_val = 0; |
| } |
| } |
| } |
| |
| int Assembler::li_estimate(int64_t imm, bool is_get_temp_reg) { |
| int count = 0; |
| // imitate Assembler::RV_li |
| if (is_int32(imm + 0x800)) { |
| // 32-bit case. Maximum of 2 instructions generated |
| int64_t high_20 = ((imm + 0x800) >> 12); |
| int64_t low_12 = imm << 52 >> 52; |
| if (high_20) { |
| count++; |
| if (low_12) { |
| count++; |
| } |
| } else { |
| count++; |
| } |
| return count; |
| } else { |
| // 64-bit case: divide imm into two 32-bit parts, upper and lower |
| int64_t up_32 = imm >> 32; |
| int64_t low_32 = imm & 0xffffffffull; |
| // Check if a temporary register is available |
| if (is_get_temp_reg) { |
| // keep track of hardware behavior for lower part in sim_low |
| int64_t sim_low = 0; |
| // Build lower part |
| if (low_32 != 0) { |
| int64_t high_20 = ((low_32 + 0x800) >> 12); |
| int64_t low_12 = low_32 & 0xfff; |
| if (high_20) { |
| // Adjust to 20 bits for the case of overflow |
| high_20 &= 0xfffff; |
| sim_low = ((high_20 << 12) << 32) >> 32; |
| count++; |
| if (low_12) { |
| sim_low += (low_12 << 52 >> 52) | low_12; |
| count++; |
| } |
| } else { |
| sim_low = low_12; |
| count++; |
| } |
| } |
| if (sim_low & 0x100000000) { |
| // Bit 31 is 1. Either an overflow or a negative 64 bit |
| if (up_32 == 0) { |
| // Positive number, but overflow because of the add 0x800 |
| count++; |
| count++; |
| return count; |
| } |
| // low_32 is a negative 64 bit after the build |
| up_32 = (up_32 - 0xffffffff) & 0xffffffff; |
| } |
| if (up_32 == 0) { |
| return count; |
| } |
| int64_t high_20 = (up_32 + 0x800) >> 12; |
| int64_t low_12 = up_32 & 0xfff; |
| if (high_20) { |
| // Adjust to 20 bits for the case of overflow |
| high_20 &= 0xfffff; |
| count++; |
| if (low_12) { |
| count++; |
| } |
| } else { |
| count++; |
| } |
| // Put it at the bgining of register |
| count++; |
| if (low_32 != 0) { |
| count++; |
| } |
| return count; |
| } |
| // No temp register. Build imm in rd. |
| // Build upper 32 bits first in rd. Divide lower 32 bits parts and add |
| // parts to the upper part by doing shift and add. |
| // First build upper part in rd. |
| int64_t high_20 = (up_32 + 0x800) >> 12; |
| int64_t low_12 = up_32 & 0xfff; |
| if (high_20) { |
| // Adjust to 20 bits for the case of overflow |
| high_20 &= 0xfffff; |
| count++; |
| if (low_12) { |
| count++; |
| } |
| } else { |
| count++; |
| } |
| // upper part already in rd. Each part to be added to rd, has maximum of 11 |
| // bits, and always starts with a 1. rd is shifted by the size of the part |
| // plus the number of zeros between the parts. Each part is added after the |
| // left shift. |
| uint32_t mask = 0x80000000; |
| int32_t i; |
| for (i = 0; i < 32; i++) { |
| if ((low_32 & mask) == 0) { |
| mask >>= 1; |
| if (i == 31) { |
| // rest is zero |
| count++; |
| } |
| continue; |
| } |
| // The first 1 seen |
| if ((i + 11) < 32) { |
| // Pick 11 bits |
| count++; |
| count++; |
| i += 10; |
| mask >>= 11; |
| } else { |
| count++; |
| count++; |
| break; |
| } |
| } |
| } |
| return count; |
| } |
| |
| void Assembler::li_ptr(Register rd, int64_t imm) { |
| // Initialize rd with an address |
| // Pointers are 48 bits |
| // 6 fixed instructions are generated |
| DCHECK_EQ((imm & 0xfff0000000000000ll), 0); |
| int64_t a6 = imm & 0x3f; // bits 0:5. 6 bits |
