blob: 0929916c819c05b5829bfcb177852f21097ccf3b [file] [log] [blame] [edit]
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODEGEN_RISCV64_CONSTANTS_RISCV64_H_
#define V8_CODEGEN_RISCV64_CONSTANTS_RISCV64_H_
#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/common/globals.h"
#include "src/flags/flags.h"
// UNIMPLEMENTED_ macro for RISCV.
#ifdef DEBUG
#define UNIMPLEMENTED_RISCV() \
v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
__FILE__, __LINE__, __func__);
#else
#define UNIMPLEMENTED_RISCV()
#endif
#define UNSUPPORTED_RISCV() \
v8::internal::PrintF("Unsupported instruction %d.\n", __LINE__)
enum Endianness { kLittle, kBig };
#if defined(V8_TARGET_LITTLE_ENDIAN)
static const Endianness kArchEndian = kLittle;
#elif defined(V8_TARGET_BIG_ENDIAN)
static const Endianness kArchEndian = kBig;
#else
#error Unknown endianness
#endif
#if defined(V8_TARGET_LITTLE_ENDIAN)
const uint32_t kLeastSignificantByteInInt32Offset = 0;
const uint32_t kLessSignificantWordInDoublewordOffset = 0;
#elif defined(V8_TARGET_BIG_ENDIAN)
const uint32_t kLeastSignificantByteInInt32Offset = 3;
const uint32_t kLessSignificantWordInDoublewordOffset = 4;
#else
#error Unknown endianness
#endif
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
// Defines constants and accessor classes to assemble, disassemble and
// simulate RISC-V instructions.
//
// See: The RISC-V Instruction Set Manual
// Volume I: User-Level ISA
// Try https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf.
namespace v8 {
namespace internal {
constexpr size_t kMaxPCRelativeCodeRangeInMB = 4094;
// -----------------------------------------------------------------------------
// Registers and FPURegisters.
// Number of general purpose registers.
const int kNumRegisters = 32;
const int kInvalidRegister = -1;
// Number of registers with pc.
const int kNumSimuRegisters = 33;
// In the simulator, the PC register is simulated as the 34th register.
const int kPCRegister = 34;
// Number coprocessor registers.
const int kNumFPURegisters = 32;
const int kInvalidFPURegister = -1;
// Number vectotr registers
const int kNumVRegisters = 32;
const int kInvalidVRegister = -1;
// 'pref' instruction hints
const int32_t kPrefHintLoad = 0;
const int32_t kPrefHintStore = 1;
const int32_t kPrefHintLoadStreamed = 4;
const int32_t kPrefHintStoreStreamed = 5;
const int32_t kPrefHintLoadRetained = 6;
const int32_t kPrefHintStoreRetained = 7;
const int32_t kPrefHintWritebackInvalidate = 25;
const int32_t kPrefHintPrepareForStore = 30;
// Actual value of root register is offset from the root array's start
// to take advantage of negative displacement values.
// TODO(sigurds): Choose best value.
constexpr int kRootRegisterBias = 256;
// Helper functions for converting between register numbers and names.
class Registers {
public:
// Return the name of the register.
static const char* Name(int reg);
// Lookup the register number for the name provided.
static int Number(const char* name);
struct RegisterAlias {
int reg;
const char* name;
};
static const int64_t kMaxValue = 0x7fffffffffffffffl;
static const int64_t kMinValue = 0x8000000000000000l;
private:
static const char* names_[kNumSimuRegisters];
static const RegisterAlias aliases_[];
};
// Helper functions for converting between register numbers and names.
class FPURegisters {
public:
// Return the name of the register.
static const char* Name(int reg);
// Lookup the register number for the name provided.
static int Number(const char* name);
struct RegisterAlias {
int creg;
const char* name;
};
private:
static const char* names_[kNumFPURegisters];
static const RegisterAlias aliases_[];
};
class VRegisters {
public:
// Return the name of the register.
static const char* Name(int reg);
// Lookup the register number for the name provided.
static int Number(const char* name);
struct RegisterAlias {
int creg;
const char* name;
};
private:
static const char* names_[kNumVRegisters];
static const RegisterAlias aliases_[];
};
// -----------------------------------------------------------------------------
// Instructions encoding constants.
// On RISCV all instructions are 32 bits, except for RVC.
using Instr = int32_t;
using ShortInstr = int16_t;
// Special Software Interrupt codes when used in the presence of the RISC-V
// simulator.
enum SoftwareInterruptCodes {
// Transition to C code.
call_rt_redirected = 0xfffff
};
// On RISC-V Simulator breakpoints can have different codes:
// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
// the simulator will run through them and print the registers.
// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
// instructions (see Assembler::stop()).
// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
// debugger.
const uint32_t kMaxWatchpointCode = 31;
const uint32_t kMaxStopCode = 127;
static_assert(kMaxWatchpointCode < kMaxStopCode);
// ----- Fields offset and length.
// RISCV constants
const int kBaseOpcodeShift = 0;
const int kBaseOpcodeBits = 7;
const int kFunct7Shift = 25;
const int kFunct7Bits = 7;
const int kFunct5Shift = 27;
const int kFunct5Bits = 5;
const int kFunct3Shift = 12;
const int kFunct3Bits = 3;
const int kFunct2Shift = 25;
const int kFunct2Bits = 2;
const int kRs1Shift = 15;
const int kRs1Bits = 5;
const int kVs1Shift = 15;
const int kVs1Bits = 5;
const int kVs2Shift = 20;
const int kVs2Bits = 5;
const int kVdShift = 7;
const int kVdBits = 5;
const int kRs2Shift = 20;
const int kRs2Bits = 5;
const int kRs3Shift = 27;
const int kRs3Bits = 5;
const int kRdShift = 7;
const int kRdBits = 5;
const int kRlShift = 25;
const int kAqShift = 26;
const int kImm12Shift = 20;
const int kImm12Bits = 12;
const int kImm11Shift = 2;
const int kImm11Bits = 11;
const int kShamtShift = 20;
const int kShamtBits = 5;
const int kShamtWShift = 20;
const int kShamtWBits = 6;
const int kArithShiftShift = 30;
const int kImm20Shift = 12;
const int kImm20Bits = 20;
const int kCsrShift = 20;
const int kCsrBits = 12;
const int kMemOrderBits = 4;
const int kPredOrderShift = 24;
const int kSuccOrderShift = 20;
// for C extension
const int kRvcFunct4Shift = 12;
const int kRvcFunct4Bits = 4;
const int kRvcFunct3Shift = 13;
const int kRvcFunct3Bits = 3;
const int kRvcRs1Shift = 7;
const int kRvcRs1Bits = 5;
const int kRvcRs2Shift = 2;
const int kRvcRs2Bits = 5;
const int kRvcRdShift = 7;
const int kRvcRdBits = 5;
const int kRvcRs1sShift = 7;
const int kRvcRs1sBits = 3;
const int kRvcRs2sShift = 2;
const int kRvcRs2sBits = 3;
const int kRvcFunct2Shift = 5;
const int kRvcFunct2BShift = 10;
const int kRvcFunct2Bits = 2;
const int kRvcFunct6Shift = 10;
const int kRvcFunct6Bits = 6;
// for RVV extension
constexpr int kRvvELEN = 64;
constexpr int kRvvVLEN = 128;
constexpr int kRvvSLEN = kRvvVLEN;
const int kRvvFunct6Shift = 26;
const int kRvvFunct6Bits = 6;
const uint32_t kRvvFunct6Mask =
(((1 << kRvvFunct6Bits) - 1) << kRvvFunct6Shift);
const int kRvvVmBits = 1;
const int kRvvVmShift = 25;
const uint32_t kRvvVmMask = (((1 << kRvvVmBits) - 1) << kRvvVmShift);
const int kRvvVs2Bits = 5;
const int kRvvVs2Shift = 20;
const uint32_t kRvvVs2Mask = (((1 << kRvvVs2Bits) - 1) << kRvvVs2Shift);
const int kRvvVs1Bits = 5;
const int kRvvVs1Shift = 15;
const uint32_t kRvvVs1Mask = (((1 << kRvvVs1Bits) - 1) << kRvvVs1Shift);
const int kRvvRs1Bits = kRvvVs1Bits;
const int kRvvRs1Shift = kRvvVs1Shift;
const uint32_t kRvvRs1Mask = (((1 << kRvvRs1Bits) - 1) << kRvvRs1Shift);
const int kRvvRs2Bits = 5;
const int kRvvRs2Shift = 20;
const uint32_t kRvvRs2Mask = (((1 << kRvvRs2Bits) - 1) << kRvvRs2Shift);
const int kRvvImm5Bits = kRvvVs1Bits;
const int kRvvImm5Shift = kRvvVs1Shift;
const uint32_t kRvvImm5Mask = (((1 << kRvvImm5Bits) - 1) << kRvvImm5Shift);
const int kRvvVdBits = 5;
const int kRvvVdShift = 7;
const uint32_t kRvvVdMask = (((1 << kRvvVdBits) - 1) << kRvvVdShift);
const int kRvvRdBits = kRvvVdBits;
const int kRvvRdShift = kRvvVdShift;
const uint32_t kRvvRdMask = (((1 << kRvvRdBits) - 1) << kRvvRdShift);
const int kRvvZimmBits = 11;
const int kRvvZimmShift = 20;
const uint32_t kRvvZimmMask = (((1 << kRvvZimmBits) - 1) << kRvvZimmShift);
const int kRvvUimmShift = kRvvRs1Shift;
const int kRvvUimmBits = kRvvRs1Bits;
const uint32_t kRvvUimmMask = (((1 << kRvvUimmBits) - 1) << kRvvUimmShift);
const int kRvvWidthBits = 3;
const int kRvvWidthShift = 12;
const uint32_t kRvvWidthMask = (((1 << kRvvWidthBits) - 1) << kRvvWidthShift);
const int kRvvMopBits = 2;
const int kRvvMopShift = 26;
const uint32_t kRvvMopMask = (((1 << kRvvMopBits) - 1) << kRvvMopShift);
const int kRvvMewBits = 1;
const int kRvvMewShift = 28;
const uint32_t kRvvMewMask = (((1 << kRvvMewBits) - 1) << kRvvMewShift);
const int kRvvNfBits = 3;
const int kRvvNfShift = 29;
const uint32_t kRvvNfMask = (((1 << kRvvNfBits) - 1) << kRvvNfShift);
// RISCV Instruction bit masks
const uint32_t kBaseOpcodeMask = ((1 << kBaseOpcodeBits) - 1)
<< kBaseOpcodeShift;
const uint32_t kFunct3Mask = ((1 << kFunct3Bits) - 1) << kFunct3Shift;
const uint32_t kFunct5Mask = ((1 << kFunct5Bits) - 1) << kFunct5Shift;
const uint32_t kFunct7Mask = ((1 << kFunct7Bits) - 1) << kFunct7Shift;
const uint32_t kFunct2Mask = 0b11 << kFunct7Shift;
const uint32_t kRTypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct7Mask;
const uint32_t kRATypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct5Mask;
const uint32_t kRFPTypeMask = kBaseOpcodeMask | kFunct7Mask;
const uint32_t kR4TypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct2Mask;
const uint32_t kITypeMask = kBaseOpcodeMask | kFunct3Mask;
const uint32_t kSTypeMask = kBaseOpcodeMask | kFunct3Mask;
const uint32_t kBTypeMask = kBaseOpcodeMask | kFunct3Mask;
const uint32_t kUTypeMask = kBaseOpcodeMask;
const uint32_t kJTypeMask = kBaseOpcodeMask;
const uint32_t kVTypeMask = kRvvFunct6Mask | kFunct3Mask | kBaseOpcodeMask;
const uint32_t kRs1FieldMask = ((1 << kRs1Bits) - 1) << kRs1Shift;
const uint32_t kRs2FieldMask = ((1 << kRs2Bits) - 1) << kRs2Shift;
const uint32_t kRs3FieldMask = ((1 << kRs3Bits) - 1) << kRs3Shift;
const uint32_t kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
const uint32_t kBImm12Mask = kFunct7Mask | kRdFieldMask;
const uint32_t kImm20Mask = ((1 << kImm20Bits) - 1) << kImm20Shift;
const uint32_t kImm12Mask = ((1 << kImm12Bits) - 1) << kImm12Shift;
const uint32_t kImm11Mask = ((1 << kImm11Bits) - 1) << kImm11Shift;
const uint32_t kImm31_12Mask = ((1 << 20) - 1) << 12;
const uint32_t kImm19_0Mask = ((1 << 20) - 1);
const uint32_t kRvcOpcodeMask =
0b11 | (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift);
const uint32_t kRvcFunct3Mask =
(((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift);
const uint32_t kRvcFunct4Mask =
(((1 << kRvcFunct4Bits) - 1) << kRvcFunct4Shift);
const uint32_t kRvcFunct6Mask =
(((1 << kRvcFunct6Bits) - 1) << kRvcFunct6Shift);
const uint32_t kRvcFunct2Mask =
(((1 << kRvcFunct2Bits) - 1) << kRvcFunct2Shift);
const uint32_t kRvcFunct2BMask =
(((1 << kRvcFunct2Bits) - 1) << kRvcFunct2BShift);
const uint32_t kCRTypeMask = kRvcOpcodeMask | kRvcFunct4Mask;
const uint32_t kCSTypeMask = kRvcOpcodeMask | kRvcFunct6Mask;
const uint32_t kCATypeMask = kRvcOpcodeMask | kRvcFunct6Mask | kRvcFunct2Mask;
const uint32_t kRvcBImm8Mask = (((1 << 5) - 1) << 2) | (((1 << 3) - 1) << 10);
// RISCV CSR related bit mask and shift
const int kFcsrFlagsBits = 5;
const uint32_t kFcsrFlagsMask = (1 << kFcsrFlagsBits) - 1;
const int kFcsrFrmBits = 3;
const int kFcsrFrmShift = kFcsrFlagsBits;
const uint32_t kFcsrFrmMask = ((1 << kFcsrFrmBits) - 1) << kFcsrFrmShift;
const int kFcsrBits = kFcsrFlagsBits + kFcsrFrmBits;
const uint32_t kFcsrMask = kFcsrFlagsMask | kFcsrFrmMask;
const int kNopByte = 0x00000013;
// Original MIPS constants
// TODO(RISCV): to be cleaned up
const int kImm16Shift = 0;
const int kImm16Bits = 16;
const uint32_t kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
// end of TODO(RISCV): to be cleaned up
// ----- RISCV Base Opcodes
enum BaseOpcode : uint32_t {};
// ----- RISC-V Opcodes and Function Fields.
