| // Copyright 2021 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H |
| #error This header must be included via macro-assembler.h |
| #endif |
| |
| #ifndef V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_ |
| #define V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_ |
| |
| #include "src/codegen/assembler.h" |
| #include "src/codegen/riscv64/assembler-riscv64.h" |
| #include "src/common/globals.h" |
| #include "src/execution/isolate-data.h" |
| #include "src/objects/tagged-index.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Forward declarations. |
| enum class AbortReason : uint8_t; |
| |
| // Reserved Register Usage Summary. |
| // |
| // Registers t5, t6, and t3 are reserved for use by the MacroAssembler. |
| // |
| // The programmer should know that the MacroAssembler may clobber these three, |
| // but won't touch other registers except in special cases. |
| // |
| // TODO(RISCV): Cannot find info about this ABI. We chose t6 for now. |
| // Per the RISC-V ABI, register t6 must be used for indirect function call |
| // via 'jalr t6' or 'jr t6' instructions. This is relied upon by gcc when |
| // trying to update gp register for position-independent-code. Whenever |
| // RISC-V generated code calls C code, it must be via t6 register. |
| |
| // Flags used for LeaveExitFrame function. |
| enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false }; |
| |
| // Flags used for the li macro-assembler function. |
| enum LiFlags { |
| // If the constant value can be represented in just 16 bits, then |
| // optimize the li to use a single instruction, rather than lui/ori/slli |
| // sequence. A number of other optimizations that emits less than |
| // maximum number of instructions exists. |
| OPTIMIZE_SIZE = 0, |
| // Always use 8 instructions (lui/addi/slliw sequence), even if the |
| // constant |
| // could be loaded with just one, so that this value is patchable later. |
| CONSTANT_SIZE = 1, |
| // For address loads 8 instruction are required. Used to mark |
| // constant load that will be used as address without relocation |
| // information. It ensures predictable code size, so specific sites |
| // in code are patchable. |
| ADDRESS_LOAD = 2 |
| }; |
| |
| enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved }; |
| |
| Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg, |
| Register reg3 = no_reg, |
| Register reg4 = no_reg, |
| Register reg5 = no_reg, |
| Register reg6 = no_reg); |
| |
| // ----------------------------------------------------------------------------- |
| // Static helper functions. |
| |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| #define SmiWordOffset(offset) (offset + kSystemPointerSize / 2) |
| #else |
| #define SmiWordOffset(offset) offset |
| #endif |
| |
| // Generate a MemOperand for loading a field from an object. |
| inline MemOperand FieldMemOperand(Register object, int offset) { |
| return MemOperand(object, offset - kHeapObjectTag); |
| } |
| |
| // Generate a MemOperand for storing arguments 5..N on the stack |
| // when calling CallCFunction(). |
| // TODO(plind): Currently ONLY used for O32. Should be fixed for |
| // n64, and used in RegExp code, and other places |
| // with more than 8 arguments. |
| inline MemOperand CFunctionArgumentOperand(int index) { |
| DCHECK_GT(index, kCArgSlotCount); |
| // Argument 5 takes the slot just past the four Arg-slots. |
| int offset = (index - 5) * kSystemPointerSize + kCArgsSlotsSize; |
| return MemOperand(sp, offset); |
| } |
| |
| class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase { |
| public: |
| using TurboAssemblerBase::TurboAssemblerBase; |
| |
| // Activation support. |
| void EnterFrame(StackFrame::Type type); |
| void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { |
| // Out-of-line constant pool not implemented on RISC-V. |
| UNREACHABLE(); |
| } |
| void LeaveFrame(StackFrame::Type type); |
| |
| // Generates function and stub prologue code. |
| void StubPrologue(StackFrame::Type type); |
| void Prologue(); |
| |
| void InitializeRootRegister() { |
| ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); |
| li(kRootRegister, Operand(isolate_root)); |
| #ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE |
| LoadRootRelative(kPtrComprCageBaseRegister, |
| IsolateData::cage_base_offset()); |
| #endif |
| } |
| |
| // Jump unconditionally to given label. |
| void jmp(Label* L) { Branch(L); } |
| |
| // ------------------------------------------------------------------------- |
| // Debugging. |
| |
| void Trap(); |
| void DebugBreak(); |
| |
| // Calls Abort(msg) if the condition cc is not satisfied. |
| // Use --debug_code to enable. |
| void Assert(Condition cc, AbortReason reason, Register rs, Operand rt); |
| |
| // Like Assert(), but always enabled. |
| void Check(Condition cc, AbortReason reason, Register rs, Operand rt); |
| |
| // Print a message to stdout and abort execution. |
| void Abort(AbortReason msg); |
| |
| // Arguments macros. |
| #define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2 |
| #define COND_ARGS cond, r1, r2 |
| |
| // Cases when relocation is not needed. |
| #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \ |
| void Name(target_type target); \ |
| void Name(target_type target, COND_TYPED_ARGS); |
| |
| #define DECLARE_BRANCH_PROTOTYPES(Name) \ |
| DECLARE_NORELOC_PROTOTYPE(Name, Label*) \ |
| DECLARE_NORELOC_PROTOTYPE(Name, int32_t) |
| |
| DECLARE_BRANCH_PROTOTYPES(BranchAndLink) |
| DECLARE_BRANCH_PROTOTYPES(BranchShort) |
| |
| void Branch(Label* target); |
| void Branch(int32_t target); |
| void BranchLong(Label* L); |
| void Branch(Label* target, Condition cond, Register r1, const Operand& r2, |
| Label::Distance near_jump = Label::kFar); |
| void Branch(int32_t target, Condition cond, Register r1, const Operand& r2, |
| Label::Distance near_jump = Label::kFar); |
| #undef DECLARE_BRANCH_PROTOTYPES |
| #undef COND_TYPED_ARGS |
| #undef COND_ARGS |
| |
| void AllocateStackSpace(Register bytes) { Sub64(sp, sp, bytes); } |
| |
| void AllocateStackSpace(int bytes) { |
| DCHECK_GE(bytes, 0); |
| if (bytes == 0) return; |
| Sub64(sp, sp, Operand(bytes)); |
| } |
| |
| inline void NegateBool(Register rd, Register rs) { Xor(rd, rs, 1); } |
| |
| // Compare float, if any operand is NaN, result is false except for NE |
| void CompareF32(Register rd, FPUCondition cc, FPURegister cmp1, |
| FPURegister cmp2); |
| // Compare double, if any operand is NaN, result is false except for NE |
| void CompareF64(Register rd, FPUCondition cc, FPURegister cmp1, |
| FPURegister cmp2); |
| void CompareIsNotNanF32(Register rd, FPURegister cmp1, FPURegister cmp2); |
| void CompareIsNotNanF64(Register rd, FPURegister cmp1, FPURegister cmp2); |
| void CompareIsNanF32(Register rd, FPURegister cmp1, FPURegister cmp2); |
| void CompareIsNanF64(Register rd, FPURegister cmp1, FPURegister cmp2); |
| |
| // Floating point branches |
| void BranchTrueShortF(Register rs, Label* target); |
| void BranchFalseShortF(Register rs, Label* target); |
| |
| void BranchTrueF(Register rs, Label* target); |
| void BranchFalseF(Register rs, Label* target); |
| |
| void Branch(Label* L, Condition cond, Register rs, RootIndex index); |
| |
| static int InstrCountForLi64Bit(int64_t value); |
| inline void LiLower32BitHelper(Register rd, Operand j); |
| void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); |
| // Load int32 in the rd register. |
| void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); |
| inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) { |
| li(rd, Operand(j), mode); |
| } |
| |
| inline void Move(Register output, MemOperand operand) { Ld(output, operand); } |
| void li(Register dst, Handle<HeapObject> value, |
| RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT); |
| void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE); |
| void li(Register dst, const StringConstantBase* string, |
| LiFlags mode = OPTIMIZE_SIZE); |
| |
| void LoadFromConstantsTable(Register destination, int constant_index) final; |
| void LoadRootRegisterOffset(Register destination, intptr_t offset) final; |
| void LoadRootRelative(Register destination, int32_t offset) final; |
| |
| inline void GenPCRelativeJump(Register rd, int64_t imm32) { |
| DCHECK(is_int32(imm32 + 0x800)); |
| int32_t Hi20 = (((int32_t)imm32 + 0x800) >> 12); |
| int32_t Lo12 = (int32_t)imm32 << 20 >> 20; |
| auipc(rd, Hi20); // Read PC + Hi20 into scratch. |
| jr(rd, Lo12); // jump PC + Hi20 + Lo12 |