| int64_t b11 = (imm >> 6) & 0x7ff; // bits 6:11. 11 bits |
| int64_t high_31 = (imm >> 17) & 0x7fffffff; // 31 bits |
| int64_t high_20 = ((high_31 + 0x800) >> 12); // 19 bits |
| int64_t low_12 = high_31 & 0xfff; // 12 bits |
| lui(rd, (int32_t)high_20); |
| addi(rd, rd, low_12); // 31 bits in rd. |
| slli(rd, rd, 11); // Space for next 11 bis |
| ori(rd, rd, b11); // 11 bits are put in. 42 bit in rd |
| slli(rd, rd, 6); // Space for next 6 bits |
| ori(rd, rd, a6); // 6 bits are put in. 48 bis in rd |
| } |
| |
| void Assembler::li_constant(Register rd, int64_t imm) { |
| DEBUG_PRINTF("li_constant(%d, %lx <%ld>)\n", ToNumber(rd), imm, imm); |
| lui(rd, (imm + (1LL << 47) + (1LL << 35) + (1LL << 23) + (1LL << 11)) >> |
| 48); // Bits 63:48 |
| addiw(rd, rd, |
| (imm + (1LL << 35) + (1LL << 23) + (1LL << 11)) << 16 >> |
| 52); // Bits 47:36 |
| slli(rd, rd, 12); |
| addi(rd, rd, (imm + (1LL << 23) + (1LL << 11)) << 28 >> 52); // Bits 35:24 |
| slli(rd, rd, 12); |
| addi(rd, rd, (imm + (1LL << 11)) << 40 >> 52); // Bits 23:12 |
| slli(rd, rd, 12); |
| addi(rd, rd, imm << 52 >> 52); // Bits 11:0 |
| } |
| |
| // Break / Trap instructions. |
| void Assembler::break_(uint32_t code, bool break_as_stop) { |
| // We need to invalidate breaks that could be stops as well because the |
| // simulator expects a char pointer after the stop instruction. |
| // See constants-mips.h for explanation. |
| DCHECK( |
| (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) || |
| (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode))); |
| |
| // since ebreak does not allow additional immediate field, we use the |
| // immediate field of lui instruction immediately following the ebreak to |
| // encode the "code" info |
| ebreak(); |
| DCHECK(is_uint20(code)); |
| lui(zero_reg, code); |
| } |
| |
| void Assembler::stop(uint32_t code) { |
| DCHECK_GT(code, kMaxWatchpointCode); |
| DCHECK_LE(code, kMaxStopCode); |
| #if defined(V8_HOST_ARCH_RISCV64) |
| break_(0x54321); |
| #else // V8_HOST_ARCH_RISCV64 |
| break_(code, true); |
| #endif |
| } |
| |
| // Original MIPS Instructions |
| |
| // ------------Memory-instructions------------- |
| |
| bool Assembler::NeedAdjustBaseAndOffset(const MemOperand& src, |
| OffsetAccessType access_type, |
| int second_access_add_to_offset) { |
| bool two_accesses = static_cast<bool>(access_type); |
| DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7. |
| |
| // is_int12 must be passed a signed value, hence the static cast below. |
| if (is_int12(src.offset()) && |
| (!two_accesses || is_int12(static_cast<int32_t>( |
| src.offset() + second_access_add_to_offset)))) { |
| // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified |
| // value) fits into int12. |
| return false; |
| } |
| return true; |
| } |
| |
| void Assembler::AdjustBaseAndOffset(MemOperand* src, Register scratch, |
| OffsetAccessType access_type, |
| int second_Access_add_to_offset) { |
| // This method is used to adjust the base register and offset pair |
| // for a load/store when the offset doesn't fit into int12. |
| |
| // Must not overwrite the register 'base' while loading 'offset'. |
| constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7F8; |
| constexpr int32_t kMaxOffsetForSimpleAdjustment = |
| 2 * kMinOffsetForSimpleAdjustment; |
| if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) { |
| addi(scratch, src->rm(), kMinOffsetForSimpleAdjustment); |