enum Opcode : uint32_t {
LOAD = 0b0000011, // I form: LB LH LW LBU LHU
LOAD_FP = 0b0000111, // I form: FLW FLD FLQ
MISC_MEM = 0b0001111, // I special form: FENCE FENCE.I
OP_IMM = 0b0010011, // I form: ADDI SLTI SLTIU XORI ORI ANDI SLLI SRLI SARI
// Note: SLLI/SRLI/SRAI I form first, then func3 001/101 => R type
AUIPC = 0b0010111, // U form: AUIPC
OP_IMM_32 = 0b0011011, // I form: ADDIW SLLIW SRLIW SRAIW
// Note: SRLIW SRAIW I form first, then func3 101 special shift encoding
STORE = 0b0100011, // S form: SB SH SW SD
STORE_FP = 0b0100111, // S form: FSW FSD FSQ
AMO = 0b0101111, // R form: All A instructions
OP = 0b0110011, // R: ADD SUB SLL SLT SLTU XOR SRL SRA OR AND and 32M set
LUI = 0b0110111, // U form: LUI
OP_32 = 0b0111011, // R: ADDW SUBW SLLW SRLW SRAW MULW DIVW DIVUW REMW REMUW
MADD = 0b1000011, // R4 type: FMADD.S FMADD.D FMADD.Q
MSUB = 0b1000111, // R4 type: FMSUB.S FMSUB.D FMSUB.Q
NMSUB = 0b1001011, // R4 type: FNMSUB.S FNMSUB.D FNMSUB.Q
NMADD = 0b1001111, // R4 type: FNMADD.S FNMADD.D FNMADD.Q
OP_FP = 0b1010011, // R type: Q ext
BRANCH = 0b1100011, // B form: BEQ BNE, BLT, BGE, BLTU BGEU
JALR = 0b1100111, // I form: JALR
JAL = 0b1101111, // J form: JAL
SYSTEM = 0b1110011, // I form: ECALL EBREAK Zicsr ext
// C extension
C0 = 0b00,
C1 = 0b01,
C2 = 0b10,
FUNCT2_0 = 0b00,
FUNCT2_1 = 0b01,
FUNCT2_2 = 0b10,
FUNCT2_3 = 0b11,
// Note use RO (RiscV Opcode) prefix
// RV32I Base Instruction Set
RO_LUI = LUI,
RO_AUIPC = AUIPC,
RO_JAL = JAL,
RO_JALR = JALR | (0b000 << kFunct3Shift),
RO_BEQ = BRANCH | (0b000 << kFunct3Shift),
RO_BNE = BRANCH | (0b001 << kFunct3Shift),
RO_BLT = BRANCH | (0b100 << kFunct3Shift),
RO_BGE = BRANCH | (0b101 << kFunct3Shift),
RO_BLTU = BRANCH | (0b110 << kFunct3Shift),
RO_BGEU = BRANCH | (0b111 << kFunct3Shift),
RO_LB = LOAD | (0b000 << kFunct3Shift),
RO_LH = LOAD | (0b001 << kFunct3Shift),
RO_LW = LOAD | (0b010 << kFunct3Shift),
RO_LBU = LOAD | (0b100 << kFunct3Shift),
RO_LHU = LOAD | (0b101 << kFunct3Shift),
RO_SB = STORE | (0b000 << kFunct3Shift),
RO_SH = STORE | (0b001 << kFunct3Shift),
RO_SW = STORE | (0b010 << kFunct3Shift),
RO_ADDI = OP_IMM | (0b000 << kFunct3Shift),
RO_SLTI = OP_IMM | (0b010 << kFunct3Shift),
RO_SLTIU = OP_IMM | (0b011 << kFunct3Shift),
RO_XORI = OP_IMM | (0b100 << kFunct3Shift),
RO_ORI = OP_IMM | (0b110 << kFunct3Shift),
RO_ANDI = OP_IMM | (0b111 << kFunct3Shift),
RO_SLLI = OP_IMM | (0b001 << kFunct3Shift),
RO_SRLI = OP_IMM | (0b101 << kFunct3Shift),
// RO_SRAI = OP_IMM | (0b101 << kFunct3Shift), // Same as SRLI, use func7
RO_ADD = OP | (0b000 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_SUB = OP | (0b000 << kFunct3Shift) | (0b0100000 << kFunct7Shift),
RO_SLL = OP | (0b001 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_SLT = OP | (0b010 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_SLTU = OP | (0b011 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_XOR = OP | (0b100 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_SRL = OP | (0b101 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_SRA = OP | (0b101 << kFunct3Shift) | (0b0100000 << kFunct7Shift),
RO_OR = OP | (0b110 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_AND = OP | (0b111 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_FENCE = MISC_MEM | (0b000 << kFunct3Shift),
RO_ECALL = SYSTEM | (0b000 << kFunct3Shift),
// RO_EBREAK = SYSTEM | (0b000 << kFunct3Shift), // Same as ECALL, use imm12
// RV64I Base Instruction Set (in addition to RV32I)
RO_LWU = LOAD | (0b110 << kFunct3Shift),
RO_LD = LOAD | (0b011 << kFunct3Shift),
RO_SD = STORE | (0b011 << kFunct3Shift),
RO_ADDIW = OP_IMM_32 | (0b000 << kFunct3Shift),
RO_SLLIW = OP_IMM_32 | (0b001 << kFunct3Shift),
RO_SRLIW = OP_IMM_32 | (0b101 << kFunct3Shift),
// RO_SRAIW = OP_IMM_32 | (0b101 << kFunct3Shift), // Same as SRLIW, use func7
RO_ADDW = OP_32 | (0b000 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_SUBW = OP_32 | (0b000 << kFunct3Shift) | (0b0100000 << kFunct7Shift),
RO_SLLW = OP_32 | (0b001 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_SRLW = OP_32 | (0b101 << kFunct3Shift) | (0b0000000 << kFunct7Shift),
RO_SRAW = OP_32 | (0b101 << kFunct3Shift) | (0b0100000 << kFunct7Shift),
// RV32/RV64 Zifencei Standard Extension
RO_FENCE_I = MISC_MEM | (0b001 << kFunct3Shift),
// RV32/RV64 Zicsr Standard Extension
RO_CSRRW = SYSTEM | (0b001 << kFunct3Shift),
RO_CSRRS = SYSTEM | (0b010 << kFunct3Shift),
RO_CSRRC = SYSTEM | (0b011 << kFunct3Shift),
RO_CSRRWI = SYSTEM | (0b101 << kFunct3Shift),
RO_CSRRSI = SYSTEM | (0b110 << kFunct3Shift),
RO_CSRRCI = SYSTEM | (0b111 << kFunct3Shift),
// RV32M Standard Extension
RO_MUL = OP | (0b000 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_MULH = OP | (0b001 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_MULHSU = OP | (0b010 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_MULHU = OP | (0b011 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_DIV = OP | (0b100 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_DIVU = OP | (0b101 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_REM = OP | (0b110 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_REMU = OP | (0b111 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
// RV64M Standard Extension (in addition to RV32M)
RO_MULW = OP_32 | (0b000 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_DIVW = OP_32 | (0b100 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_DIVUW = OP_32 | (0b101 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_REMW = OP_32 | (0b110 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
RO_REMUW = OP_32 | (0b111 << kFunct3Shift) | (0b0000001 << kFunct7Shift),
// RV32A Standard Extension
RO_LR_W = AMO | (0b010 << kFunct3Shift) | (0b00010 << kFunct5Shift),
RO_SC_W = AMO | (0b010 << kFunct3Shift) | (0b00011 << kFunct5Shift),
RO_AMOSWAP_W = AMO | (0b010 << kFunct3Shift) | (0b00001 << kFunct5Shift),
RO_AMOADD_W = AMO | (0b010 << kFunct3Shift) | (0b00000 << kFunct5Shift),
RO_AMOXOR_W = AMO | (0b010 << kFunct3Shift) | (0b00100 << kFunct5Shift),
RO_AMOAND_W = AMO | (0b010 << kFunct3Shift) | (0b01100 << kFunct5Shift),
RO_AMOOR_W = AMO | (0b010 << kFunct3Shift) | (0b01000 << kFunct5Shift),
RO_AMOMIN_W = AMO | (0b010 << kFunct3Shift) | (0b10000 << kFunct5Shift),
RO_AMOMAX_W = AMO | (0b010 << kFunct3Shift) | (0b10100 << kFunct5Shift),
RO_AMOMINU_W = AMO | (0b010 << kFunct3Shift) | (0b11000 << kFunct5Shift),
RO_AMOMAXU_W = AMO | (0b010 << kFunct3Shift) | (0b11100 << kFunct5Shift),
// RV64A Standard Extension (in addition to RV32A)
RO_LR_D = AMO | (0b011 << kFunct3Shift) | (0b00010 << kFunct5Shift),
RO_SC_D = AMO | (0b011 << kFunct3Shift) | (0b00011 << kFunct5Shift),
RO_AMOSWAP_D = AMO | (0b011 << kFunct3Shift) | (0b00001 << kFunct5Shift),
RO_AMOADD_D = AMO | (0b011 << kFunct3Shift) | (0b00000 << kFunct5Shift),
