blob: 4d63f18a688a3d3018357406ddc4a14db9f53ce1 [file] [log] [blame] [edit]
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif
#ifndef V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_
#define V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_
#include "src/codegen/assembler.h"
#include "src/codegen/riscv64/assembler-riscv64.h"
#include "src/common/globals.h"
#include "src/execution/isolate-data.h"
#include "src/objects/tagged-index.h"
namespace v8 {
namespace internal {
// Forward declarations.
enum class AbortReason : uint8_t;
// Reserved Register Usage Summary.
//
// Registers t5, t6, and t3 are reserved for use by the MacroAssembler.
//
// The programmer should know that the MacroAssembler may clobber these three,
// but won't touch other registers except in special cases.
//
// TODO(RISCV): Cannot find info about this ABI. We chose t6 for now.
// Per the RISC-V ABI, register t6 must be used for indirect function call
// via 'jalr t6' or 'jr t6' instructions. This is relied upon by gcc when
// trying to update gp register for position-independent-code. Whenever
// RISC-V generated code calls C code, it must be via t6 register.
// Flags used for LeaveExitFrame function.
enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false };
// Flags used for the li macro-assembler function.
enum LiFlags {
// If the constant value can be represented in just 16 bits, then
// optimize the li to use a single instruction, rather than lui/ori/slli
// sequence. A number of other optimizations that emits less than
// maximum number of instructions exists.
OPTIMIZE_SIZE = 0,
// Always use 8 instructions (lui/addi/slliw sequence), even if the
// constant
// could be loaded with just one, so that this value is patchable later.
CONSTANT_SIZE = 1,
// For address loads 8 instruction are required. Used to mark
// constant load that will be used as address without relocation
// information. It ensures predictable code size, so specific sites
// in code are patchable.
ADDRESS_LOAD = 2
};
enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg);
// -----------------------------------------------------------------------------
// Static helper functions.
#if defined(V8_TARGET_LITTLE_ENDIAN)
#define SmiWordOffset(offset) (offset + kSystemPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
// Generate a MemOperand for storing arguments 5..N on the stack
// when calling CallCFunction().
// TODO(plind): Currently ONLY used for O32. Should be fixed for
// n64, and used in RegExp code, and other places
// with more than 8 arguments.
inline MemOperand CFunctionArgumentOperand(int index) {
DCHECK_GT(index, kCArgSlotCount);
// Argument 5 takes the slot just past the four Arg-slots.
int offset = (index - 5) * kSystemPointerSize + kCArgsSlotsSize;
return MemOperand(sp, offset);
}
class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
public:
using TurboAssemblerBase::TurboAssemblerBase;
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on RISC-V.
UNREACHABLE();
}
void LeaveFrame(StackFrame::Type type);
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue();
void InitializeRootRegister() {
ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
li(kRootRegister, Operand(isolate_root));
#ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE
LoadRootRelative(kPtrComprCageBaseRegister,
IsolateData::cage_base_offset());
#endif
}
// Jump unconditionally to given label.
void jmp(Label* L) { Branch(L); }
// -------------------------------------------------------------------------
// Debugging.
void Trap();
void DebugBreak();
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, AbortReason reason, Register rs, Operand rt);
// Like Assert(), but always enabled.
void Check(Condition cc, AbortReason reason, Register rs, Operand rt);
// Print a message to stdout and abort execution.
void Abort(AbortReason msg);
// Arguments macros.
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2
#define COND_ARGS cond, r1, r2
// Cases when relocation is not needed.
#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
void Name(target_type target); \
void Name(target_type target, COND_TYPED_ARGS);
#define DECLARE_BRANCH_PROTOTYPES(Name) \
DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
DECLARE_BRANCH_PROTOTYPES(BranchShort)
void Branch(Label* target);
void Branch(int32_t target);
void BranchLong(Label* L);
void Branch(Label* target, Condition cond, Register r1, const Operand& r2,
Label::Distance near_jump = Label::kFar);
void Branch(int32_t target, Condition cond, Register r1, const Operand& r2,
Label::Distance near_jump = Label::kFar);
#undef DECLARE_BRANCH_PROTOTYPES
#undef COND_TYPED_ARGS
#undef COND_ARGS
void AllocateStackSpace(Register bytes) { Sub64(sp, sp, bytes); }
void AllocateStackSpace(int bytes) {
DCHECK_GE(bytes, 0);
if (bytes == 0) return;
Sub64(sp, sp, Operand(bytes));
}
inline void NegateBool(Register rd, Register rs) { Xor(rd, rs, 1); }
// Compare float, if any operand is NaN, result is false except for NE
void CompareF32(Register rd, FPUCondition cc, FPURegister cmp1,
FPURegister cmp2);
// Compare double, if any operand is NaN, result is false except for NE
void CompareF64(Register rd, FPUCondition cc, FPURegister cmp1,
FPURegister cmp2);
void CompareIsNotNanF32(Register rd, FPURegister cmp1, FPURegister cmp2);
void CompareIsNotNanF64(Register rd, FPURegister cmp1, FPURegister cmp2);
void CompareIsNanF32(Register rd, FPURegister cmp1, FPURegister cmp2);
void CompareIsNanF64(Register rd, FPURegister cmp1, FPURegister cmp2);
// Floating point branches
void BranchTrueShortF(Register rs, Label* target);
void BranchFalseShortF(Register rs, Label* target);
void BranchTrueF(Register rs, Label* target);
void BranchFalseF(Register rs, Label* target);
void Branch(Label* L, Condition cond, Register rs, RootIndex index);
static int InstrCountForLi64Bit(int64_t value);
inline void LiLower32BitHelper(Register rd, Operand j);
void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
// Load int32 in the rd register.