| src->offset_ -= kMinOffsetForSimpleAdjustment; |
| } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() && |
| src->offset() < 0) { |
| addi(scratch, src->rm(), -kMinOffsetForSimpleAdjustment); |
| src->offset_ += kMinOffsetForSimpleAdjustment; |
| } else if (access_type == OffsetAccessType::SINGLE_ACCESS) { |
| RV_li(scratch, (static_cast<int64_t>(src->offset()) + 0x800) >> 12 << 12); |
| add(scratch, scratch, src->rm()); |
| src->offset_ = src->offset() << 20 >> 20; |
| } else { |
| RV_li(scratch, src->offset()); |
| add(scratch, scratch, src->rm()); |
| src->offset_ = 0; |
| } |
| src->rm_ = scratch; |
| } |
| |
| int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc, |
| intptr_t pc_delta) { |
| if (RelocInfo::IsInternalReference(rmode)) { |
| int64_t* p = reinterpret_cast<int64_t*>(pc); |
| if (*p == kEndOfJumpChain) { |
| return 0; // Number of instructions patched. |
| } |
| *p += pc_delta; |
| return 2; // Number of instructions patched. |
| } |
| Instr instr = instr_at(pc); |
| DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode)); |
| if (IsLui(instr)) { |
| uint64_t target_address = target_address_at(pc) + pc_delta; |
| DEBUG_PRINTF("target_address 0x%lx\n", target_address); |
| set_target_value_at(pc, target_address); |
| return 8; // Number of instructions patched. |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void Assembler::RelocateRelativeReference(RelocInfo::Mode rmode, Address pc, |
| intptr_t pc_delta) { |
| Instr instr = instr_at(pc); |
| Instr instr1 = instr_at(pc + 1 * kInstrSize); |
| DCHECK(RelocInfo::IsRelativeCodeTarget(rmode)); |
| if (IsAuipc(instr) && IsJalr(instr1)) { |
| int32_t imm; |
| imm = BrachlongOffset(instr, instr1); |
| imm -= pc_delta; |
| PatchBranchlongOffset(pc, instr, instr1, imm); |
| return; |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| void Assembler::GrowBuffer() { |
| DEBUG_PRINTF("GrowBuffer: %p -> ", buffer_start_); |
| // Compute new buffer size. |
| int old_size = buffer_->size(); |
| int new_size = std::min(2 * old_size, old_size + 1 * MB); |
| |
| // Some internal data structures overflow for very large buffers, |
| // they must ensure that kMaximalBufferSize is not too large. |
| if (new_size > kMaximalBufferSize) { |
| V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer"); |
| } |
| |
| // Set up new buffer. |
| std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size); |
| DCHECK_EQ(new_size, new_buffer->size()); |
| byte* new_start = new_buffer->start(); |
| |
| // Copy the data. |
| intptr_t pc_delta = new_start - buffer_start_; |
| intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size); |
| size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos(); |
| MemMove(new_start, buffer_start_, pc_offset()); |
| MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), |
| reloc_size); |
| |
| // Switch buffers. |
| buffer_ = std::move(new_buffer); |
| buffer_start_ = new_start; |
| DEBUG_PRINTF("%p\n", buffer_start_); |
| pc_ += pc_delta; |
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.last_pc() + pc_delta); |
| |
| // Relocate runtime entries. |
| base::Vector<byte> instructions{buffer_start_, |
| static_cast<size_t>(pc_offset())}; |
| base::Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size}; |
| for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) { |