RO_AMOXOR_D = AMO | (0b011 << kFunct3Shift) | (0b00100 << kFunct5Shift),
RO_AMOAND_D = AMO | (0b011 << kFunct3Shift) | (0b01100 << kFunct5Shift),
RO_AMOOR_D = AMO | (0b011 << kFunct3Shift) | (0b01000 << kFunct5Shift),
RO_AMOMIN_D = AMO | (0b011 << kFunct3Shift) | (0b10000 << kFunct5Shift),
RO_AMOMAX_D = AMO | (0b011 << kFunct3Shift) | (0b10100 << kFunct5Shift),
RO_AMOMINU_D = AMO | (0b011 << kFunct3Shift) | (0b11000 << kFunct5Shift),
RO_AMOMAXU_D = AMO | (0b011 << kFunct3Shift) | (0b11100 << kFunct5Shift),
// RV32F Standard Extension
RO_FLW = LOAD_FP | (0b010 << kFunct3Shift),
RO_FSW = STORE_FP | (0b010 << kFunct3Shift),
RO_FMADD_S = MADD | (0b00 << kFunct2Shift),
RO_FMSUB_S = MSUB | (0b00 << kFunct2Shift),
RO_FNMSUB_S = NMSUB | (0b00 << kFunct2Shift),
RO_FNMADD_S = NMADD | (0b00 << kFunct2Shift),
RO_FADD_S = OP_FP | (0b0000000 << kFunct7Shift),
RO_FSUB_S = OP_FP | (0b0000100 << kFunct7Shift),
RO_FMUL_S = OP_FP | (0b0001000 << kFunct7Shift),
RO_FDIV_S = OP_FP | (0b0001100 << kFunct7Shift),
RO_FSQRT_S = OP_FP | (0b0101100 << kFunct7Shift) | (0b00000 << kRs2Shift),
RO_FSGNJ_S = OP_FP | (0b000 << kFunct3Shift) | (0b0010000 << kFunct7Shift),
RO_FSGNJN_S = OP_FP | (0b001 << kFunct3Shift) | (0b0010000 << kFunct7Shift),
RO_FSQNJX_S = OP_FP | (0b010 << kFunct3Shift) | (0b0010000 << kFunct7Shift),
RO_FMIN_S = OP_FP | (0b000 << kFunct3Shift) | (0b0010100 << kFunct7Shift),
RO_FMAX_S = OP_FP | (0b001 << kFunct3Shift) | (0b0010100 << kFunct7Shift),
RO_FCVT_W_S = OP_FP | (0b1100000 << kFunct7Shift) | (0b00000 << kRs2Shift),
RO_FCVT_WU_S = OP_FP | (0b1100000 << kFunct7Shift) | (0b00001 << kRs2Shift),
RO_FMV = OP_FP | (0b1110000 << kFunct7Shift) | (0b000 << kFunct3Shift) |
(0b00000 << kRs2Shift),
RO_FEQ_S = OP_FP | (0b010 << kFunct3Shift) | (0b1010000 << kFunct7Shift),
RO_FLT_S = OP_FP | (0b001 << kFunct3Shift) | (0b1010000 << kFunct7Shift),
RO_FLE_S = OP_FP | (0b000 << kFunct3Shift) | (0b1010000 << kFunct7Shift),
RO_FCLASS_S = OP_FP | (0b001 << kFunct3Shift) | (0b1110000 << kFunct7Shift),
RO_FCVT_S_W = OP_FP | (0b1101000 << kFunct7Shift) | (0b00000 << kRs2Shift),
RO_FCVT_S_WU = OP_FP | (0b1101000 << kFunct7Shift) | (0b00001 << kRs2Shift),
RO_FMV_W_X = OP_FP | (0b000 << kFunct3Shift) | (0b1111000 << kFunct7Shift),
// RV64F Standard Extension (in addition to RV32F)
RO_FCVT_L_S = OP_FP | (0b1100000 << kFunct7Shift) | (0b00010 << kRs2Shift),
RO_FCVT_LU_S = OP_FP | (0b1100000 << kFunct7Shift) | (0b00011 << kRs2Shift),
RO_FCVT_S_L = OP_FP | (0b1101000 << kFunct7Shift) | (0b00010 << kRs2Shift),
RO_FCVT_S_LU = OP_FP | (0b1101000 << kFunct7Shift) | (0b00011 << kRs2Shift),
// RV32D Standard Extension
RO_FLD = LOAD_FP | (0b011 << kFunct3Shift),
RO_FSD = STORE_FP | (0b011 << kFunct3Shift),
RO_FMADD_D = MADD | (0b01 << kFunct2Shift),
RO_FMSUB_D = MSUB | (0b01 << kFunct2Shift),
RO_FNMSUB_D = NMSUB | (0b01 << kFunct2Shift),
RO_FNMADD_D = NMADD | (0b01 << kFunct2Shift),
RO_FADD_D = OP_FP | (0b0000001 << kFunct7Shift),
RO_FSUB_D = OP_FP | (0b0000101 << kFunct7Shift),
RO_FMUL_D = OP_FP | (0b0001001 << kFunct7Shift),
RO_FDIV_D = OP_FP | (0b0001101 << kFunct7Shift),
RO_FSQRT_D = OP_FP | (0b0101101 << kFunct7Shift) | (0b00000 << kRs2Shift),
RO_FSGNJ_D = OP_FP | (0b000 << kFunct3Shift) | (0b0010001 << kFunct7Shift),
RO_FSGNJN_D = OP_FP | (0b001 << kFunct3Shift) | (0b0010001 << kFunct7Shift),
RO_FSQNJX_D = OP_FP | (0b010 << kFunct3Shift) | (0b0010001 << kFunct7Shift),
RO_FMIN_D = OP_FP | (0b000 << kFunct3Shift) | (0b0010101 << kFunct7Shift),
RO_FMAX_D = OP_FP | (0b001 << kFunct3Shift) | (0b0010101 << kFunct7Shift),
RO_FCVT_S_D = OP_FP | (0b0100000 << kFunct7Shift) | (0b00001 << kRs2Shift),
RO_FCVT_D_S = OP_FP | (0b0100001 << kFunct7Shift) | (0b00000 << kRs2Shift),
RO_FEQ_D = OP_FP | (0b010 << kFunct3Shift) | (0b1010001 << kFunct7Shift),
RO_FLT_D = OP_FP | (0b001 << kFunct3Shift) | (0b1010001 << kFunct7Shift),
RO_FLE_D = OP_FP | (0b000 << kFunct3Shift) | (0b1010001 << kFunct7Shift),
RO_FCLASS_D = OP_FP | (0b001 << kFunct3Shift) | (0b1110001 << kFunct7Shift) |
(0b00000 << kRs2Shift),
RO_FCVT_W_D = OP_FP | (0b1100001 << kFunct7Shift) | (0b00000 << kRs2Shift),
RO_FCVT_WU_D = OP_FP | (0b1100001 << kFunct7Shift) | (0b00001 << kRs2Shift),
RO_FCVT_D_W = OP_FP | (0b1101001 << kFunct7Shift) | (0b00000 << kRs2Shift),
RO_FCVT_D_WU = OP_FP | (0b1101001 << kFunct7Shift) | (0b00001 << kRs2Shift),
// RV64D Standard Extension (in addition to RV32D)
RO_FCVT_L_D = OP_FP | (0b1100001 << kFunct7Shift) | (0b00010 << kRs2Shift),
RO_FCVT_LU_D = OP_FP | (0b1100001 << kFunct7Shift) | (0b00011 << kRs2Shift),
RO_FMV_X_D = OP_FP | (0b000 << kFunct3Shift) | (0b1110001 << kFunct7Shift) |
(0b00000 << kRs2Shift),
RO_FCVT_D_L = OP_FP | (0b1101001 << kFunct7Shift) | (0b00010 << kRs2Shift),
RO_FCVT_D_LU = OP_FP | (0b1101001 << kFunct7Shift) | (0b00011 << kRs2Shift),
RO_FMV_D_X = OP_FP | (0b000 << kFunct3Shift) | (0b1111001 << kFunct7Shift) |
(0b00000 << kRs2Shift),
// RV64C Standard Extension
RO_C_ADDI4SPN = C0 | (0b000 << kRvcFunct3Shift),
RO_C_FLD = C0 | (0b001 << kRvcFunct3Shift),
RO_C_LW = C0 | (0b010 << kRvcFunct3Shift),
RO_C_LD = C0 | (0b011 << kRvcFunct3Shift),
RO_C_FSD = C0 | (0b101 << kRvcFunct3Shift),
RO_C_SW = C0 | (0b110 << kRvcFunct3Shift),
RO_C_SD = C0 | (0b111 << kRvcFunct3Shift),
RO_C_NOP_ADDI = C1 | (0b000 << kRvcFunct3Shift),
RO_C_ADDIW = C1 | (0b001 << kRvcFunct3Shift),
RO_C_LI = C1 | (0b010 << kRvcFunct3Shift),
RO_C_SUB = C1 | (0b100011 << kRvcFunct6Shift) | (FUNCT2_0 << kRvcFunct2Shift),
RO_C_XOR = C1 | (0b100011 << kRvcFunct6Shift) | (FUNCT2_1 << kRvcFunct2Shift),
RO_C_OR = C1 | (0b100011 << kRvcFunct6Shift) | (FUNCT2_2 << kRvcFunct2Shift),
RO_C_AND = C1 | (0b100011 << kRvcFunct6Shift) | (FUNCT2_3 << kRvcFunct2Shift),
RO_C_SUBW =
C1 | (0b100111 << kRvcFunct6Shift) | (FUNCT2_0 << kRvcFunct2Shift),
RO_C_ADDW =
C1 | (0b100111 << kRvcFunct6Shift) | (FUNCT2_1 << kRvcFunct2Shift),
RO_C_LUI_ADD = C1 | (0b011 << kRvcFunct3Shift),
RO_C_MISC_ALU = C1 | (0b100 << kRvcFunct3Shift),
RO_C_J = C1 | (0b101 << kRvcFunct3Shift),
RO_C_BEQZ = C1 | (0b110 << kRvcFunct3Shift),
RO_C_BNEZ = C1 | (0b111 << kRvcFunct3Shift),
RO_C_SLLI = C2 | (0b000 << kRvcFunct3Shift),
RO_C_FLDSP = C2 | (0b001 << kRvcFunct3Shift),
RO_C_LWSP = C2 | (0b010 << kRvcFunct3Shift),
RO_C_LDSP = C2 | (0b011 << kRvcFunct3Shift),
RO_C_JR_MV_ADD = C2 | (0b100 << kRvcFunct3Shift),
RO_C_JR = C2 | (0b1000 << kRvcFunct4Shift),
RO_C_MV = C2 | (0b1000 << kRvcFunct4Shift),
RO_C_EBREAK = C2 | (0b1001 << kRvcFunct4Shift),
RO_C_JALR = C2 | (0b1001 << kRvcFunct4Shift),
RO_C_ADD = C2 | (0b1001 << kRvcFunct4Shift),
RO_C_FSDSP = C2 | (0b101 << kRvcFunct3Shift),
RO_C_SWSP = C2 | (0b110 << kRvcFunct3Shift),
RO_C_SDSP = C2 | (0b111 << kRvcFunct3Shift),
// RVV Extension
OP_V = 0b1010111,
OP_IVV = OP_V | (0b000 << kFunct3Shift),
OP_FVV = OP_V | (0b001 << kFunct3Shift),
OP_MVV = OP_V | (0b010 << kFunct3Shift),