void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
li(rd, Operand(j), mode);
}
inline void Move(Register output, MemOperand operand) { Ld(output, operand); }
void li(Register dst, Handle<HeapObject> value,
RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE);
void li(Register dst, const StringConstantBase* string,
LiFlags mode = OPTIMIZE_SIZE);
void LoadFromConstantsTable(Register destination, int constant_index) final;
void LoadRootRegisterOffset(Register destination, intptr_t offset) final;
void LoadRootRelative(Register destination, int32_t offset) final;
inline void GenPCRelativeJump(Register rd, int64_t imm32) {
DCHECK(is_int32(imm32 + 0x800));
int32_t Hi20 = (((int32_t)imm32 + 0x800) >> 12);
int32_t Lo12 = (int32_t)imm32 << 20 >> 20;
auipc(rd, Hi20); // Read PC + Hi20 into scratch.
jr(rd, Lo12); // jump PC + Hi20 + Lo12
}
inline void GenPCRelativeJumpAndLink(Register rd, int64_t imm32) {
DCHECK(is_int32(imm32 + 0x800));
int32_t Hi20 = (((int32_t)imm32 + 0x800) >> 12);
int32_t Lo12 = (int32_t)imm32 << 20 >> 20;
auipc(rd, Hi20); // Read PC + Hi20 into scratch.
jalr(rd, Lo12); // jump PC + Hi20 + Lo12
}
// Jump, Call, and Ret pseudo instructions implementing inter-working.
#define COND_ARGS \
Condition cond = al, Register rs = zero_reg, \
const Operand &rt = Operand(zero_reg)
void Jump(Register target, COND_ARGS);
void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
// Deffer from li, this method save target to the memory, and then load
// it to register use ld, it can be used in wasm jump table for concurrent
// patching.
void PatchAndJump(Address target);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
void Jump(const ExternalReference& reference);
void Call(Register target, COND_ARGS);
void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
COND_ARGS);
void Call(Label* target);
void LoadAddress(
Register dst, Label* target,
RelocInfo::Mode rmode = RelocInfo::INTERNAL_REFERENCE_ENCODED);
// Load the builtin given by the Smi in |builtin| into the same
// register.
void LoadEntryFromBuiltinIndex(Register builtin);
void LoadEntryFromBuiltin(Builtin builtin, Register destination);
MemOperand EntryFromBuiltinAsOperand(Builtin builtin);
void CallBuiltinByIndex(Register builtin);
void CallBuiltin(Builtin builtin);
void TailCallBuiltin(Builtin builtin);
void LoadCodeObjectEntry(Register destination, Register code_object);
void CallCodeObject(Register code_object);
void JumpCodeObject(Register code_object,
JumpMode jump_mode = JumpMode::kJump);
// Generates an instruction sequence s.t. the return address points to the
// instruction following the call.
// The return address on the stack is used by frame iteration.
void StoreReturnAddressAndCall(Register target);
void CallForDeoptimization(Builtin target, int deopt_id, Label* exit,
DeoptimizeKind kind, Label* ret,
Label* jump_deoptimization_entry_label);
void Ret(COND_ARGS);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count, Condition cond = cc_always, Register reg = no_reg,
const Operand& op = Operand(no_reg));
// Trivial case of DropAndRet that only emits 2 instructions.
void DropAndRet(int drop);
void DropAndRet(int drop, Condition cond, Register reg, const Operand& op);
void Ld(Register rd, const MemOperand& rs);
void Sd(Register rd, const MemOperand& rs);
void push(Register src) {
Add64(sp, sp, Operand(-kSystemPointerSize));
Sd(src, MemOperand(sp, 0));
}
void Push(Register src) { push(src); }
void Push(Handle<HeapObject> handle);
void Push(Smi smi);
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2) {
Sub64(sp, sp, Operand(2 * kSystemPointerSize));
Sd(src1, MemOperand(sp, 1 * kSystemPointerSize));
Sd(src2, MemOperand(sp, 0 * kSystemPointerSize));
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3) {
Sub64(sp, sp, Operand(3 * kSystemPointerSize));
Sd(src1, MemOperand(sp, 2 * kSystemPointerSize));
Sd(src2, MemOperand(sp, 1 * kSystemPointerSize));
Sd(src3, MemOperand(sp, 0 * kSystemPointerSize));
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4) {
Sub64(sp, sp, Operand(4 * kSystemPointerSize));
Sd(src1, MemOperand(sp, 3 * kSystemPointerSize));
Sd(src2, MemOperand(sp, 2 * kSystemPointerSize));
Sd(src3, MemOperand(sp, 1 * kSystemPointerSize));
Sd(src4, MemOperand(sp, 0 * kSystemPointerSize));
}
// Push five registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4,
Register src5) {
Sub64(sp, sp, Operand(5 * kSystemPointerSize));
Sd(src1, MemOperand(sp, 4 * kSystemPointerSize));
Sd(src2, MemOperand(sp, 3 * kSystemPointerSize));
Sd(src3, MemOperand(sp, 2 * kSystemPointerSize));
Sd(src4, MemOperand(sp, 1 * kSystemPointerSize));
Sd(src5, MemOperand(sp, 0 * kSystemPointerSize));
}
void Push(Register src, Condition cond, Register tst1, Register tst2) {
// Since we don't have conditional execution we use a Branch.