| RelocInfo::Mode rmode = it.rinfo()->rmode(); |
| if (rmode == RelocInfo::INTERNAL_REFERENCE) { |
| RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta); |
| } |
| } |
| |
| DCHECK(!overflow()); |
| } |
| |
| void Assembler::db(uint8_t data) { |
| if (!is_buffer_growth_blocked()) CheckBuffer(); |
| DEBUG_PRINTF("%p: constant 0x%x\n", pc_, data); |
| EmitHelper(data); |
| } |
| |
| void Assembler::dd(uint32_t data, RelocInfo::Mode rmode) { |
| if (!RelocInfo::IsNoInfo(rmode)) { |
| DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) || |
| RelocInfo::IsLiteralConstant(rmode)); |
| RecordRelocInfo(rmode); |
| } |
| if (!is_buffer_growth_blocked()) CheckBuffer(); |
| DEBUG_PRINTF("%p: constant 0x%x\n", pc_, data); |
| EmitHelper(data); |
| } |
| |
| void Assembler::dq(uint64_t data, RelocInfo::Mode rmode) { |
| if (!RelocInfo::IsNoInfo(rmode)) { |
| DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) || |
| RelocInfo::IsLiteralConstant(rmode)); |
| RecordRelocInfo(rmode); |
| } |
| if (!is_buffer_growth_blocked()) CheckBuffer(); |
| DEBUG_PRINTF("%p: constant 0x%lx\n", pc_, data); |
| EmitHelper(data); |
| } |
| |
| void Assembler::dd(Label* label) { |
| uint64_t data; |
| if (!is_buffer_growth_blocked()) CheckBuffer(); |
| if (label->is_bound()) { |
| data = reinterpret_cast<uint64_t>(buffer_start_ + label->pos()); |
| } else { |
| data = jump_address(label); |
| internal_reference_positions_.insert(label->pos()); |
| } |
| RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); |
| EmitHelper(data); |
| } |
| |
| void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| if (!ShouldRecordRelocInfo(rmode)) return; |
| // We do not try to reuse pool constants. |
| RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code()); |
| DCHECK_GE(buffer_space(), kMaxRelocSize); // Too late to grow buffer here. |
| reloc_info_writer.Write(&rinfo); |
| } |
| |
| void Assembler::BlockTrampolinePoolFor(int instructions) { |
| DEBUG_PRINTF("\tBlockTrampolinePoolFor %d", instructions); |
| CheckTrampolinePoolQuick(instructions); |
| DEBUG_PRINTF("\tpc_offset %d,BlockTrampolinePoolBefore %d\n", pc_offset(), |
| pc_offset() + instructions * kInstrSize); |
| BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); |
| } |
| |
| void Assembler::CheckTrampolinePool() { |
| // Some small sequences of instructions must not be broken up by the |
| // insertion of a trampoline pool; such sequences are protected by setting |
| // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, |
| // which are both checked here. Also, recursive calls to CheckTrampolinePool |
| // are blocked by trampoline_pool_blocked_nesting_. |
| DEBUG_PRINTF("\tpc_offset %d no_trampoline_pool_before:%d\n", pc_offset(), |
| no_trampoline_pool_before_); |
| DEBUG_PRINTF("\ttrampoline_pool_blocked_nesting:%d\n", |
| trampoline_pool_blocked_nesting_); |
| if ((trampoline_pool_blocked_nesting_ > 0) || |
| (pc_offset() < no_trampoline_pool_before_)) { |
| // Emission is currently blocked; make sure we try again as soon as |
| // possible. |
| if (trampoline_pool_blocked_nesting_ > 0) { |
| next_buffer_check_ = pc_offset() + kInstrSize; |
| } else { |
| next_buffer_check_ = no_trampoline_pool_before_; |
| } |
| return; |
| } |
| |
| DCHECK(!trampoline_emitted_); |
| DCHECK_GE(unbound_labels_count_, 0); |
| if (unbound_labels_count_ > 0) { |
| // First we emit jump, then we emit trampoline pool. |