OP_IVI = OP_V | (0b011 << kFunct3Shift),
OP_IVX = OP_V | (0b100 << kFunct3Shift),
OP_FVF = OP_V | (0b101 << kFunct3Shift),
OP_MVX = OP_V | (0b110 << kFunct3Shift),
RO_V_VSETVLI = OP_V | (0b111 << kFunct3Shift) | 0b0 << 31,
RO_V_VSETIVLI = OP_V | (0b111 << kFunct3Shift) | 0b11 << 30,
RO_V_VSETVL = OP_V | (0b111 << kFunct3Shift) | 0b1 << 31,
// RVV LOAD/STORE
RO_V_VL = LOAD_FP | (0b00 << kRvvMopShift) | (0b000 << kRvvNfShift),
RO_V_VLS = LOAD_FP | (0b10 << kRvvMopShift) | (0b000 << kRvvNfShift),
RO_V_VLX = LOAD_FP | (0b11 << kRvvMopShift) | (0b000 << kRvvNfShift),
RO_V_VS = STORE_FP | (0b00 << kRvvMopShift) | (0b000 << kRvvNfShift),
RO_V_VSS = STORE_FP | (0b10 << kRvvMopShift) | (0b000 << kRvvNfShift),
RO_V_VSX = STORE_FP | (0b11 << kRvvMopShift) | (0b000 << kRvvNfShift),
RO_V_VSU = STORE_FP | (0b01 << kRvvMopShift) | (0b000 << kRvvNfShift),
// THE kFunct6Shift is mop
RO_V_VLSEG2 = LOAD_FP | (0b00 << kRvvMopShift) | (0b001 << kRvvNfShift),
RO_V_VLSEG3 = LOAD_FP | (0b00 << kRvvMopShift) | (0b010 << kRvvNfShift),
RO_V_VLSEG4 = LOAD_FP | (0b00 << kRvvMopShift) | (0b011 << kRvvNfShift),
RO_V_VLSEG5 = LOAD_FP | (0b00 << kRvvMopShift) | (0b100 << kRvvNfShift),
RO_V_VLSEG6 = LOAD_FP | (0b00 << kRvvMopShift) | (0b101 << kRvvNfShift),
RO_V_VLSEG7 = LOAD_FP | (0b00 << kRvvMopShift) | (0b110 << kRvvNfShift),
RO_V_VLSEG8 = LOAD_FP | (0b00 << kRvvMopShift) | (0b111 << kRvvNfShift),
RO_V_VSSEG2 = STORE_FP | (0b00 << kRvvMopShift) | (0b001 << kRvvNfShift),
RO_V_VSSEG3 = STORE_FP | (0b00 << kRvvMopShift) | (0b010 << kRvvNfShift),
RO_V_VSSEG4 = STORE_FP | (0b00 << kRvvMopShift) | (0b011 << kRvvNfShift),
RO_V_VSSEG5 = STORE_FP | (0b00 << kRvvMopShift) | (0b100 << kRvvNfShift),
RO_V_VSSEG6 = STORE_FP | (0b00 << kRvvMopShift) | (0b101 << kRvvNfShift),
RO_V_VSSEG7 = STORE_FP | (0b00 << kRvvMopShift) | (0b110 << kRvvNfShift),
RO_V_VSSEG8 = STORE_FP | (0b00 << kRvvMopShift) | (0b111 << kRvvNfShift),
RO_V_VLSSEG2 = LOAD_FP | (0b10 << kRvvMopShift) | (0b001 << kRvvNfShift),
RO_V_VLSSEG3 = LOAD_FP | (0b10 << kRvvMopShift) | (0b010 << kRvvNfShift),
RO_V_VLSSEG4 = LOAD_FP | (0b10 << kRvvMopShift) | (0b011 << kRvvNfShift),
RO_V_VLSSEG5 = LOAD_FP | (0b10 << kRvvMopShift) | (0b100 << kRvvNfShift),
RO_V_VLSSEG6 = LOAD_FP | (0b10 << kRvvMopShift) | (0b101 << kRvvNfShift),
RO_V_VLSSEG7 = LOAD_FP | (0b10 << kRvvMopShift) | (0b110 << kRvvNfShift),
RO_V_VLSSEG8 = LOAD_FP | (0b10 << kRvvMopShift) | (0b111 << kRvvNfShift),
RO_V_VSSSEG2 = STORE_FP | (0b10 << kRvvMopShift) | (0b001 << kRvvNfShift),
RO_V_VSSSEG3 = STORE_FP | (0b10 << kRvvMopShift) | (0b010 << kRvvNfShift),
RO_V_VSSSEG4 = STORE_FP | (0b10 << kRvvMopShift) | (0b011 << kRvvNfShift),
RO_V_VSSSEG5 = STORE_FP | (0b10 << kRvvMopShift) | (0b100 << kRvvNfShift),
RO_V_VSSSEG6 = STORE_FP | (0b10 << kRvvMopShift) | (0b101 << kRvvNfShift),
RO_V_VSSSEG7 = STORE_FP | (0b10 << kRvvMopShift) | (0b110 << kRvvNfShift),
RO_V_VSSSEG8 = STORE_FP | (0b10 << kRvvMopShift) | (0b111 << kRvvNfShift),
RO_V_VLXSEG2 = LOAD_FP | (0b11 << kRvvMopShift) | (0b001 << kRvvNfShift),
RO_V_VLXSEG3 = LOAD_FP | (0b11 << kRvvMopShift) | (0b010 << kRvvNfShift),
RO_V_VLXSEG4 = LOAD_FP | (0b11 << kRvvMopShift) | (0b011 << kRvvNfShift),
RO_V_VLXSEG5 = LOAD_FP | (0b11 << kRvvMopShift) | (0b100 << kRvvNfShift),
RO_V_VLXSEG6 = LOAD_FP | (0b11 << kRvvMopShift) | (0b101 << kRvvNfShift),
RO_V_VLXSEG7 = LOAD_FP | (0b11 << kRvvMopShift) | (0b110 << kRvvNfShift),
RO_V_VLXSEG8 = LOAD_FP | (0b11 << kRvvMopShift) | (0b111 << kRvvNfShift),
RO_V_VSXSEG2 = STORE_FP | (0b11 << kRvvMopShift) | (0b001 << kRvvNfShift),
RO_V_VSXSEG3 = STORE_FP | (0b11 << kRvvMopShift) | (0b010 << kRvvNfShift),
RO_V_VSXSEG4 = STORE_FP | (0b11 << kRvvMopShift) | (0b011 << kRvvNfShift),
RO_V_VSXSEG5 = STORE_FP | (0b11 << kRvvMopShift) | (0b100 << kRvvNfShift),
RO_V_VSXSEG6 = STORE_FP | (0b11 << kRvvMopShift) | (0b101 << kRvvNfShift),
RO_V_VSXSEG7 = STORE_FP | (0b11 << kRvvMopShift) | (0b110 << kRvvNfShift),
RO_V_VSXSEG8 = STORE_FP | (0b11 << kRvvMopShift) | (0b111 << kRvvNfShift),
// RVV Vector Arithmetic Instruction
VADD_FUNCT6 = 0b000000,
RO_V_VADD_VI = OP_IVI | (VADD_FUNCT6 << kRvvFunct6Shift),
RO_V_VADD_VV = OP_IVV | (VADD_FUNCT6 << kRvvFunct6Shift),
RO_V_VADD_VX = OP_IVX | (VADD_FUNCT6 << kRvvFunct6Shift),
VSUB_FUNCT6 = 0b000010,
RO_V_VSUB_VX = OP_IVX | (VSUB_FUNCT6 << kRvvFunct6Shift),
RO_V_VSUB_VV = OP_IVV | (VSUB_FUNCT6 << kRvvFunct6Shift),
VDIVU_FUNCT6 = 0b100000,
RO_V_VDIVU_VX = OP_MVX | (VDIVU_FUNCT6 << kRvvFunct6Shift),
RO_V_VDIVU_VV = OP_MVV | (VDIVU_FUNCT6 << kRvvFunct6Shift),
VDIV_FUNCT6 = 0b100001,
RO_V_VDIV_VX = OP_MVX | (VDIV_FUNCT6 << kRvvFunct6Shift),
RO_V_VDIV_VV = OP_MVV | (VDIV_FUNCT6 << kRvvFunct6Shift),
VREMU_FUNCT6 = 0b100010,
RO_V_VREMU_VX = OP_MVX | (VREMU_FUNCT6 << kRvvFunct6Shift),
RO_V_VREMU_VV = OP_MVV | (VREMU_FUNCT6 << kRvvFunct6Shift),
VREM_FUNCT6 = 0b100011,
RO_V_VREM_VX = OP_MVX | (VREM_FUNCT6 << kRvvFunct6Shift),
RO_V_VREM_VV = OP_MVV | (VREM_FUNCT6 << kRvvFunct6Shift),
VMULHU_FUNCT6 = 0b100100,
RO_V_VMULHU_VX = OP_MVX | (VMULHU_FUNCT6 << kRvvFunct6Shift),
RO_V_VMULHU_VV = OP_MVV | (VMULHU_FUNCT6 << kRvvFunct6Shift),
VMUL_FUNCT6 = 0b100101,
RO_V_VMUL_VX = OP_MVX | (VMUL_FUNCT6 << kRvvFunct6Shift),
RO_V_VMUL_VV = OP_MVV | (VMUL_FUNCT6 << kRvvFunct6Shift),
VWMUL_FUNCT6 = 0b111011,
RO_V_VWMUL_VX = OP_MVX | (VWMUL_FUNCT6 << kRvvFunct6Shift),
RO_V_VWMUL_VV = OP_MVV | (VWMUL_FUNCT6 << kRvvFunct6Shift),
VWMULU_FUNCT6 = 0b111000,
RO_V_VWMULU_VX = OP_MVX | (VWMULU_FUNCT6 << kRvvFunct6Shift),
RO_V_VWMULU_VV = OP_MVV | (VWMULU_FUNCT6 << kRvvFunct6Shift),
VMULHSU_FUNCT6 = 0b100110,
RO_V_VMULHSU_VX = OP_MVX | (VMULHSU_FUNCT6 << kRvvFunct6Shift),
RO_V_VMULHSU_VV = OP_MVV | (VMULHSU_FUNCT6 << kRvvFunct6Shift),
VMULH_FUNCT6 = 0b100111,
RO_V_VMULH_VX = OP_MVX | (VMULH_FUNCT6 << kRvvFunct6Shift),
RO_V_VMULH_VV = OP_MVV | (VMULH_FUNCT6 << kRvvFunct6Shift),
VWADD_FUNCT6 = 0b110001,
RO_V_VWADD_VV = OP_MVV | (VWADD_FUNCT6 << kRvvFunct6Shift),
RO_V_VWADD_VX = OP_MVX | (VWADD_FUNCT6 << kRvvFunct6Shift),
VWADDU_FUNCT6 = 0b110000,
RO_V_VWADDU_VV = OP_MVV | (VWADDU_FUNCT6 << kRvvFunct6Shift),
RO_V_VWADDU_VX = OP_MVX | (VWADDU_FUNCT6 << kRvvFunct6Shift),
VWADDUW_FUNCT6 = 0b110101,
RO_V_VWADDUW_VX = OP_MVX | (VWADDUW_FUNCT6 << kRvvFunct6Shift),
RO_V_VWADDUW_VV = OP_MVV | (VWADDUW_FUNCT6 << kRvvFunct6Shift),
VCOMPRESS_FUNCT6 = 0b010111,
RO_V_VCOMPRESS_VV = OP_MVV | (VCOMPRESS_FUNCT6 << kRvvFunct6Shift),
VSADDU_FUNCT6 = 0b100000,
RO_V_VSADDU_VI = OP_IVI | (VSADDU_FUNCT6 << kRvvFunct6Shift),
RO_V_VSADDU_VV = OP_IVV | (VSADDU_FUNCT6 << kRvvFunct6Shift),
RO_V_VSADDU_VX = OP_IVX | (VSADDU_FUNCT6 << kRvvFunct6Shift),
VSADD_FUNCT6 = 0b100001,
RO_V_VSADD_VI = OP_IVI | (VSADD_FUNCT6 << kRvvFunct6Shift),
RO_V_VSADD_VV = OP_IVV | (VSADD_FUNCT6 << kRvvFunct6Shift),
RO_V_VSADD_VX = OP_IVX | (VSADD_FUNCT6 << kRvvFunct6Shift),
VSSUB_FUNCT6 = 0b100011,