Branch(3, cond, tst1, Operand(tst2));
Sub64(sp, sp, Operand(kSystemPointerSize));
Sd(src, MemOperand(sp, 0));
}
enum PushArrayOrder { kNormal, kReverse };
void PushArray(Register array, Register size, PushArrayOrder order = kNormal);
void MaybeSaveRegisters(RegList registers);
void MaybeRestoreRegisters(RegList registers);
void CallEphemeronKeyBarrier(Register object, Register slot_address,
SaveFPRegsMode fp_mode);
void CallRecordWriteStubSaveRegisters(
Register object, Register slot_address, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
void CallRecordWriteStub(
Register object, Register slot_address, SaveFPRegsMode fp_mode,
StubCallMode mode = StubCallMode::kCallBuiltinPointer);
// Push multiple registers on the stack.
// Registers are saved in numerical order, with higher numbered registers
// saved in higher memory addresses.
void MultiPush(RegList regs);
void MultiPushFPU(DoubleRegList regs);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg) const;
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
void pop(Register dst) {
Ld(dst, MemOperand(sp, 0));
Add64(sp, sp, Operand(kSystemPointerSize));
}
void Pop(Register dst) { pop(dst); }
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2) {
DCHECK(src1 != src2);
Ld(src2, MemOperand(sp, 0 * kSystemPointerSize));
Ld(src1, MemOperand(sp, 1 * kSystemPointerSize));
Add64(sp, sp, 2 * kSystemPointerSize);
}
// Pop three registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3) {
Ld(src3, MemOperand(sp, 0 * kSystemPointerSize));
Ld(src2, MemOperand(sp, 1 * kSystemPointerSize));
Ld(src1, MemOperand(sp, 2 * kSystemPointerSize));
Add64(sp, sp, 3 * kSystemPointerSize);
}
void Pop(uint32_t count = 1) {
Add64(sp, sp, Operand(count * kSystemPointerSize));
}
// Pops multiple values from the stack and load them in the
// registers specified in regs. Pop order is the opposite as in MultiPush.
void MultiPop(RegList regs);
void MultiPopFPU(DoubleRegList regs);
#define DEFINE_INSTRUCTION(instr) \
void instr(Register rd, Register rs, const Operand& rt); \
void instr(Register rd, Register rs, Register rt) { \
instr(rd, rs, Operand(rt)); \
} \
void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); }
#define DEFINE_INSTRUCTION2(instr) \
void instr(Register rs, const Operand& rt); \
void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \
void instr(Register rs, int32_t j) { instr(rs, Operand(j)); }
#define DEFINE_INSTRUCTION3(instr) void instr(Register rd, int64_t imm);
DEFINE_INSTRUCTION(Add32)
DEFINE_INSTRUCTION(Add64)
DEFINE_INSTRUCTION(Div32)
DEFINE_INSTRUCTION(Divu32)
DEFINE_INSTRUCTION(Divu64)
DEFINE_INSTRUCTION(Mod32)
DEFINE_INSTRUCTION(Modu32)
DEFINE_INSTRUCTION(Div64)
DEFINE_INSTRUCTION(Sub32)
DEFINE_INSTRUCTION(Sub64)
DEFINE_INSTRUCTION(Mod64)
DEFINE_INSTRUCTION(Modu64)
DEFINE_INSTRUCTION(Mul32)
DEFINE_INSTRUCTION(Mulh32)
DEFINE_INSTRUCTION(Mul64)
DEFINE_INSTRUCTION(Mulh64)
DEFINE_INSTRUCTION2(Div32)
DEFINE_INSTRUCTION2(Div64)
DEFINE_INSTRUCTION2(Divu32)
DEFINE_INSTRUCTION2(Divu64)
DEFINE_INSTRUCTION(And)
DEFINE_INSTRUCTION(Or)
DEFINE_INSTRUCTION(Xor)
DEFINE_INSTRUCTION(Nor)
DEFINE_INSTRUCTION2(Neg)
DEFINE_INSTRUCTION(Slt)
DEFINE_INSTRUCTION(Sltu)
DEFINE_INSTRUCTION(Sle)
DEFINE_INSTRUCTION(Sleu)
DEFINE_INSTRUCTION(Sgt)
DEFINE_INSTRUCTION(Sgtu)
DEFINE_INSTRUCTION(Sge)
DEFINE_INSTRUCTION(Sgeu)
DEFINE_INSTRUCTION(Seq)
DEFINE_INSTRUCTION(Sne)
DEFINE_INSTRUCTION(Sll64)
DEFINE_INSTRUCTION(Sra64)
DEFINE_INSTRUCTION(Srl64)
DEFINE_INSTRUCTION(Sll32)
DEFINE_INSTRUCTION(Sra32)
DEFINE_INSTRUCTION(Srl32)
DEFINE_INSTRUCTION2(Seqz)
DEFINE_INSTRUCTION2(Snez)
DEFINE_INSTRUCTION(Ror)
DEFINE_INSTRUCTION(Dror)
DEFINE_INSTRUCTION3(Li)
DEFINE_INSTRUCTION2(Mv)
#undef DEFINE_INSTRUCTION
#undef DEFINE_INSTRUCTION2
#undef DEFINE_INSTRUCTION3
void SmiUntag(Register dst, const MemOperand& src);
void SmiUntag(Register dst, Register src) {
DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
if (COMPRESS_POINTERS_BOOL) {
sraiw(dst, src, kSmiShift);
} else {
srai(dst, src, kSmiShift);
}
}
void SmiUntag(Register reg) { SmiUntag(reg, reg); }
void SmiToInt32(Register smi);
// Enabled via --debug-code.