| { |
| DEBUG_PRINTF("inserting trampoline pool at %p (%d)\n", |
| reinterpret_cast<Instr*>(buffer_start_ + pc_offset()), |
| pc_offset()); |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| Label after_pool; |
| j(&after_pool); |
| |
| int pool_start = pc_offset(); |
| for (int i = 0; i < unbound_labels_count_; i++) { |
| int64_t imm64; |
| imm64 = branch_long_offset(&after_pool); |
| CHECK(is_int32(imm64 + 0x800)); |
| int32_t Hi20 = (((int32_t)imm64 + 0x800) >> 12); |
| int32_t Lo12 = (int32_t)imm64 << 20 >> 20; |
| auipc(t6, Hi20); // Read PC + Hi20 into t6 |
| jr(t6, Lo12); // jump PC + Hi20 + Lo12 |
| } |
| // If unbound_labels_count_ is big enough, label after_pool will |
| // need a trampoline too, so we must create the trampoline before |
| // the bind operation to make sure function 'bind' can get this |
| // information. |
| trampoline_ = Trampoline(pool_start, unbound_labels_count_); |
| bind(&after_pool); |
| |
| trampoline_emitted_ = true; |
| // As we are only going to emit trampoline once, we need to prevent any |
| // further emission. |
| next_buffer_check_ = kMaxInt; |
| } |
| } else { |
| // Number of branches to unbound label at this point is zero, so we can |
| // move next buffer check to maximum. |
| next_buffer_check_ = |
| pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16; |
| } |
| return; |
| } |
| |
| void Assembler::set_target_address_at(Address pc, Address constant_pool, |
| Address target, |
| ICacheFlushMode icache_flush_mode) { |
| Instr* instr = reinterpret_cast<Instr*>(pc); |
| if (IsAuipc(*instr)) { |
| if (IsLd(*reinterpret_cast<Instr*>(pc + 4))) { |
| int32_t Hi20 = AuipcOffset(*instr); |
| int32_t Lo12 = LdOffset(*reinterpret_cast<Instr*>(pc + 4)); |
| Memory<Address>(pc + Hi20 + Lo12) = target; |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc + Hi20 + Lo12, 2 * kInstrSize); |
| } |
| } else { |
| DCHECK(IsJalr(*reinterpret_cast<Instr*>(pc + 4))); |
| int64_t imm = (int64_t)target - (int64_t)pc; |
| Instr instr = instr_at(pc); |
| Instr instr1 = instr_at(pc + 1 * kInstrSize); |
| DCHECK(is_int32(imm + 0x800)); |
| int num = PatchBranchlongOffset(pc, instr, instr1, (int32_t)imm); |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc, num * kInstrSize); |
| } |
| } |
| } else { |
| set_target_address_at(pc, target, icache_flush_mode); |
| } |
| } |
| |
| Address Assembler::target_address_at(Address pc, Address constant_pool) { |
| Instr* instr = reinterpret_cast<Instr*>(pc); |
| if (IsAuipc(*instr)) { |
| if (IsLd(*reinterpret_cast<Instr*>(pc + 4))) { |
| int32_t Hi20 = AuipcOffset(*instr); |
| int32_t Lo12 = LdOffset(*reinterpret_cast<Instr*>(pc + 4)); |
| return Memory<Address>(pc + Hi20 + Lo12); |
| } else { |
| DCHECK(IsJalr(*reinterpret_cast<Instr*>(pc + 4))); |
| int32_t Hi20 = AuipcOffset(*instr); |
| int32_t Lo12 = JalrOffset(*reinterpret_cast<Instr*>(pc + 4)); |
| return pc + Hi20 + Lo12; |
| } |
| |
| } else { |
| return target_address_at(pc); |
| } |
| } |
| Address Assembler::target_address_at(Address pc) { |
| DEBUG_PRINTF("target_address_at: pc: %lx\t", pc); |
| Instruction* instr0 = Instruction::At((unsigned char*)pc); |
| Instruction* instr1 = Instruction::At((unsigned char*)(pc + 1 * kInstrSize)); |
| Instruction* instr2 = Instruction::At((unsigned char*)(pc + 2 * kInstrSize)); |