RO_V_VSSUB_VV = OP_IVV | (VSSUB_FUNCT6 << kRvvFunct6Shift),
RO_V_VSSUB_VX = OP_IVX | (VSSUB_FUNCT6 << kRvvFunct6Shift),
VSSUBU_FUNCT6 = 0b100010,
RO_V_VSSUBU_VV = OP_IVV | (VSSUBU_FUNCT6 << kRvvFunct6Shift),
RO_V_VSSUBU_VX = OP_IVX | (VSSUBU_FUNCT6 << kRvvFunct6Shift),
VRSUB_FUNCT6 = 0b000011,
RO_V_VRSUB_VX = OP_IVX | (VRSUB_FUNCT6 << kRvvFunct6Shift),
RO_V_VRSUB_VI = OP_IVI | (VRSUB_FUNCT6 << kRvvFunct6Shift),
VMINU_FUNCT6 = 0b000100,
RO_V_VMINU_VX = OP_IVX | (VMINU_FUNCT6 << kRvvFunct6Shift),
RO_V_VMINU_VV = OP_IVV | (VMINU_FUNCT6 << kRvvFunct6Shift),
VMIN_FUNCT6 = 0b000101,
RO_V_VMIN_VX = OP_IVX | (VMIN_FUNCT6 << kRvvFunct6Shift),
RO_V_VMIN_VV = OP_IVV | (VMIN_FUNCT6 << kRvvFunct6Shift),
VMAXU_FUNCT6 = 0b000110,
RO_V_VMAXU_VX = OP_IVX | (VMAXU_FUNCT6 << kRvvFunct6Shift),
RO_V_VMAXU_VV = OP_IVV | (VMAXU_FUNCT6 << kRvvFunct6Shift),
VMAX_FUNCT6 = 0b000111,
RO_V_VMAX_VX = OP_IVX | (VMAX_FUNCT6 << kRvvFunct6Shift),
RO_V_VMAX_VV = OP_IVV | (VMAX_FUNCT6 << kRvvFunct6Shift),
VAND_FUNCT6 = 0b001001,
RO_V_VAND_VI = OP_IVI | (VAND_FUNCT6 << kRvvFunct6Shift),
RO_V_VAND_VV = OP_IVV | (VAND_FUNCT6 << kRvvFunct6Shift),
RO_V_VAND_VX = OP_IVX | (VAND_FUNCT6 << kRvvFunct6Shift),
VOR_FUNCT6 = 0b001010,
RO_V_VOR_VI = OP_IVI | (VOR_FUNCT6 << kRvvFunct6Shift),
RO_V_VOR_VV = OP_IVV | (VOR_FUNCT6 << kRvvFunct6Shift),
RO_V_VOR_VX = OP_IVX | (VOR_FUNCT6 << kRvvFunct6Shift),
VXOR_FUNCT6 = 0b001011,
RO_V_VXOR_VI = OP_IVI | (VXOR_FUNCT6 << kRvvFunct6Shift),
RO_V_VXOR_VV = OP_IVV | (VXOR_FUNCT6 << kRvvFunct6Shift),
RO_V_VXOR_VX = OP_IVX | (VXOR_FUNCT6 << kRvvFunct6Shift),
VRGATHER_FUNCT6 = 0b001100,
RO_V_VRGATHER_VI = OP_IVI | (VRGATHER_FUNCT6 << kRvvFunct6Shift),
RO_V_VRGATHER_VV = OP_IVV | (VRGATHER_FUNCT6 << kRvvFunct6Shift),
RO_V_VRGATHER_VX = OP_IVX | (VRGATHER_FUNCT6 << kRvvFunct6Shift),
VMV_FUNCT6 = 0b010111,
RO_V_VMV_VI = OP_IVI | (VMV_FUNCT6 << kRvvFunct6Shift),
RO_V_VMV_VV = OP_IVV | (VMV_FUNCT6 << kRvvFunct6Shift),
RO_V_VMV_VX = OP_IVX | (VMV_FUNCT6 << kRvvFunct6Shift),
RO_V_VFMV_VF = OP_FVF | (VMV_FUNCT6 << kRvvFunct6Shift),
RO_V_VMERGE_VI = RO_V_VMV_VI,
RO_V_VMERGE_VV = RO_V_VMV_VV,
RO_V_VMERGE_VX = RO_V_VMV_VX,
VMSEQ_FUNCT6 = 0b011000,
RO_V_VMSEQ_VI = OP_IVI | (VMSEQ_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSEQ_VV = OP_IVV | (VMSEQ_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSEQ_VX = OP_IVX | (VMSEQ_FUNCT6 << kRvvFunct6Shift),
VMSNE_FUNCT6 = 0b011001,
RO_V_VMSNE_VI = OP_IVI | (VMSNE_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSNE_VV = OP_IVV | (VMSNE_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSNE_VX = OP_IVX | (VMSNE_FUNCT6 << kRvvFunct6Shift),
VMSLTU_FUNCT6 = 0b011010,
RO_V_VMSLTU_VV = OP_IVV | (VMSLTU_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSLTU_VX = OP_IVX | (VMSLTU_FUNCT6 << kRvvFunct6Shift),
VMSLT_FUNCT6 = 0b011011,
RO_V_VMSLT_VV = OP_IVV | (VMSLT_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSLT_VX = OP_IVX | (VMSLT_FUNCT6 << kRvvFunct6Shift),
VMSLE_FUNCT6 = 0b011101,
RO_V_VMSLE_VI = OP_IVI | (VMSLE_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSLE_VV = OP_IVV | (VMSLE_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSLE_VX = OP_IVX | (VMSLE_FUNCT6 << kRvvFunct6Shift),
VMSLEU_FUNCT6 = 0b011100,
RO_V_VMSLEU_VI = OP_IVI | (VMSLEU_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSLEU_VV = OP_IVV | (VMSLEU_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSLEU_VX = OP_IVX | (VMSLEU_FUNCT6 << kRvvFunct6Shift),
VMSGTU_FUNCT6 = 0b011110,
RO_V_VMSGTU_VI = OP_IVI | (VMSGTU_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSGTU_VX = OP_IVX | (VMSGTU_FUNCT6 << kRvvFunct6Shift),
VMSGT_FUNCT6 = 0b011111,
RO_V_VMSGT_VI = OP_IVI | (VMSGT_FUNCT6 << kRvvFunct6Shift),
RO_V_VMSGT_VX = OP_IVX | (VMSGT_FUNCT6 << kRvvFunct6Shift),
VSLIDEUP_FUNCT6 = 0b001110,
RO_V_VSLIDEUP_VI = OP_IVI | (VSLIDEUP_FUNCT6 << kRvvFunct6Shift),
RO_V_VSLIDEUP_VX = OP_IVX | (VSLIDEUP_FUNCT6 << kRvvFunct6Shift),
VSLIDEDOWN_FUNCT6 = 0b001111,
RO_V_VSLIDEDOWN_VI = OP_IVI | (VSLIDEDOWN_FUNCT6 << kRvvFunct6Shift),
RO_V_VSLIDEDOWN_VX = OP_IVX | (VSLIDEDOWN_FUNCT6 << kRvvFunct6Shift),
VSRL_FUNCT6 = 0b101000,
RO_V_VSRL_VI = OP_IVI | (VSRL_FUNCT6 << kRvvFunct6Shift),
RO_V_VSRL_VV = OP_IVV | (VSRL_FUNCT6 << kRvvFunct6Shift),
RO_V_VSRL_VX = OP_IVX | (VSRL_FUNCT6 << kRvvFunct6Shift),
VSRA_FUNCT6 = 0b101001,
RO_V_VSRA_VI = OP_IVI | (VSRA_FUNCT6 << kRvvFunct6Shift),
RO_V_VSRA_VV = OP_IVV | (VSRA_FUNCT6 << kRvvFunct6Shift),
RO_V_VSRA_VX = OP_IVX | (VSRA_FUNCT6 << kRvvFunct6Shift),
VSLL_FUNCT6 = 0b100101,
RO_V_VSLL_VI = OP_IVI | (VSLL_FUNCT6 << kRvvFunct6Shift),
RO_V_VSLL_VV = OP_IVV | (VSLL_FUNCT6 << kRvvFunct6Shift),
RO_V_VSLL_VX = OP_IVX | (VSLL_FUNCT6 << kRvvFunct6Shift),
VSMUL_FUNCT6 = 0b100111,
RO_V_VSMUL_VV = OP_IVV | (VSMUL_FUNCT6 << kRvvFunct6Shift),
RO_V_VSMUL_VX = OP_IVX | (VSMUL_FUNCT6 << kRvvFunct6Shift),
VADC_FUNCT6 = 0b010000,
RO_V_VADC_VI = OP_IVI | (VADC_FUNCT6 << kRvvFunct6Shift),
RO_V_VADC_VV = OP_IVV | (VADC_FUNCT6 << kRvvFunct6Shift),
RO_V_VADC_VX = OP_IVX | (VADC_FUNCT6 << kRvvFunct6Shift),
VMADC_FUNCT6 = 0b010001,
RO_V_VMADC_VI = OP_IVI | (VMADC_FUNCT6 << kRvvFunct6Shift),
RO_V_VMADC_VV = OP_IVV | (VMADC_FUNCT6 << kRvvFunct6Shift),
RO_V_VMADC_VX = OP_IVX | (VMADC_FUNCT6 << kRvvFunct6Shift),
VWXUNARY0_FUNCT6 = 0b010000,
VRXUNARY0_FUNCT6 = 0b010000,
VMUNARY0_FUNCT6 = 0b010100,
RO_V_VWXUNARY0 = OP_MVV | (VWXUNARY0_FUNCT6 << kRvvFunct6Shift),
RO_V_VRXUNARY0 = OP_MVX | (VRXUNARY0_FUNCT6 << kRvvFunct6Shift),
RO_V_VMUNARY0 = OP_MVV | (VMUNARY0_FUNCT6 << kRvvFunct6Shift),
VID_V = 0b10001,
VXUNARY0_FUNCT6 = 0b010010,
RO_V_VXUNARY0 = OP_MVV | (VXUNARY0_FUNCT6 << kRvvFunct6Shift),
VWFUNARY0_FUNCT6 = 0b010000,
RO_V_VFMV_FS = OP_FVV | (VWFUNARY0_FUNCT6 << kRvvFunct6Shift),
VRFUNARY0_FUNCT6 = 0b010000,
RO_V_VFMV_SF = OP_FVF | (VRFUNARY0_FUNCT6 << kRvvFunct6Shift),
VREDMAXU_FUNCT6 = 0b000110,
RO_V_VREDMAXU = OP_MVV | (VREDMAXU_FUNCT6 << kRvvFunct6Shift),
VREDMAX_FUNCT6 = 0b000111,
RO_V_VREDMAX = OP_MVV | (VREDMAX_FUNCT6 << kRvvFunct6Shift),
VREDMINU_FUNCT6 = 0b000100,
RO_V_VREDMINU = OP_MVV | (VREDMINU_FUNCT6 << kRvvFunct6Shift),
VREDMIN_FUNCT6 = 0b000101,
RO_V_VREDMIN = OP_MVV | (VREDMIN_FUNCT6 << kRvvFunct6Shift),
VFUNARY0_FUNCT6 = 0b010010,
RO_V_VFUNARY0 = OP_FVV | (VFUNARY0_FUNCT6 << kRvvFunct6Shift),
VFUNARY1_FUNCT6 = 0b010011,
RO_V_VFUNARY1 = OP_FVV | (VFUNARY1_FUNCT6 << kRvvFunct6Shift),
VFCVT_XU_F_V = 0b00000,
VFCVT_X_F_V = 0b00001,
VFCVT_F_XU_V = 0b00010,
VFCVT_F_X_V = 0b00011,
VFWCVT_XU_F_V = 0b01000,
VFWCVT_X_F_V = 0b01001,
VFWCVT_F_XU_V = 0b01010,
VFWCVT_F_X_V = 0b01011,
VFWCVT_F_F_V = 0b01100,
VFNCVT_F_F_W = 0b10100,
VFNCVT_X_F_W = 0b10001,
VFNCVT_XU_F_W = 0b10000,
VFCLASS_V = 0b10000,
VFSQRT_V = 0b00000,
VFRSQRT7_V = 0b00100,
VFREC7_V = 0b00101,
VFADD_FUNCT6 = 0b000000,
RO_V_VFADD_VV = OP_FVV | (VFADD_FUNCT6 << kRvvFunct6Shift),