void AssertNotSmi(Register object,
AbortReason reason = AbortReason::kOperandIsASmi);
void AssertSmi(Register object,
AbortReason reason = AbortReason::kOperandIsASmi);
int CalculateStackPassedDWords(int num_gp_arguments, int num_fp_arguments);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, non-register arguments must be stored on the
// stack, using helper: CFunctionArgumentOperand().
// The argument count assumes all arguments are word sized.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
Register scratch);
void PrepareCallCFunction(int num_reg_arguments, Register scratch);
// Arguments 1-8 are placed in registers a0 through a7 respectively.
// Arguments 9..n are stored to stack
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
void CallCFunction(ExternalReference function, int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments);
void MovFromFloatResult(DoubleRegister dst);
void MovFromFloatParameter(DoubleRegister dst);
// These functions abstract parameter passing for the three different ways
// we call C functions from generated code.
void MovToFloatParameter(DoubleRegister src);
void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
void MovToFloatResult(DoubleRegister src);
// See comments at the beginning of Builtins::Generate_CEntry.
inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
inline void PrepareCEntryFunction(const ExternalReference& ref) {
li(a1, ref);
}
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met);
#undef COND_ARGS
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer.
void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
DoubleRegister double_input, StubCallMode stub_mode);
void CompareI(Register rd, Register rs, const Operand& rt, Condition cond);
void LoadZeroIfConditionNotZero(Register dest, Register condition);
void LoadZeroIfConditionZero(Register dest, Register condition);
void SignExtendByte(Register rd, Register rs) {
slli(rd, rs, 64 - 8);
srai(rd, rd, 64 - 8);
}
void SignExtendShort(Register rd, Register rs) {
slli(rd, rs, 64 - 16);
srai(rd, rd, 64 - 16);
}
void SignExtendWord(Register rd, Register rs) { sext_w(rd, rs); }
void ZeroExtendWord(Register rd, Register rs) {
slli(rd, rs, 32);
srli(rd, rd, 32);
}
void Clz32(Register rd, Register rs);
void Clz64(Register rd, Register rs);
void Ctz32(Register rd, Register rs);
void Ctz64(Register rd, Register rs);
void Popcnt32(Register rd, Register rs, Register scratch);
void Popcnt64(Register rd, Register rs, Register scratch);
// Bit field starts at bit pos and extending for size bits is extracted from
// rs and stored zero/sign-extended and right-justified in rt
void ExtractBits(Register rt, Register rs, uint16_t pos, uint16_t size,
bool sign_extend = false);
void ExtractBits(Register dest, Register source, Register pos, int size,
bool sign_extend = false) {
sra(dest, source, pos);
ExtractBits(dest, dest, 0, size, sign_extend);
}
// Insert bits [0, size) of source to bits [pos, pos+size) of dest
void InsertBits(Register dest, Register source, Register pos, int size);
void Neg_s(FPURegister fd, FPURegister fs);
void Neg_d(FPURegister fd, FPURegister fs);
// Change endianness
void ByteSwap(Register dest, Register src, int operand_size,
Register scratch);
void Clear_if_nan_d(Register rd, FPURegister fs);
void Clear_if_nan_s(Register rd, FPURegister fs);
// Convert single to unsigned word.