| Instruction* instr3 = Instruction::At((unsigned char*)(pc + 3 * kInstrSize)); |
| Instruction* instr4 = Instruction::At((unsigned char*)(pc + 4 * kInstrSize)); |
| Instruction* instr5 = Instruction::At((unsigned char*)(pc + 5 * kInstrSize)); |
| |
| // Interpret instructions for address generated by li: See listing in |
| // Assembler::set_target_address_at() just below. |
| if (IsLui(*reinterpret_cast<Instr*>(instr0)) && |
| IsAddi(*reinterpret_cast<Instr*>(instr1)) && |
| IsSlli(*reinterpret_cast<Instr*>(instr2)) && |
| IsOri(*reinterpret_cast<Instr*>(instr3)) && |
| IsSlli(*reinterpret_cast<Instr*>(instr4)) && |
| IsOri(*reinterpret_cast<Instr*>(instr5))) { |
| // Assemble the 64 bit value. |
| int64_t addr = (int64_t)(instr0->Imm20UValue() << kImm20Shift) + |
| (int64_t)instr1->Imm12Value(); |
| addr <<= 11; |
| addr |= (int64_t)instr3->Imm12Value(); |
| addr <<= 6; |
| addr |= (int64_t)instr5->Imm12Value(); |
| |
| DEBUG_PRINTF("addr: %lx\n", addr); |
| return static_cast<Address>(addr); |
| } |
| // We should never get here, force a bad address if we do. |
| UNREACHABLE(); |
| } |
| // On RISC-V, a 48-bit target address is stored in an 6-instruction sequence: |
| // lui(reg, (int32_t)high_20); // 19 high bits |
| // addi(reg, reg, low_12); // 12 following bits. total is 31 high bits in reg. |
| // slli(reg, reg, 11); // Space for next 11 bits |
| // ori(reg, reg, b11); // 11 bits are put in. 42 bit in reg |
| // slli(reg, reg, 6); // Space for next 6 bits |
| // ori(reg, reg, a6); // 6 bits are put in. all 48 bis in reg |
| // |
| // Patching the address must replace all instructions, and flush the i-cache. |
| // Note that this assumes the use of SV48, the 48-bit virtual memory system. |
| void Assembler::set_target_value_at(Address pc, uint64_t target, |
| ICacheFlushMode icache_flush_mode) { |
| DEBUG_PRINTF("set_target_value_at: pc: %lx\ttarget: %lx\n", pc, target); |
| uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| DCHECK_EQ((target & 0xffff000000000000ll), 0); |
| #ifdef DEBUG |
| // Check we have the result from a li macro-instruction. |
| Instruction* instr0 = Instruction::At((unsigned char*)pc); |
| Instruction* instr1 = Instruction::At((unsigned char*)(pc + 1 * kInstrSize)); |
| Instruction* instr3 = Instruction::At((unsigned char*)(pc + 3 * kInstrSize)); |
| Instruction* instr5 = Instruction::At((unsigned char*)(pc + 5 * kInstrSize)); |
| DCHECK(IsLui(*reinterpret_cast<Instr*>(instr0)) && |
| IsAddi(*reinterpret_cast<Instr*>(instr1)) && |
| IsOri(*reinterpret_cast<Instr*>(instr3)) && |
| IsOri(*reinterpret_cast<Instr*>(instr5))); |
| #endif |
| int64_t a6 = target & 0x3f; // bits 0:6. 6 bits |
| int64_t b11 = (target >> 6) & 0x7ff; // bits 6:11. 11 bits |
| int64_t high_31 = (target >> 17) & 0x7fffffff; // 31 bits |
| int64_t high_20 = ((high_31 + 0x800) >> 12); // 19 bits |
| int64_t low_12 = high_31 & 0xfff; // 12 bits |
| *p = *p & 0xfff; |
| *p = *p | ((int32_t)high_20 << 12); |
| *(p + 1) = *(p + 1) & 0xfffff; |
| *(p + 1) = *(p + 1) | ((int32_t)low_12 << 20); |
| *(p + 2) = *(p + 2) & 0xfffff; |
| *(p + 2) = *(p + 2) | (11 << 20); |
| *(p + 3) = *(p + 3) & 0xfffff; |
| *(p + 3) = *(p + 3) | ((int32_t)b11 << 20); |
| *(p + 4) = *(p + 4) & 0xfffff; |
| *(p + 4) = *(p + 4) | (6 << 20); |
| *(p + 5) = *(p + 5) & 0xfffff; |
| *(p + 5) = *(p + 5) | ((int32_t)a6 << 20); |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc, 8 * kInstrSize); |