RO_V_VFADD_VF = OP_FVF | (VFADD_FUNCT6 << kRvvFunct6Shift),
VFSUB_FUNCT6 = 0b000010,
RO_V_VFSUB_VV = OP_FVV | (VFSUB_FUNCT6 << kRvvFunct6Shift),
RO_V_VFSUB_VF = OP_FVF | (VFSUB_FUNCT6 << kRvvFunct6Shift),
VFDIV_FUNCT6 = 0b100000,
RO_V_VFDIV_VV = OP_FVV | (VFDIV_FUNCT6 << kRvvFunct6Shift),
RO_V_VFDIV_VF = OP_FVF | (VFDIV_FUNCT6 << kRvvFunct6Shift),
VFMUL_FUNCT6 = 0b100100,
RO_V_VFMUL_VV = OP_FVV | (VFMUL_FUNCT6 << kRvvFunct6Shift),
RO_V_VFMUL_VF = OP_FVF | (VFMUL_FUNCT6 << kRvvFunct6Shift),
// Vector Widening Floating-Point Add/Subtract Instructions
VFWADD_FUNCT6 = 0b110000,
RO_V_VFWADD_VV = OP_FVV | (VFWADD_FUNCT6 << kRvvFunct6Shift),
RO_V_VFWADD_VF = OP_FVF | (VFWADD_FUNCT6 << kRvvFunct6Shift),
VFWSUB_FUNCT6 = 0b110010,
RO_V_VFWSUB_VV = OP_FVV | (VFWSUB_FUNCT6 << kRvvFunct6Shift),
RO_V_VFWSUB_VF = OP_FVF | (VFWSUB_FUNCT6 << kRvvFunct6Shift),
VFWADD_W_FUNCT6 = 0b110100,
RO_V_VFWADD_W_VV = OP_FVV | (VFWADD_W_FUNCT6 << kRvvFunct6Shift),
RO_V_VFWADD_W_VF = OP_FVF | (VFWADD_W_FUNCT6 << kRvvFunct6Shift),
VFWSUB_W_FUNCT6 = 0b110110,
RO_V_VFWSUB_W_VV = OP_FVV | (VFWSUB_W_FUNCT6 << kRvvFunct6Shift),
RO_V_VFWSUB_W_VF = OP_FVF | (VFWSUB_W_FUNCT6 << kRvvFunct6Shift),
// Vector Widening Floating-Point Reduction Instructions
VFWREDUSUM_FUNCT6 = 0b110001,
RO_V_VFWREDUSUM_VV = OP_FVV | (VFWREDUSUM_FUNCT6 << kRvvFunct6Shift),
VFWREDOSUM_FUNCT6 = 0b110011,
RO_V_VFWREDOSUM_VV = OP_FVV | (VFWREDOSUM_FUNCT6 << kRvvFunct6Shift),
// Vector Widening Floating-Point Multiply
VFWMUL_FUNCT6 = 0b111000,
RO_V_VFWMUL_VV = OP_FVV | (VFWMUL_FUNCT6 << kRvvFunct6Shift),
RO_V_VFWMUL_VF = OP_FVF | (VFWMUL_FUNCT6 << kRvvFunct6Shift),
VMFEQ_FUNCT6 = 0b011000,
RO_V_VMFEQ_VV = OP_FVV | (VMFEQ_FUNCT6 << kRvvFunct6Shift),
RO_V_VMFEQ_VF = OP_FVF | (VMFEQ_FUNCT6 << kRvvFunct6Shift),
VMFNE_FUNCT6 = 0b011100,
RO_V_VMFNE_VV = OP_FVV | (VMFNE_FUNCT6 << kRvvFunct6Shift),
RO_V_VMFNE_VF = OP_FVF | (VMFNE_FUNCT6 << kRvvFunct6Shift),
VMFLT_FUNCT6 = 0b011011,
RO_V_VMFLT_VV = OP_FVV | (VMFLT_FUNCT6 << kRvvFunct6Shift),
RO_V_VMFLT_VF = OP_FVF | (VMFLT_FUNCT6 << kRvvFunct6Shift),
VMFLE_FUNCT6 = 0b011001,
RO_V_VMFLE_VV = OP_FVV | (VMFLE_FUNCT6 << kRvvFunct6Shift),
RO_V_VMFLE_VF = OP_FVF | (VMFLE_FUNCT6 << kRvvFunct6Shift),
VMFGE_FUNCT6 = 0b011111,
RO_V_VMFGE_VF = OP_FVF | (VMFGE_FUNCT6 << kRvvFunct6Shift),
VMFGT_FUNCT6 = 0b011101,
RO_V_VMFGT_VF = OP_FVF | (VMFGT_FUNCT6 << kRvvFunct6Shift),
VFMAX_FUNCT6 = 0b000110,
RO_V_VFMAX_VV = OP_FVV | (VFMAX_FUNCT6 << kRvvFunct6Shift),
RO_V_VFMAX_VF = OP_FVF | (VFMAX_FUNCT6 << kRvvFunct6Shift),
VFREDMAX_FUNCT6 = 0b0001111,
RO_V_VFREDMAX_VV = OP_FVV | (VFREDMAX_FUNCT6 << kRvvFunct6Shift),
VFMIN_FUNCT6 = 0b000100,
RO_V_VFMIN_VV = OP_FVV | (VFMIN_FUNCT6 << kRvvFunct6Shift),
RO_V_VFMIN_VF = OP_FVF | (VFMIN_FUNCT6 << kRvvFunct6Shift),
VFSGNJ_FUNCT6 = 0b001000,
RO_V_VFSGNJ_VV = OP_FVV | (VFSGNJ_FUNCT6 << kRvvFunct6Shift),
RO_V_VFSGNJ_VF = OP_FVF | (VFSGNJ_FUNCT6 << kRvvFunct6Shift),
VFSGNJN_FUNCT6 = 0b001001,
RO_V_VFSGNJN_VV = OP_FVV | (VFSGNJN_FUNCT6 << kRvvFunct6Shift),
RO_V_VFSGNJN_VF = OP_FVF | (VFSGNJN_FUNCT6 << kRvvFunct6Shift),
VFSGNJX_FUNCT6 = 0b001010,
RO_V_VFSGNJX_VV = OP_FVV | (VFSGNJX_FUNCT6 << kRvvFunct6Shift),
RO_V_VFSGNJX_VF = OP_FVF | (VFSGNJX_FUNCT6 << kRvvFunct6Shift),
VFMADD_FUNCT6 = 0b101000,
RO_V_VFMADD_VV = OP_FVV | (VFMADD_FUNCT6 << kRvvFunct6Shift),
RO_V_VFMADD_VF = OP_FVF | (VFMADD_FUNCT6 << kRvvFunct6Shift),
VFNMADD_FUNCT6 = 0b101001,
RO_V_VFNMADD_VV = OP_FVV | (VFNMADD_FUNCT6 << kRvvFunct6Shift),
RO_V_VFNMADD_VF = OP_FVF | (VFNMADD_FUNCT6 << kRvvFunct6Shift),
VFMSUB_FUNCT6 = 0b101010,
RO_V_VFMSUB_VV = OP_FVV | (VFMSUB_FUNCT6 << kRvvFunct6Shift),
RO_V_VFMSUB_VF = OP_FVF | (VFMSUB_FUNCT6 << kRvvFunct6Shift),
VFNMSUB_FUNCT6 = 0b101011,
RO_V_VFNMSUB_VV = OP_FVV | (VFNMSUB_FUNCT6 << kRvvFunct6Shift),
RO_V_VFNMSUB_VF = OP_FVF | (VFNMSUB_FUNCT6 << kRvvFunct6Shift),
VFMACC_FUNCT6 = 0b101100,
RO_V_VFMACC_VV = OP_FVV | (VFMACC_FUNCT6 << kRvvFunct6Shift),
RO_V_VFMACC_VF = OP_FVF | (VFMACC_FUNCT6 << kRvvFunct6Shift),
VFNMACC_FUNCT6 = 0b101101,
RO_V_VFNMACC_VV = OP_FVV | (VFNMACC_FUNCT6 << kRvvFunct6Shift),
RO_V_VFNMACC_VF = OP_FVF | (VFNMACC_FUNCT6 << kRvvFunct6Shift),
VFMSAC_FUNCT6 = 0b101110,
RO_V_VFMSAC_VV = OP_FVV | (VFMSAC_FUNCT6 << kRvvFunct6Shift),
RO_V_VFMSAC_VF = OP_FVF | (VFMSAC_FUNCT6 << kRvvFunct6Shift),
VFNMSAC_FUNCT6 = 0b101111,
RO_V_VFNMSAC_VV = OP_FVV | (VFNMSAC_FUNCT6 << kRvvFunct6Shift),
RO_V_VFNMSAC_VF = OP_FVF | (VFNMSAC_FUNCT6 << kRvvFunct6Shift),
// Vector Widening Floating-Point Fused Multiply-Add Instructions
VFWMACC_FUNCT6 = 0b111100,
RO_V_VFWMACC_VV = OP_FVV | (VFWMACC_FUNCT6 << kRvvFunct6Shift),
RO_V_VFWMACC_VF = OP_FVF | (VFWMACC_FUNCT6 << kRvvFunct6Shift),
VFWNMACC_FUNCT6 = 0b111101,
RO_V_VFWNMACC_VV = OP_FVV | (VFWNMACC_FUNCT6 << kRvvFunct6Shift),
RO_V_VFWNMACC_VF = OP_FVF | (VFWNMACC_FUNCT6 << kRvvFunct6Shift),
VFWMSAC_FUNCT6 = 0b111110,
RO_V_VFWMSAC_VV = OP_FVV | (VFWMSAC_FUNCT6 << kRvvFunct6Shift),
RO_V_VFWMSAC_VF = OP_FVF | (VFWMSAC_FUNCT6 << kRvvFunct6Shift),
VFWNMSAC_FUNCT6 = 0b111111,
RO_V_VFWNMSAC_VV = OP_FVV | (VFWNMSAC_FUNCT6 << kRvvFunct6Shift),
RO_V_VFWNMSAC_VF = OP_FVF | (VFWNMSAC_FUNCT6 << kRvvFunct6Shift),
VNCLIP_FUNCT6 = 0b101111,
RO_V_VNCLIP_WV = OP_IVV | (VNCLIP_FUNCT6 << kRvvFunct6Shift),
RO_V_VNCLIP_WX = OP_IVX | (VNCLIP_FUNCT6 << kRvvFunct6Shift),
RO_V_VNCLIP_WI = OP_IVI | (VNCLIP_FUNCT6 << kRvvFunct6Shift),
VNCLIPU_FUNCT6 = 0b101110,
RO_V_VNCLIPU_WV = OP_IVV | (VNCLIPU_FUNCT6 << kRvvFunct6Shift),
RO_V_VNCLIPU_WX = OP_IVX | (VNCLIPU_FUNCT6 << kRvvFunct6Shift),
RO_V_VNCLIPU_WI = OP_IVI | (VNCLIPU_FUNCT6 << kRvvFunct6Shift),
};
// ----- Emulated conditions.
// On RISC-V we use this enum to abstract from conditional branch instructions.
// The 'U' prefix is used to specify unsigned comparisons.
// Opposite conditions must be paired as odd/even numbers
// because 'NegateCondition' function flips LSB to negate condition.
enum Condition {
overflow = 0,
no_overflow = 1,
Uless = 2,
Ugreater_equal = 3,
Uless_equal = 4,
Ugreater = 5,
equal = 6,
not_equal = 7, // Unordered or Not Equal.
less = 8,
greater_equal = 9,
less_equal = 10,
greater = 11,
cc_always = 12,
// Aliases.
eq = equal,
ne = not_equal,
ge = greater_equal,
lt = less,
gt = greater,
le = less_equal,
al = cc_always,
ult = Uless,
uge = Ugreater_equal,
ule = Uless_equal,
ugt = Ugreater,
};
// Returns the equivalent of !cc.
inline Condition NegateCondition(Condition cc) {
DCHECK(cc != cc_always);
return static_cast<Condition>(cc ^ 1);
}
inline Condition NegateFpuCondition(Condition cc) {
DCHECK(cc != cc_always);
switch (cc) {
case ult:
return ge;
case ugt:
return le;
case uge:
return lt;
case ule:
return gt;
case lt:
return uge;
case gt:
return ule;
case ge:
return ult;
case le:
return ugt;
case eq:
return ne;
case ne:
return eq;
default:
return cc;
}
}
// ----- Coprocessor conditions.