void Trunc_uw_s(Register rd, FPURegister fs, Register result = no_reg);
// helper functions for unaligned load/store
template <int NBYTES, bool IS_SIGNED>
void UnalignedLoadHelper(Register rd, const MemOperand& rs);
template <int NBYTES>
void UnalignedStoreHelper(Register rd, const MemOperand& rs,
Register scratch_other = no_reg);
template <int NBYTES>
void UnalignedFLoadHelper(FPURegister frd, const MemOperand& rs,
Register scratch);
template <int NBYTES>
void UnalignedFStoreHelper(FPURegister frd, const MemOperand& rs,
Register scratch);
template <typename Reg_T, typename Func>
void AlignedLoadHelper(Reg_T target, const MemOperand& rs, Func generator);
template <typename Reg_T, typename Func>
void AlignedStoreHelper(Reg_T value, const MemOperand& rs, Func generator);
template <int NBYTES, bool LOAD_SIGNED>
void LoadNBytes(Register rd, const MemOperand& rs, Register scratch);
template <int NBYTES, bool LOAD_SIGNED>
void LoadNBytesOverwritingBaseReg(const MemOperand& rs, Register scratch0,
Register scratch1);
// load/store macros
void Ulh(Register rd, const MemOperand& rs);
void Ulhu(Register rd, const MemOperand& rs);
void Ush(Register rd, const MemOperand& rs);
void Ulw(Register rd, const MemOperand& rs);
void Ulwu(Register rd, const MemOperand& rs);
void Usw(Register rd, const MemOperand& rs);
void Uld(Register rd, const MemOperand& rs);
void Usd(Register rd, const MemOperand& rs);
void ULoadFloat(FPURegister fd, const MemOperand& rs, Register scratch);
void UStoreFloat(FPURegister fd, const MemOperand& rs, Register scratch);
void ULoadDouble(FPURegister fd, const MemOperand& rs, Register scratch);
void UStoreDouble(FPURegister fd, const MemOperand& rs, Register scratch);
void Lb(Register rd, const MemOperand& rs);
void Lbu(Register rd, const MemOperand& rs);
void Sb(Register rd, const MemOperand& rs);
void Lh(Register rd, const MemOperand& rs);
void Lhu(Register rd, const MemOperand& rs);
void Sh(Register rd, const MemOperand& rs);
void Lw(Register rd, const MemOperand& rs);
void Lwu(Register rd, const MemOperand& rs);
void Sw(Register rd, const MemOperand& rs);
void LoadFloat(FPURegister fd, const MemOperand& src);
void StoreFloat(FPURegister fs, const MemOperand& dst);
void LoadDouble(FPURegister fd, const MemOperand& src);
void StoreDouble(FPURegister fs, const MemOperand& dst);
void Ll(Register rd, const MemOperand& rs);
void Sc(Register rd, const MemOperand& rs);
void Lld(Register rd, const MemOperand& rs);
void Scd(Register rd, const MemOperand& rs);
void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2);
void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2);
void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2);
void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2);
template <typename F>
void FloatMinMaxHelper(FPURegister dst, FPURegister src1, FPURegister src2,
MaxMinKind kind);
bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
bool IsSingleZeroRegSet() { return has_single_zero_reg_set_; }
inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); }
inline void Move(Register dst, Register src) {
if (dst != src) {
mv(dst, src);
}
}
inline void MoveDouble(FPURegister dst, FPURegister src) {
if (dst != src) fmv_d(dst, src);
}
inline void MoveFloat(FPURegister dst, FPURegister src) {
if (dst != src) fmv_s(dst, src);
}
inline void Move(FPURegister dst, FPURegister src) { MoveDouble(dst, src); }
inline void Move(Register dst_low, Register dst_high, FPURegister src) {
fmv_x_d(dst_high, src);
fmv_x_w(dst_low, src);
srli(dst_high, dst_high, 32);
}
inline void Move(Register dst, FPURegister src) { fmv_x_d(dst, src); }
inline void Move(FPURegister dst, Register src) { fmv_d_x(dst, src); }
// Extract sign-extended word from high-half of FPR to GPR
inline void ExtractHighWordFromF64(Register dst_high, FPURegister src) {
fmv_x_d(dst_high, src);
srai(dst_high, dst_high, 32);
}
// Insert low-word from GPR (src_high) to the high-half of FPR (dst)
void InsertHighWordF64(FPURegister dst, Register src_high);
// Extract sign-extended word from low-half of FPR to GPR
inline void ExtractLowWordFromF64(Register dst_low, FPURegister src) {
fmv_x_w(dst_low, src);
}
// Insert low-word from GPR (src_high) to the low-half of FPR (dst)
void InsertLowWordF64(FPURegister dst, Register src_low);
void LoadFPRImmediate(FPURegister dst, float imm) {
LoadFPRImmediate(dst, base::bit_cast<uint32_t>(imm));
}
void LoadFPRImmediate(FPURegister dst, double imm) {
LoadFPRImmediate(dst, base::bit_cast<uint64_t>(imm));
}
void LoadFPRImmediate(FPURegister dst, uint32_t src);
void LoadFPRImmediate(FPURegister dst, uint64_t src);
// AddOverflow64 sets overflow register to a negative value if
// overflow occured, otherwise it is zero or positive
void AddOverflow64(Register dst, Register left, const Operand& right,
Register overflow);
// SubOverflow64 sets overflow register to a negative value if
// overflow occured, otherwise it is zero or positive
void SubOverflow64(Register dst, Register left, const Operand& right,
Register overflow);
// MulOverflow32 sets overflow register to zero if no overflow occured
void MulOverflow32(Register dst, Register left, const Operand& right,
Register overflow);
// MIPS-style 32-bit unsigned mulh
void Mulhu32(Register dst, Register left, const Operand& right,
Register left_zero, Register right_zero);
// Number of instructions needed for calculation of switch table entry address
static const int kSwitchTablePrologueSize = 6;
// GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
// functor/function with 'Label *func(size_t index)' declaration.
template <typename Func>
void GenerateSwitchTable(Register index, size_t case_count,
Func GetLabelFunction);
// Load an object from the root table.
void LoadRoot(Register destination, RootIndex index) final;
void LoadRoot(Register destination, RootIndex index, Condition cond,
Register src1, const Operand& src2);
void LoadMap(Register destination, Register object);
// If the value is a NaN, canonicalize the value else, do nothing.
void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
// ---------------------------------------------------------------------------
// FPU macros. These do not handle special cases like NaN or +- inf.