| } |
| |
| inline void GenPCRelativeJumpAndLink(Register rd, int64_t imm32) { |
| DCHECK(is_int32(imm32 + 0x800)); |
| int32_t Hi20 = (((int32_t)imm32 + 0x800) >> 12); |
| int32_t Lo12 = (int32_t)imm32 << 20 >> 20; |
| auipc(rd, Hi20); // Read PC + Hi20 into scratch. |
| jalr(rd, Lo12); // jump PC + Hi20 + Lo12 |
| } |
| // Jump, Call, and Ret pseudo instructions implementing inter-working. |
| #define COND_ARGS \ |
| Condition cond = al, Register rs = zero_reg, \ |
| const Operand &rt = Operand(zero_reg) |
| |
| void Jump(Register target, COND_ARGS); |
| void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS); |
| void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| // Deffer from li, this method save target to the memory, and then load |
| // it to register use ld, it can be used in wasm jump table for concurrent |
| // patching. |
| void PatchAndJump(Address target); |
| void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS); |
| void Jump(const ExternalReference& reference); |
| void Call(Register target, COND_ARGS); |
| void Call(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
| COND_ARGS); |
| void Call(Label* target); |
| void LoadAddress( |
| Register dst, Label* target, |
| RelocInfo::Mode rmode = RelocInfo::INTERNAL_REFERENCE_ENCODED); |
| |
| // Load the builtin given by the Smi in |builtin| into the same |
| // register. |
| void LoadEntryFromBuiltinIndex(Register builtin); |
| void LoadEntryFromBuiltin(Builtin builtin, Register destination); |
| MemOperand EntryFromBuiltinAsOperand(Builtin builtin); |
| void CallBuiltinByIndex(Register builtin); |
| void CallBuiltin(Builtin builtin); |
| void TailCallBuiltin(Builtin builtin); |
| |
| void LoadCodeObjectEntry(Register destination, Register code_object); |
| void CallCodeObject(Register code_object); |
| void JumpCodeObject(Register code_object, |
| JumpMode jump_mode = JumpMode::kJump); |
| |
| // Generates an instruction sequence s.t. the return address points to the |
| // instruction following the call. |
| // The return address on the stack is used by frame iteration. |
| void StoreReturnAddressAndCall(Register target); |
| |
| void CallForDeoptimization(Builtin target, int deopt_id, Label* exit, |
| DeoptimizeKind kind, Label* ret, |
| Label* jump_deoptimization_entry_label); |
| |
| void Ret(COND_ARGS); |
| |
| // Emit code to discard a non-negative number of pointer-sized elements |
| // from the stack, clobbering only the sp register. |
| void Drop(int count, Condition cond = cc_always, Register reg = no_reg, |
| const Operand& op = Operand(no_reg)); |
| |
| // Trivial case of DropAndRet that only emits 2 instructions. |
| void DropAndRet(int drop); |
| |
| void DropAndRet(int drop, Condition cond, Register reg, const Operand& op); |
| |
| void Ld(Register rd, const MemOperand& rs); |
| void Sd(Register rd, const MemOperand& rs); |
| |
| void push(Register src) { |
| Add64(sp, sp, Operand(-kSystemPointerSize)); |
| Sd(src, MemOperand(sp, 0)); |
| } |
| void Push(Register src) { push(src); } |
| void Push(Handle<HeapObject> handle); |
| void Push(Smi smi); |
| |
| // Push two registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2) { |
| Sub64(sp, sp, Operand(2 * kSystemPointerSize)); |
| Sd(src1, MemOperand(sp, 1 * kSystemPointerSize)); |
| Sd(src2, MemOperand(sp, 0 * kSystemPointerSize)); |
| } |
| |
| // Push three registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3) { |
| Sub64(sp, sp, Operand(3 * kSystemPointerSize)); |
| Sd(src1, MemOperand(sp, 2 * kSystemPointerSize)); |
| Sd(src2, MemOperand(sp, 1 * kSystemPointerSize)); |
| Sd(src3, MemOperand(sp, 0 * kSystemPointerSize)); |
| } |
| |
| // Push four registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3, Register src4) { |
| Sub64(sp, sp, Operand(4 * kSystemPointerSize)); |
| Sd(src1, MemOperand(sp, 3 * kSystemPointerSize)); |
| Sd(src2, MemOperand(sp, 2 * kSystemPointerSize)); |
| Sd(src3, MemOperand(sp, 1 * kSystemPointerSize)); |
| Sd(src4, MemOperand(sp, 0 * kSystemPointerSize)); |
| } |
| |
| // Push five registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3, Register src4, |
| Register src5) { |
| Sub64(sp, sp, Operand(5 * kSystemPointerSize)); |