enum FPUCondition {
kNoFPUCondition = -1,
EQ = 0x02, // Ordered and Equal
NE = 0x03, // Unordered or Not Equal
LT = 0x04, // Ordered and Less Than
GE = 0x05, // Ordered and Greater Than or Equal
LE = 0x06, // Ordered and Less Than or Equal
GT = 0x07, // Ordered and Greater Than
};
enum CheckForInexactConversion {
kCheckForInexactConversion,
kDontCheckForInexactConversion
};
enum class MaxMinKind : int { kMin = 0, kMax = 1 };
// ----------------------------------------------------------------------------
// RISCV flags
enum ControlStatusReg {
csr_fflags = 0x001, // Floating-Point Accrued Exceptions (RW)
csr_frm = 0x002, // Floating-Point Dynamic Rounding Mode (RW)
csr_fcsr = 0x003, // Floating-Point Control and Status Register (RW)
csr_cycle = 0xc00, // Cycle counter for RDCYCLE instruction (RO)
csr_time = 0xc01, // Timer for RDTIME instruction (RO)
csr_instret = 0xc02, // Insns-retired counter for RDINSTRET instruction (RO)
csr_cycleh = 0xc80, // Upper 32 bits of cycle, RV32I only (RO)
csr_timeh = 0xc81, // Upper 32 bits of time, RV32I only (RO)
csr_instreth = 0xc82 // Upper 32 bits of instret, RV32I only (RO)
};
enum FFlagsMask {
kInvalidOperation = 0b10000, // NV: Invalid
kDivideByZero = 0b1000, // DZ: Divide by Zero
kOverflow = 0b100, // OF: Overflow
kUnderflow = 0b10, // UF: Underflow
kInexact = 0b1 // NX: Inexact
};
enum FPURoundingMode {
RNE = 0b000, // Round to Nearest, ties to Even
RTZ = 0b001, // Round towards Zero
RDN = 0b010, // Round Down (towards -infinity)
RUP = 0b011, // Round Up (towards +infinity)
RMM = 0b100, // Round to Nearest, tiest to Max Magnitude
DYN = 0b111 // In instruction's rm field, selects dynamic rounding mode;
// In Rounding Mode register, Invalid
};
enum MemoryOdering {
PSI = 0b1000, // PI or SI
PSO = 0b0100, // PO or SO
PSR = 0b0010, // PR or SR
PSW = 0b0001, // PW or SW
PSIORW = PSI | PSO | PSR | PSW
};
const int kFloat32ExponentBias = 127;
const int kFloat32MantissaBits = 23;
const int kFloat32ExponentBits = 8;
const int kFloat64ExponentBias = 1023;
const int kFloat64MantissaBits = 52;
const int kFloat64ExponentBits = 11;
enum FClassFlag {
kNegativeInfinity = 1,
kNegativeNormalNumber = 1 << 1,
kNegativeSubnormalNumber = 1 << 2,
kNegativeZero = 1 << 3,
kPositiveZero = 1 << 4,
kPositiveSubnormalNumber = 1 << 5,
kPositiveNormalNumber = 1 << 6,
kPositiveInfinity = 1 << 7,
kSignalingNaN = 1 << 8,
kQuietNaN = 1 << 9
};
#define RVV_SEW(V) \
V(E8) \
V(E16) \
V(E32) \
V(E64)
#define DEFINE_FLAG(name) name,
enum VSew {
RVV_SEW(DEFINE_FLAG)
#undef DEFINE_FLAG
};
#define RVV_LMUL(V) \
V(m1) \
V(m2) \
V(m4) \
V(m8) \
V(RESERVERD) \
V(mf8) \
V(mf4) \
V(mf2)
enum Vlmul {
#define DEFINE_FLAG(name) name,
RVV_LMUL(DEFINE_FLAG)
#undef DEFINE_FLAG
};
enum TailAgnosticType {
ta = 0x1, // Tail agnostic
tu = 0x0, // Tail undisturbed
};
enum MaskAgnosticType {
ma = 0x1, // Mask agnostic
mu = 0x0, // Mask undisturbed
};
enum MaskType {
Mask = 0x0, // use the mask
NoMask = 0x1,
};
// -----------------------------------------------------------------------------
// Hints.
// Branch hints are not used on RISC-V. They are defined so that they can
// appear in shared function signatures, but will be ignored in RISC-V
// implementations.
enum Hint { no_hint = 0 };
inline Hint NegateHint(Hint hint) { return no_hint; }
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-riscv64.cc, as they use named
// registers and other constants.
// An Illegal instruction
const Instr kIllegalInstr = 0; // All other bits are 0s (i.e., ecall)
// An ECALL instruction, used for redirected real time call
const Instr rtCallRedirInstr = SYSTEM; // All other bits are 0s (i.e., ecall)
// An EBreak instruction, used for debugging and semi-hosting
const Instr kBreakInstr = SYSTEM | 1 << kImm12Shift; // ebreak
constexpr uint8_t kInstrSize = 4;
constexpr uint8_t kShortInstrSize = 2;
constexpr uint8_t kInstrSizeLog2 = 2;
class InstructionBase {
public:
enum {
// On RISC-V, PC cannot actually be directly accessed. We behave as if PC
// was always the value of the current instruction being executed.
kPCReadOffset = 0
};
// Instruction type.
enum Type {
kRType,
kR4Type, // Special R4 for Q extension
kIType,
kSType,
kBType,
kUType,
kJType,
// C extension
kCRType,
kCIType,
kCSSType,
kCIWType,
kCLType,
kCSType,
kCAType,
kCBType,
kCJType,
// V extension
kVType,
kVLType,
kVSType,
kVAMOType,
kVIVVType,
kVFVVType,
kVMVVType,
kVIVIType,
kVIVXType,
kVFVFType,
kVMVXType,
kVSETType,
kUnsupported = -1
};
inline bool IsIllegalInstruction() const {
uint16_t FirstHalfWord = *reinterpret_cast<const uint16_t*>(this);
return FirstHalfWord == 0;
}
inline bool IsShortInstruction() const {
uint8_t FirstByte = *reinterpret_cast<const uint8_t*>(this);
return (FirstByte & 0x03) <= C2;
}
inline uint8_t InstructionSize() const {
return (FLAG_riscv_c_extension && this->IsShortInstruction())
? kShortInstrSize
: kInstrSize;
}
// Get the raw instruction bits.
inline Instr InstructionBits() const {
if (FLAG_riscv_c_extension && this->IsShortInstruction()) {
return 0x0000FFFF & (*reinterpret_cast<const ShortInstr*>(this));
}
return *reinterpret_cast<const Instr*>(this);
}
// Set the raw instruction bits to value.
inline void SetInstructionBits(Instr value) {
*reinterpret_cast<Instr*>(this) = value;
}
// Read one particular bit out of the instruction bits.
inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
// Read a bit field out of the instruction bits.
inline int Bits(int hi, int lo) const {
return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
}
// Accessors for the different named fields used in the RISC-V encoding.
inline Opcode BaseOpcodeValue() const {
return static_cast<Opcode>(
Bits(kBaseOpcodeShift + kBaseOpcodeBits - 1, kBaseOpcodeShift));
}
// Return the fields at their original place in the instruction encoding.
inline Opcode BaseOpcodeFieldRaw() const {
return static_cast<Opcode>(InstructionBits() & kBaseOpcodeMask);
}
// Safe to call within R-type instructions
inline int Funct7FieldRaw() const { return InstructionBits() & kFunct7Mask; }
// Safe to call within R-, I-, S-, or B-type instructions
inline int Funct3FieldRaw() const { return InstructionBits() & kFunct3Mask; }
// Safe to call within R-, I-, S-, or B-type instructions
inline int Rs1FieldRawNoAssert() const {
return InstructionBits() & kRs1FieldMask;
}
// Safe to call within R-, S-, or B-type instructions
inline int Rs2FieldRawNoAssert() const {
return InstructionBits() & kRs2FieldMask;
}
// Safe to call within R4-type instructions
inline int Rs3FieldRawNoAssert() const {
return InstructionBits() & kRs3FieldMask;
}
inline int32_t ITypeBits() const { return InstructionBits() & kITypeMask; }
inline int32_t InstructionOpcodeType() const {
if (IsShortInstruction()) {
return InstructionBits() & kRvcOpcodeMask;
} else {
return InstructionBits() & kBaseOpcodeMask;
}
}
// Get the encoding type of the instruction.
Type InstructionType() const;
protected:
InstructionBase() {}
};
template <class T>
class InstructionGetters : public T {
public:
inline int BaseOpcode() const {
return this->InstructionBits() & kBaseOpcodeMask;
}
inline int RvcOpcode() const {
DCHECK(this->IsShortInstruction());
return this->InstructionBits() & kRvcOpcodeMask;
}
inline int Rs1Value() const {
DCHECK(this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kR4Type ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType ||
this->InstructionType() == InstructionBase::kBType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kVType);
return this->Bits(kRs1Shift + kRs1Bits - 1, kRs1Shift);
}
inline int Rs2Value() const {
DCHECK(this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kR4Type ||
this->InstructionType() == InstructionBase::kSType ||
this->InstructionType() == InstructionBase::kBType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kVType);
return this->Bits(kRs2Shift + kRs2Bits - 1, kRs2Shift);
}
inline int Rs3Value() const {
DCHECK(this->InstructionType() == InstructionBase::kR4Type);
return this->Bits(kRs3Shift + kRs3Bits - 1, kRs3Shift);
}
inline int Vs1Value() const {
DCHECK(this->InstructionType() == InstructionBase::kVType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType);
return this->Bits(kVs1Shift + kVs1Bits - 1, kVs1Shift);
}
inline int Vs2Value() const {
DCHECK(this->InstructionType() == InstructionBase::kVType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType);
return this->Bits(kVs2Shift + kVs2Bits - 1, kVs2Shift);
}
inline int VdValue() const {
DCHECK(this->InstructionType() == InstructionBase::kVType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType);
return this->Bits(kVdShift + kVdBits - 1, kVdShift);
}
inline int RdValue() const {
DCHECK(this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kR4Type ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType ||
this->InstructionType() == InstructionBase::kUType ||
this->InstructionType() == InstructionBase::kJType ||
this->InstructionType() == InstructionBase::kVType);
return this->Bits(kRdShift + kRdBits - 1, kRdShift);
}
inline int RvcRdValue() const {
DCHECK(this->IsShortInstruction());
return this->Bits(kRvcRdShift + kRvcRdBits - 1, kRvcRdShift);
}
inline int RvcRs1Value() const { return this->RvcRdValue(); }
inline int RvcRs2Value() const {
DCHECK(this->IsShortInstruction());
return this->Bits(kRvcRs2Shift + kRvcRs2Bits - 1, kRvcRs2Shift);
}
inline int RvcRs1sValue() const {
DCHECK(this->IsShortInstruction());
return 0b1000 + this->Bits(kRvcRs1sShift + kRvcRs1sBits - 1, kRvcRs1sShift);
}
inline int RvcRs2sValue() const {
DCHECK(this->IsShortInstruction());
return 0b1000 + this->Bits(kRvcRs2sShift + kRvcRs2sBits - 1, kRvcRs2sShift);
}
inline int Funct7Value() const {
DCHECK(this->InstructionType() == InstructionBase::kRType);
return this->Bits(kFunct7Shift + kFunct7Bits - 1, kFunct7Shift);
}
inline int Funct3Value() const {
DCHECK(this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType ||
this->InstructionType() == InstructionBase::kBType);
return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift);
}
inline int Funct5Value() const {
DCHECK(this->InstructionType() == InstructionBase::kRType &&
this->BaseOpcode() == OP_FP);
return this->Bits(kFunct5Shift + kFunct5Bits - 1, kFunct5Shift);
}
inline int RvcFunct6Value() const {
DCHECK(this->IsShortInstruction());
return this->Bits(kRvcFunct6Shift + kRvcFunct6Bits - 1, kRvcFunct6Shift);
}
inline int RvcFunct4Value() const {
DCHECK(this->IsShortInstruction());
return this->Bits(kRvcFunct4Shift + kRvcFunct4Bits - 1, kRvcFunct4Shift);
}
inline int RvcFunct3Value() const {
DCHECK(this->IsShortInstruction());
return this->Bits(kRvcFunct3Shift + kRvcFunct3Bits - 1, kRvcFunct3Shift);
}
inline int RvcFunct2Value() const {
DCHECK(this->IsShortInstruction());
return this->Bits(kRvcFunct2Shift + kRvcFunct2Bits - 1, kRvcFunct2Shift);
}
inline int RvcFunct2BValue() const {
DCHECK(this->IsShortInstruction());
return this->Bits(kRvcFunct2BShift + kRvcFunct2Bits - 1, kRvcFunct2BShift);
}
inline int CsrValue() const {