// Convert unsigned word to double.
void Cvt_d_uw(FPURegister fd, Register rs);
// convert signed word to double.
void Cvt_d_w(FPURegister fd, Register rs);
// Convert unsigned long to double.
void Cvt_d_ul(FPURegister fd, Register rs);
// Convert unsigned word to float.
void Cvt_s_uw(FPURegister fd, Register rs);
// convert signed word to float.
void Cvt_s_w(FPURegister fd, Register rs);
// Convert unsigned long to float.
void Cvt_s_ul(FPURegister fd, Register rs);
// Convert double to unsigned word.
void Trunc_uw_d(Register rd, FPURegister fs, Register result = no_reg);
// Convert double to signed word.
void Trunc_w_d(Register rd, FPURegister fs, Register result = no_reg);
// Convert single to signed word.
void Trunc_w_s(Register rd, FPURegister fs, Register result = no_reg);
// Convert double to unsigned long.
void Trunc_ul_d(Register rd, FPURegister fs, Register result = no_reg);
// Convert singled to signed long.
void Trunc_l_d(Register rd, FPURegister fs, Register result = no_reg);
// Convert single to unsigned long.
void Trunc_ul_s(Register rd, FPURegister fs, Register result = no_reg);
// Convert singled to signed long.
void Trunc_l_s(Register rd, FPURegister fs, Register result = no_reg);
// Round single to signed word.
void Round_w_s(Register rd, FPURegister fs, Register result = no_reg);
// Round double to signed word.
void Round_w_d(Register rd, FPURegister fs, Register result = no_reg);
// Ceil single to signed word.
void Ceil_w_s(Register rd, FPURegister fs, Register result = no_reg);
// Ceil double to signed word.
void Ceil_w_d(Register rd, FPURegister fs, Register result = no_reg);
// Floor single to signed word.
void Floor_w_s(Register rd, FPURegister fs, Register result = no_reg);
// Floor double to signed word.
void Floor_w_d(Register rd, FPURegister fs, Register result = no_reg);
// Round double functions
void Trunc_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
void Round_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
void Floor_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
void Ceil_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
// Round float functions
void Trunc_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
void Round_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
void Floor_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
void Ceil_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch);
void Ceil_f(VRegister dst, VRegister src, Register scratch,
VRegister v_scratch);
void Ceil_d(VRegister dst, VRegister src, Register scratch,
VRegister v_scratch);
void Floor_f(VRegister dst, VRegister src, Register scratch,
VRegister v_scratch);
void Floor_d(VRegister dst, VRegister src, Register scratch,
VRegister v_scratch);
void Trunc_f(VRegister dst, VRegister src, Register scratch,
VRegister v_scratch);
void Trunc_d(VRegister dst, VRegister src, Register scratch,
VRegister v_scratch);
void Round_f(VRegister dst, VRegister src, Register scratch,
VRegister v_scratch);
void Round_d(VRegister dst, VRegister src, Register scratch,
VRegister v_scratch);
// -------------------------------------------------------------------------
// Smi utilities.
void SmiTag(Register dst, Register src) {
static_assert(kSmiTag == 0);
if (SmiValuesAre32Bits()) {
// Smi goes to upper 32
slli(dst, src, 32);
} else {
DCHECK(SmiValuesAre31Bits());
// Smi is shifted left by 1
Add32(dst, src, src);
}
}
void SmiTag(Register reg) { SmiTag(reg, reg); }
// Jump the register contains a smi.
void JumpIfSmi(Register value, Label* smi_label);
void JumpIfEqual(Register a, int32_t b, Label* dest) {
Branch(dest, eq, a, Operand(b));
}
void JumpIfLessThan(Register a, int32_t b, Label* dest) {
Branch(dest, lt, a, Operand(b));
}
// Push a standard frame, consisting of ra, fp, context and JS function.
void PushStandardFrame(Register function_reg);
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
// Calculated scaled address (rd) as rt + rs << sa
void CalcScaledAddress(Register rd, Register rs, Register rt, uint8_t sa);
// Compute the start of the generated instruction stream from the current PC.
// This is an alternative to embedding the {CodeObject} handle as a reference.
void ComputeCodeStartAddress(Register dst);
// Control-flow integrity:
// Define a function entrypoint. This doesn't emit any code for this
// architecture, as control-flow integrity is not supported for it.
void CodeEntry() {}
// Define an exception handler.
void ExceptionHandler() {}
// Define an exception handler and bind a label.
void BindExceptionHandler(Label* label) { bind(label); }
// ---------------------------------------------------------------------------
// Pointer compression Support
// Loads a field containing a HeapObject and decompresses it if pointer
// compression is enabled.
void LoadTaggedPointerField(const Register& destination,
const MemOperand& field_operand);
// Loads a field containing any tagged value and decompresses it if necessary.
void LoadAnyTaggedField(const Register& destination,
const MemOperand& field_operand);
// Loads a field containing a tagged signed value and decompresses it if
// necessary.
void LoadTaggedSignedField(const Register& destination,
const MemOperand& field_operand);
// Loads a field containing smi value and untags it.
void SmiUntagField(Register dst, const MemOperand& src);
// Compresses and stores tagged value to given on-heap location.