| } |
| DCHECK_EQ(target_address_at(pc), target); |
| } |
| UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler) |
| : available_(assembler->GetScratchRegisterList()), |
| old_available_(*available_) {} |
| |
| UseScratchRegisterScope::~UseScratchRegisterScope() { |
| *available_ = old_available_; |
| } |
| |
| Register UseScratchRegisterScope::Acquire() { |
| DCHECK_NOT_NULL(available_); |
| DCHECK(!available_->is_empty()); |
| int index = |
| static_cast<int>(base::bits::CountTrailingZeros32(available_->bits())); |
| *available_ &= RegList::FromBits(~(1U << index)); |
| |
| return Register::from_code(index); |
| } |
| |
| bool UseScratchRegisterScope::hasAvailable() const { |
| return !available_->is_empty(); |
| } |
| |
| bool Assembler::IsConstantPoolAt(Instruction* instr) { |
| // The constant pool marker is made of two instructions. These instructions |
| // will never be emitted by the JIT, so checking for the first one is enough: |
| // 0: ld x0, x0, #offset |
| Instr instr_value = *reinterpret_cast<Instr*>(instr); |
| bool result = IsLd(instr_value) && (instr->Rs1Value() == kRegCode_zero_reg) && |
| (instr->RdValue() == kRegCode_zero_reg); |
| #ifdef DEBUG |
| // It is still worth asserting the marker is complete. |
| // 1: j 0x0 |
| Instruction* instr_following = instr + kInstrSize; |
| DCHECK(!result || (IsJal(*reinterpret_cast<Instr*>(instr_following)) && |
| instr_following->Imm20JValue() == 0 && |
| instr_following->RdValue() == kRegCode_zero_reg)); |
| #endif |
| return result; |
| } |
| |
| int Assembler::ConstantPoolSizeAt(Instruction* instr) { |
| if (IsConstantPoolAt(instr)) { |
| return instr->Imm12Value(); |
| } else { |
| return -1; |
| } |
| } |
| |
| void Assembler::RecordConstPool(int size) { |
| // We only need this for debugger support, to correctly compute offsets in the |
| // code. |
| Assembler::BlockPoolsScope block_pools(this); |
| RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size)); |
| } |
| |
| void Assembler::EmitPoolGuard() { |
| // We must generate only one instruction as this is used in scopes that |
| // control the size of the code generated. |
| j(0); |
| } |
| |
| // Constant Pool |
| |
| void ConstantPool::EmitPrologue(Alignment require_alignment) { |
| // Recorded constant pool size is expressed in number of 32-bits words, |
| // and includes prologue and alignment, but not the jump around the pool |
| // and the size of the marker itself. |
| const int marker_size = 1; |
| int word_count = |
| ComputeSize(Jump::kOmitted, require_alignment) / kInt32Size - marker_size; |
| assm_->ld(zero_reg, zero_reg, word_count); |
| assm_->EmitPoolGuard(); |
| } |
| |
| int ConstantPool::PrologueSize(Jump require_jump) const { |
| // Prologue is: |
| // j over ;; if require_jump |
| // ld x0, x0, #pool_size |
| // j 0x0 |
| int prologue_size = require_jump == Jump::kRequired ? kInstrSize : 0; |
| prologue_size += 2 * kInstrSize; |
| return prologue_size; |
| } |
| |
| void ConstantPool::SetLoadOffsetToConstPoolEntry(int load_offset, |
| Instruction* entry_offset, |
| const ConstantPoolKey& key) { |
| Instr instr_auipc = assm_->instr_at(load_offset); |
| Instr instr_ld = assm_->instr_at(load_offset + 4); |
| // Instruction to patch must be 'ld rd, offset(rd)' with 'offset == 0'. |
| DCHECK(assm_->IsAuipc(instr_auipc)); |
| DCHECK(assm_->IsLd(instr_ld)); |