DCHECK(this->InstructionType() == InstructionBase::kIType &&
this->BaseOpcode() == SYSTEM);
return (this->Bits(kCsrShift + kCsrBits - 1, kCsrShift));
}
inline int RoundMode() const {
DCHECK((this->InstructionType() == InstructionBase::kRType ||
this->InstructionType() == InstructionBase::kR4Type) &&
this->BaseOpcode() == OP_FP);
return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift);
}
inline int MemoryOrder(bool is_pred) const {
DCHECK((this->InstructionType() == InstructionBase::kIType &&
this->BaseOpcode() == MISC_MEM));
if (is_pred) {
return this->Bits(kPredOrderShift + kMemOrderBits - 1, kPredOrderShift);
} else {
return this->Bits(kSuccOrderShift + kMemOrderBits - 1, kSuccOrderShift);
}
}
inline int Imm12Value() const {
DCHECK(this->InstructionType() == InstructionBase::kIType);
int Value = this->Bits(kImm12Shift + kImm12Bits - 1, kImm12Shift);
return Value << 20 >> 20;
}
inline int32_t Imm12SExtValue() const {
int32_t Value = this->Imm12Value() << 20 >> 20;
return Value;
}
inline int BranchOffset() const {
DCHECK(this->InstructionType() == InstructionBase::kBType);
// | imm[12|10:5] | rs2 | rs1 | funct3 | imm[4:1|11] | opcode |
// 31 25 11 7
uint32_t Bits = this->InstructionBits();
int16_t imm13 = ((Bits & 0xf00) >> 7) | ((Bits & 0x7e000000) >> 20) |
((Bits & 0x80) << 4) | ((Bits & 0x80000000) >> 19);
return imm13 << 19 >> 19;
}
inline int StoreOffset() const {
DCHECK(this->InstructionType() == InstructionBase::kSType);
// | imm[11:5] | rs2 | rs1 | funct3 | imm[4:0] | opcode |
// 31 25 11 7
uint32_t Bits = this->InstructionBits();
int16_t imm12 = ((Bits & 0xf80) >> 7) | ((Bits & 0xfe000000) >> 20);
return imm12 << 20 >> 20;
}
inline int Imm20UValue() const {
DCHECK(this->InstructionType() == InstructionBase::kUType);
// | imm[31:12] | rd | opcode |
// 31 12
int32_t Bits = this->InstructionBits();
return Bits >> 12;
}
inline int Imm20JValue() const {
DCHECK(this->InstructionType() == InstructionBase::kJType);
// | imm[20|10:1|11|19:12] | rd | opcode |
// 31 12
uint32_t Bits = this->InstructionBits();
int32_t imm20 = ((Bits & 0x7fe00000) >> 20) | ((Bits & 0x100000) >> 9) |
(Bits & 0xff000) | ((Bits & 0x80000000) >> 11);
return imm20 << 11 >> 11;
}
inline bool IsArithShift() const {
// Valid only for right shift operations
DCHECK((this->BaseOpcode() == OP || this->BaseOpcode() == OP_32 ||
this->BaseOpcode() == OP_IMM || this->BaseOpcode() == OP_IMM_32) &&
this->Funct3Value() == 0b101);
return this->InstructionBits() & 0x40000000;
}
inline int Shamt() const {
// Valid only for shift instructions (SLLI, SRLI, SRAI)
DCHECK((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM &&
(this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101));
// | 0A0000 | shamt | rs1 | funct3 | rd | opcode |
// 31 25 20
return this->Bits(kImm12Shift + 5, kImm12Shift);
}
inline int Shamt32() const {
// Valid only for shift instructions (SLLIW, SRLIW, SRAIW)
DCHECK((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM_32 &&
(this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101));
// | 0A00000 | shamt | rs1 | funct3 | rd | opcode |
// 31 24 20
return this->Bits(kImm12Shift + 4, kImm12Shift);
}
inline int RvcImm6Value() const {
DCHECK(this->IsShortInstruction());
// | funct3 | imm[5] | rs1/rd | imm[4:0] | opcode |
// 15 12 6 2
uint32_t Bits = this->InstructionBits();
int32_t imm6 = ((Bits & 0x1000) >> 7) | ((Bits & 0x7c) >> 2);
return imm6 << 26 >> 26;
}
inline int RvcImm6Addi16spValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | nzimm[9] | 2 | nzimm[4|6|8:7|5] | opcode |
// 15 12 6 2
uint32_t Bits = this->InstructionBits();
int32_t imm10 = ((Bits & 0x1000) >> 3) | ((Bits & 0x40) >> 2) |
((Bits & 0x20) << 1) | ((Bits & 0x18) << 4) |
((Bits & 0x4) << 3);
DCHECK_NE(imm10, 0);
return imm10 << 22 >> 22;
}
inline int RvcImm8Addi4spnValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | nzimm[11] | rd' | opcode |
// 15 13 5 2
uint32_t Bits = this->InstructionBits();
int32_t uimm10 = ((Bits & 0x20) >> 2) | ((Bits & 0x40) >> 4) |
((Bits & 0x780) >> 1) | ((Bits & 0x1800) >> 7);
DCHECK_NE(uimm10, 0);
return uimm10;
}
inline int RvcShamt6() const {
DCHECK(this->IsShortInstruction());
// | funct3 | nzuimm[5] | rs1/rd | nzuimm[4:0] | opcode |
// 15 12 6 2
int32_t imm6 = this->RvcImm6Value();
return imm6 & 0x3f;
}
inline int RvcImm6LwspValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | uimm[5] | rs1 | uimm[4:2|7:6] | opcode |
// 15 12 6 2
uint32_t Bits = this->InstructionBits();
int32_t imm8 =
((Bits & 0x1000) >> 7) | ((Bits & 0x70) >> 2) | ((Bits & 0xc) << 4);
return imm8;
}
inline int RvcImm6LdspValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | uimm[5] | rs1 | uimm[4:3|8:6] | opcode |
// 15 12 6 2
uint32_t Bits = this->InstructionBits();
int32_t imm9 =
((Bits & 0x1000) >> 7) | ((Bits & 0x60) >> 2) | ((Bits & 0x1c) << 4);
return imm9;
}
inline int RvcImm6SwspValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | uimm[5:2|7:6] | rs2 | opcode |
// 15 12 7
uint32_t Bits = this->InstructionBits();
int32_t imm8 = ((Bits & 0x1e00) >> 7) | ((Bits & 0x180) >> 1);
return imm8;
}
inline int RvcImm6SdspValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | uimm[5:3|8:6] | rs2 | opcode |
// 15 12 7
uint32_t Bits = this->InstructionBits();
int32_t imm9 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x380) >> 1);
return imm9;
}
inline int RvcImm5WValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | imm[5:3] | rs1 | imm[2|6] | rd | opcode |
// 15 12 10 6 4 2
uint32_t Bits = this->InstructionBits();
int32_t imm7 =
((Bits & 0x1c00) >> 7) | ((Bits & 0x40) >> 4) | ((Bits & 0x20) << 1);
return imm7;
}
inline int RvcImm5DValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | imm[5:3] | rs1 | imm[7:6] | rd | opcode |
// 15 12 10 6 4 2
uint32_t Bits = this->InstructionBits();
int32_t imm8 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x60) << 1);
return imm8;
}
inline int RvcImm11CJValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | [11|4|9:8|10|6|7|3:1|5] | opcode |
// 15 12 2
uint32_t Bits = this->InstructionBits();
int32_t imm12 = ((Bits & 0x4) << 3) | ((Bits & 0x38) >> 2) |
((Bits & 0x40) << 1) | ((Bits & 0x80) >> 1) |
((Bits & 0x100) << 2) | ((Bits & 0x600) >> 1) |
((Bits & 0x800) >> 7) | ((Bits & 0x1000) >> 1);
return imm12 << 20 >> 20;
}
inline int RvcImm8BValue() const {
DCHECK(this->IsShortInstruction());
// | funct3 | imm[8|4:3] | rs1` | imm[7:6|2:1|5] | opcode |
// 15 12 10 7 2
uint32_t Bits = this->InstructionBits();
int32_t imm9 = ((Bits & 0x4) << 3) | ((Bits & 0x18) >> 2) |
((Bits & 0x60) << 1) | ((Bits & 0xc00) >> 7) |
((Bits & 0x1000) >> 4);
return imm9 << 23 >> 23;
}
inline int vl_vs_width() {
int width = 0;
if ((this->InstructionBits() & kBaseOpcodeMask) != LOAD_FP &&
(this->InstructionBits() & kBaseOpcodeMask) != STORE_FP)
return -1;
switch (this->InstructionBits() & (kRvvWidthMask | kRvvMewMask)) {
case 0x0:
width = 8;
break;
case 0x00005000:
width = 16;
break;
case 0x00006000:
width = 32;
break;
case 0x00007000:
width = 64;
break;
case 0x10000000:
width = 128;
break;
case 0x10005000:
width = 256;
break;
case 0x10006000:
width = 512;
break;
case 0x10007000:
width = 1024;
break;
default:
width = -1;
break;
}
return width;
}
inline uint32_t Rvvzimm() const {
if ((this->InstructionBits() &
(kBaseOpcodeMask | kFunct3Mask | 0x80000000)) == RO_V_VSETVLI) {
uint32_t Bits = this->InstructionBits();
uint32_t zimm = Bits & kRvvZimmMask;
return zimm >> kRvvZimmShift;
} else {
DCHECK_EQ(this->InstructionBits() &
(kBaseOpcodeMask | kFunct3Mask | 0xC0000000),
RO_V_VSETIVLI);
uint32_t Bits = this->InstructionBits();
uint32_t zimm = Bits & kRvvZimmMask;
return (zimm >> kRvvZimmShift) & 0x3FF;
}
}
inline uint32_t Rvvuimm() const {
DCHECK_EQ(
this->InstructionBits() & (kBaseOpcodeMask | kFunct3Mask | 0xC0000000),
RO_V_VSETIVLI);
uint32_t Bits = this->InstructionBits();
uint32_t uimm = Bits & kRvvUimmMask;
return uimm >> kRvvUimmShift;
}
inline uint32_t RvvVsew() const {
uint32_t zimm = this->Rvvzimm();
uint32_t vsew = (zimm >> 3) & 0x7;
return vsew;
}
inline uint32_t RvvVlmul() const {
uint32_t zimm = this->Rvvzimm();
uint32_t vlmul = zimm & 0x7;
return vlmul;
}
inline uint8_t RvvVM() const {
DCHECK(this->InstructionType() == InstructionBase::kVType ||
this->InstructionType() == InstructionBase::kIType ||
this->InstructionType() == InstructionBase::kSType);
return this->Bits(kRvvVmShift + kRvvVmBits - 1, kRvvVmShift);
}
inline const char* RvvSEW() const {
uint32_t vsew = this->RvvVsew();
switch (vsew) {
#define CAST_VSEW(name) \
case name: \
return #name;
RVV_SEW(CAST_VSEW)
default:
return "unknown";
#undef CAST_VSEW
}
}
inline const char* RvvLMUL() const {
uint32_t vlmul = this->RvvVlmul();
switch (vlmul) {
#define CAST_VLMUL(name) \
case name: \
return #name;
RVV_LMUL(CAST_VLMUL)
default:
return "unknown";
#undef CAST_VLMUL
}
}
#define sext(x, len) (((int32_t)(x) << (32 - len)) >> (32 - len))
#define zext(x, len) (((uint32_t)(x) << (32 - len)) >> (32 - len))
inline int32_t RvvSimm5() const {
DCHECK(this->InstructionType() == InstructionBase::kVType);
return sext(this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift),
kRvvImm5Bits);
}
inline uint32_t RvvUimm5() const {
DCHECK(this->InstructionType() == InstructionBase::kVType);
uint32_t imm = this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift);
return zext(imm, kRvvImm5Bits);
}
#undef sext
#undef zext
inline bool AqValue() const { return this->Bits(kAqShift, kAqShift); }
inline bool RlValue() const { return this->Bits(kRlShift, kRlShift); }
// Say if the instruction is a break or a trap.
bool IsTrap() const;
};
class Instruction : public InstructionGetters<InstructionBase> {
public:
// Instructions are read of out a code stream. The only way to get a
// reference to an instruction is to convert a pointer. There is no way
// to allocate or create instances of class Instruction.
// Use the At(pc) function to create references to Instruction.
static Instruction* At(byte* pc) {
return reinterpret_cast<Instruction*>(pc);
}
private:
// We need to prevent the creation of instances of class Instruction.
DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};
// -----------------------------------------------------------------------------
// RISC-V assembly various constants.
// C/C++ argument slots size.
const int kCArgSlotCount = 0;
// TODO(plind): below should be based on kSystemPointerSize
// TODO(plind): find all usages and remove the needless instructions for n64.
const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize * 2;
const int kInvalidStackOffset = -1;
const int kBranchReturnOffset = 2 * kInstrSize;
static const int kNegOffset = 0x00008000;
// -----------------------------------------------------------------------------
// Instructions.
template <class P>
bool InstructionGetters<P>::IsTrap() const {
return (this->InstructionBits() == kBreakInstr);
}
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_RISCV64_CONSTANTS_RISCV64_H_