void StoreTaggedField(const Register& value,
const MemOperand& dst_field_operand);
void DecompressTaggedSigned(const Register& destination,
const MemOperand& field_operand);
void DecompressTaggedPointer(const Register& destination,
const MemOperand& field_operand);
void DecompressTaggedPointer(const Register& destination,
const Register& source);
void DecompressAnyTagged(const Register& destination,
const MemOperand& field_operand);
void CmpTagged(const Register& rd, const Register& rs1, const Register& rs2) {
if (COMPRESS_POINTERS_BOOL) {
Sub32(rd, rs1, rs2);
} else {
Sub64(rd, rs1, rs2);
}
}
// Wasm into RVV
void WasmRvvExtractLane(Register dst, VRegister src, int8_t idx, VSew sew,
Vlmul lmul) {
VU.set(kScratchReg, sew, lmul);
VRegister Vsrc = idx != 0 ? kSimd128ScratchReg : src;
if (idx != 0) {
vslidedown_vi(kSimd128ScratchReg, src, idx);
}
vmv_xs(dst, Vsrc);
}
void WasmRvvEq(VRegister dst, VRegister lhs, VRegister rhs, VSew sew,
Vlmul lmul);
void WasmRvvNe(VRegister dst, VRegister lhs, VRegister rhs, VSew sew,
Vlmul lmul);
void WasmRvvGeS(VRegister dst, VRegister lhs, VRegister rhs, VSew sew,
Vlmul lmul);
void WasmRvvGeU(VRegister dst, VRegister lhs, VRegister rhs, VSew sew,
Vlmul lmul);
void WasmRvvGtS(VRegister dst, VRegister lhs, VRegister rhs, VSew sew,
Vlmul lmul);
void WasmRvvGtU(VRegister dst, VRegister lhs, VRegister rhs, VSew sew,
Vlmul lmul);
void WasmRvvS128const(VRegister dst, const uint8_t imms[16]);
void LoadLane(int sz, VRegister dst, uint8_t laneidx, MemOperand src);
void StoreLane(int sz, VRegister src, uint8_t laneidx, MemOperand dst);
protected:
inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
private:
bool has_double_zero_reg_set_ = false;
bool has_single_zero_reg_set_ = false;
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
// succeeds, otherwise falls through if result is saturated. On return
// 'result' either holds answer, or is clobbered on fall through.
void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
Label* done);
void CallCFunctionHelper(Register function, int num_reg_arguments,
int num_double_arguments);
// TODO(RISCV) Reorder parameters so out parameters come last.
bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits);
bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits,
Register* scratch, const Operand& rt);
void BranchShortHelper(int32_t offset, Label* L);
bool BranchShortHelper(int32_t offset, Label* L, Condition cond, Register rs,
const Operand& rt);
bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
const Operand& rt);
void BranchAndLinkShortHelper(int32_t offset, Label* L);
void BranchAndLinkShort(int32_t offset);
void BranchAndLinkShort(Label* L);
bool BranchAndLinkShortHelper(int32_t offset, Label* L, Condition cond,
Register rs, const Operand& rt);
bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
Register rs, const Operand& rt);
void BranchAndLinkLong(Label* L);
template <typename F_TYPE>
void RoundHelper(FPURegister dst, FPURegister src, FPURegister fpu_scratch,
FPURoundingMode mode);
template <typename F>
void RoundHelper(VRegister dst, VRegister src, Register scratch,
VRegister v_scratch, FPURoundingMode frm);
template <typename TruncFunc>
void RoundFloatingPointToInteger(Register rd, FPURegister fs, Register result,
TruncFunc trunc);
// Push a fixed frame, consisting of ra, fp.
void PushCommonFrame(Register marker_reg = no_reg);
};
// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
public:
using TurboAssembler::TurboAssembler;
// It assumes that the arguments are located below the stack pointer.
// argc is the number of arguments not including the receiver.
// TODO(victorgomes): Remove this function once we stick with the reversed
// arguments order.
void LoadReceiver(Register dest, Register argc) {
Ld(dest, MemOperand(sp, 0));
}
void StoreReceiver(Register rec, Register argc, Register scratch) {
Sd(rec, MemOperand(sp, 0));
}
bool IsNear(Label* L, Condition cond, int rs_reg);
// Swap two registers. If the scratch register is omitted then a slightly
// less efficient form using xor instead of mov is emitted.
void Swap(Register reg1, Register reg2, Register scratch = no_reg);
void PushRoot(RootIndex index) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
LoadRoot(scratch, index);
Push(scratch);
}
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
LoadRoot(scratch, index);
Branch(if_equal, eq, with, Operand(scratch));
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
LoadRoot(scratch, index);
Branch(if_not_equal, ne, with, Operand(scratch));
}
// Checks if value is in range [lower_limit, higher_limit] using a single
// comparison.
void JumpIfIsInRange(Register value, unsigned lower_limit,
unsigned higher_limit, Label* on_in_range);
// ---------------------------------------------------------------------------
// GC Support
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(Register object, int offset, Register value,
RAStatus ra_status, SaveFPRegsMode save_fp,
SmiCheck smi_check = SmiCheck::kInline);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(Register object, Operand offset, Register value,
RAStatus ra_status, SaveFPRegsMode save_fp,
SmiCheck smi_check = SmiCheck::kInline);
// void Pref(int32_t hint, const MemOperand& rs);
// ---------------------------------------------------------------------------
// Pseudo-instructions.
void LoadWordPair(Register rd, const MemOperand& rs);
void StoreWordPair(Register rd, const MemOperand& rs);
void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
// Enter exit frame.