| DCHECK_EQ(assm_->LdOffset(instr_ld), 0); |
| DCHECK_EQ(assm_->AuipcOffset(instr_auipc), 0); |
| int32_t distance = static_cast<int32_t>( |
| reinterpret_cast<Address>(entry_offset) - |
| reinterpret_cast<Address>(assm_->toAddress(load_offset))); |
| CHECK(is_int32(distance + 0x800)); |
| int32_t Hi20 = (((int32_t)distance + 0x800) >> 12); |
| int32_t Lo12 = (int32_t)distance << 20 >> 20; |
| assm_->instr_at_put(load_offset, SetAuipcOffset(Hi20, instr_auipc)); |
| assm_->instr_at_put(load_offset + 4, SetLdOffset(Lo12, instr_ld)); |
| } |
| |
| void ConstantPool::Check(Emission force_emit, Jump require_jump, |
| size_t margin) { |
| // Some short sequence of instruction must not be broken up by constant pool |
| // emission, such sequences are protected by a ConstPool::BlockScope. |
| if (IsBlocked()) { |
| // Something is wrong if emission is forced and blocked at the same time. |
| DCHECK_EQ(force_emit, Emission::kIfNeeded); |
| return; |
| } |
| |
| // We emit a constant pool only if : |
| // * it is not empty |
| // * emission is forced by parameter force_emit (e.g. at function end). |
| // * emission is mandatory or opportune according to {ShouldEmitNow}. |
| if (!IsEmpty() && (force_emit == Emission::kForced || |
| ShouldEmitNow(require_jump, margin))) { |
| // Emit veneers for branches that would go out of range during emission of |
| // the constant pool. |
| int worst_case_size = ComputeSize(Jump::kRequired, Alignment::kRequired); |
| |
| // Check that the code buffer is large enough before emitting the constant |
| // pool (this includes the gap to the relocation information). |
| int needed_space = worst_case_size + assm_->kGap; |
| while (assm_->buffer_space() <= needed_space) { |
| assm_->GrowBuffer(); |
| } |
| |
| EmitAndClear(require_jump); |
| } |
| // Since a constant pool is (now) empty, move the check offset forward by |
| // the standard interval. |
| SetNextCheckIn(ConstantPool::kCheckInterval); |
| } |
| |
| LoadStoreLaneParams::LoadStoreLaneParams(MachineRepresentation rep, |
| uint8_t laneidx) { |
| switch (rep) { |
| case MachineRepresentation::kWord8: |
| *this = LoadStoreLaneParams(laneidx, 8, kRvvVLEN / 16); |
| break; |
| case MachineRepresentation::kWord16: |
| *this = LoadStoreLaneParams(laneidx, 16, kRvvVLEN / 8); |
| break; |
| case MachineRepresentation::kWord32: |
| *this = LoadStoreLaneParams(laneidx, 32, kRvvVLEN / 4); |
| break; |
| case MachineRepresentation::kWord64: |
| *this = LoadStoreLaneParams(laneidx, 64, kRvvVLEN / 2); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| // Pool entries are accessed with pc relative load therefore this cannot be more |
| // than 1 * MB. Since constant pool emission checks are interval based, and we |
| // want to keep entries close to the code, we try to emit every 64KB. |
| const size_t ConstantPool::kMaxDistToPool32 = 1 * MB; |
| const size_t ConstantPool::kMaxDistToPool64 = 1 * MB; |
| const size_t ConstantPool::kCheckInterval = 128 * kInstrSize; |
| const size_t ConstantPool::kApproxDistToPool32 = 64 * KB; |
| const size_t ConstantPool::kApproxDistToPool64 = kApproxDistToPool32; |
| |
| const size_t ConstantPool::kOpportunityDistToPool32 = 64 * KB; |
| const size_t ConstantPool::kOpportunityDistToPool64 = 64 * KB; |
| const size_t ConstantPool::kApproxMaxEntryCount = 512; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_RISCV64 |