// argc - argument count to be dropped by LeaveExitFrame.
// save_doubles - saves FPU registers on stack.
// stack_space - extra stack space.
void EnterExitFrame(bool save_doubles, int stack_space = 0,
StackFrame::Type frame_type = StackFrame::EXIT);
// Leave the current exit frame.
void LeaveExitFrame(bool save_doubles, Register arg_count,
bool do_return = NO_EMIT_RETURN,
bool argument_count_is_length = false);
// Make sure the stack is aligned. Only emits code in debug mode.
void AssertStackIsAligned();
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX);
}
void LoadNativeContextSlot(Register dst, int index);
// Load the initial map from the global function. The registers
// function and map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function, Register map,
Register scratch);
// -------------------------------------------------------------------------
// JavaScript invokes.
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// On function call, call into the debugger if necessary.
void CheckDebugHook(Register fun, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunctionWithNewTarget(Register function, Register new_target,
Register actual_parameter_count,
InvokeType type);
void InvokeFunction(Register function, Register expected_parameter_count,
Register actual_parameter_count, InvokeType type);
// Exception handling.
// Push a new stack handler and link into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
// Must preserve the result register.
void PopStackHandler();
// -------------------------------------------------------------------------
// Support functions.
void GetObjectType(Register function, Register map, Register type_reg);
void GetInstanceTypeRange(Register map, Register type_reg,
InstanceType lower_limit, Register range);
// -------------------------------------------------------------------------
// Runtime calls.
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to the builtin routine.
void JumpToExternalReference(const ExternalReference& builtin,
bool builtin_exit_frame = false);
// Generates a trampoline to jump to the off-heap instruction stream.
void JumpToOffHeapInstructionStream(Address entry);
// ---------------------------------------------------------------------------
// In-place weak references.
void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
// -------------------------------------------------------------------------
// StatsCounter support.
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2) {
if (!FLAG_native_code_counters) return;
EmitIncrementCounter(counter, value, scratch1, scratch2);
}
void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2) {
if (!FLAG_native_code_counters) return;
EmitDecrementCounter(counter, value, scratch1, scratch2);
}
void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
// -------------------------------------------------------------------------
// Stack limit utilities
enum StackLimitKind { kInterruptStackLimit, kRealStackLimit };
void LoadStackLimit(Register destination, StackLimitKind kind);
void StackOverflowCheck(Register num_args, Register scratch1,
Register scratch2, Label* stack_overflow,
Label* done = nullptr);
// Left-shifted from int32 equivalent of Smi.
void SmiScale(Register dst, Register src, int scale) {
if (SmiValuesAre32Bits()) {
// The int portion is upper 32-bits of 64-bit word.
srai(dst, src, (kSmiShift - scale) & 0x3F);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK_GE(scale, kSmiTagSize);
slliw(dst, src, scale - kSmiTagSize);
}
}
// Test if the register contains a smi.
inline void SmiTst(Register value, Register scratch) {
And(scratch, value, Operand(kSmiTagMask));
}
enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes };
void DropArguments(Register count, ArgumentsCountType type,
ArgumentsCountMode mode, Register scratch = no_reg);
void DropArgumentsAndPushNewReceiver(Register argc, Register receiver,
ArgumentsCountType type,
ArgumentsCountMode mode,
Register scratch = no_reg);
void JumpIfCodeTIsMarkedForDeoptimization(
Register codet, Register scratch, Label* if_marked_for_deoptimization);
Operand ClearedValue() const;
// Jump if the register contains a non-smi.
void JumpIfNotSmi(Register value, Label* not_smi_label);
// Abort execution if argument is not a Constructor, enabled via --debug-code.
void AssertConstructor(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a callable JSFunction, enabled via
// --debug-code.
void AssertCallableFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
template <typename Field>
void DecodeField(Register dst, Register src) {
ExtractBits(dst, src, Field::kShift, Field::kSize);
}
template <typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
private:
// Helper functions for generating invokes.
void InvokePrologue(Register expected_parameter_count,
Register actual_parameter_count, Label* done,
InvokeType type);
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class CommonFrame;
DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};
template <typename Func>
void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count,
Func GetLabelFunction) {
// Ensure that dd-ed labels following this instruction use 8 bytes aligned
// addresses.
BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
kSwitchTablePrologueSize);
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
Register scratch2 = temps.Acquire();
Align(8);
// Load the address from the jump table at index and jump to it
auipc(scratch, 0); // Load the current PC into scratch
slli(scratch2, index,
kSystemPointerSizeLog2); // scratch2 = offset of indexth entry
add(scratch2, scratch2,
scratch); // scratch2 = (saved PC) + (offset of indexth entry)
ld(scratch2, scratch2,
6 * kInstrSize); // Add the size of these 6 instructions to the
// offset, then load
jr(scratch2); // Jump to the address loaded from the table
nop(); // For 16-byte alignment
for (size_t index = 0; index < case_count; ++index) {
dd(GetLabelFunction(index));
}
}
struct MoveCycleState {
// Whether a move in the cycle needs the scratch or double scratch register.
bool pending_scratch_register_use = false;
bool pending_double_scratch_register_use = false;
};
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_