| Sd(src1, MemOperand(sp, 4 * kSystemPointerSize)); |
| Sd(src2, MemOperand(sp, 3 * kSystemPointerSize)); |
| Sd(src3, MemOperand(sp, 2 * kSystemPointerSize)); |
| Sd(src4, MemOperand(sp, 1 * kSystemPointerSize)); |
| Sd(src5, MemOperand(sp, 0 * kSystemPointerSize)); |
| } |
| |
| void Push(Register src, Condition cond, Register tst1, Register tst2) { |
| // Since we don't have conditional execution we use a Branch. |
| Branch(3, cond, tst1, Operand(tst2)); |
| Sub64(sp, sp, Operand(kSystemPointerSize)); |
| Sd(src, MemOperand(sp, 0)); |
| } |
| |
| enum PushArrayOrder { kNormal, kReverse }; |
| void PushArray(Register array, Register size, PushArrayOrder order = kNormal); |
| |
| void MaybeSaveRegisters(RegList registers); |
| void MaybeRestoreRegisters(RegList registers); |
| |
| void CallEphemeronKeyBarrier(Register object, Register slot_address, |
| SaveFPRegsMode fp_mode); |
| |
| void CallRecordWriteStubSaveRegisters( |
| Register object, Register slot_address, SaveFPRegsMode fp_mode, |
| StubCallMode mode = StubCallMode::kCallBuiltinPointer); |
| void CallRecordWriteStub( |
| Register object, Register slot_address, SaveFPRegsMode fp_mode, |
| StubCallMode mode = StubCallMode::kCallBuiltinPointer); |
| |
| // Push multiple registers on the stack. |
| // Registers are saved in numerical order, with higher numbered registers |
| // saved in higher memory addresses. |
| void MultiPush(RegList regs); |
| void MultiPushFPU(DoubleRegList regs); |
| |
| // Calculate how much stack space (in bytes) are required to store caller |
| // registers excluding those specified in the arguments. |
| int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1 = no_reg, |
| Register exclusion2 = no_reg, |
| Register exclusion3 = no_reg) const; |
| |
| // Push caller saved registers on the stack, and return the number of bytes |
| // stack pointer is adjusted. |
| int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, |
| Register exclusion2 = no_reg, |
| Register exclusion3 = no_reg); |
| // Restore caller saved registers from the stack, and return the number of |
| // bytes stack pointer is adjusted. |
| int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, |
| Register exclusion2 = no_reg, |
| Register exclusion3 = no_reg); |
| |
| void pop(Register dst) { |
| Ld(dst, MemOperand(sp, 0)); |
| Add64(sp, sp, Operand(kSystemPointerSize)); |
| } |
| void Pop(Register dst) { pop(dst); } |
| |
| // Pop two registers. Pops rightmost register first (from lower address). |
| void Pop(Register src1, Register src2) { |
| DCHECK(src1 != src2); |
| Ld(src2, MemOperand(sp, 0 * kSystemPointerSize)); |
| Ld(src1, MemOperand(sp, 1 * kSystemPointerSize)); |
| Add64(sp, sp, 2 * kSystemPointerSize); |
| } |
| |
| // Pop three registers. Pops rightmost register first (from lower address). |
| void Pop(Register src1, Register src2, Register src3) { |
| Ld(src3, MemOperand(sp, 0 * kSystemPointerSize)); |
| Ld(src2, MemOperand(sp, 1 * kSystemPointerSize)); |
| Ld(src1, MemOperand(sp, 2 * kSystemPointerSize)); |
| Add64(sp, sp, 3 * kSystemPointerSize); |
| } |
| |
| void Pop(uint32_t count = 1) { |
| Add64(sp, sp, Operand(count * kSystemPointerSize)); |
| } |
| |
| // Pops multiple values from the stack and load them in the |
| // registers specified in regs. Pop order is the opposite as in MultiPush. |
| void MultiPop(RegList regs); |
| void MultiPopFPU(DoubleRegList regs); |
| |
| #define DEFINE_INSTRUCTION(instr) \ |
| void instr(Register rd, Register rs, const Operand& rt); \ |
| void instr(Register rd, Register rs, Register rt) { \ |
| instr(rd, rs, Operand(rt)); \ |
| } \ |
| void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); } |
| |
| #define DEFINE_INSTRUCTION2(instr) \ |
| void instr(Register rs, const Operand& rt); \ |
| void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \ |
| void instr(Register rs, int32_t j) { instr(rs, Operand(j)); } |
| |
| #define DEFINE_INSTRUCTION3(instr) void instr(Register rd, int64_t imm); |
| |
| DEFINE_INSTRUCTION(Add32) |
| DEFINE_INSTRUCTION(Add64) |
| DEFINE_INSTRUCTION(Div32) |
| DEFINE_INSTRUCTION(Divu32) |
| DEFINE_INSTRUCTION(Divu64) |
| DEFINE_INSTRUCTION(Mod32) |
| DEFINE_INSTRUCTION(Modu32) |
| DEFINE_INSTRUCTION(Div64) |
| DEFINE_INSTRUCTION(Sub32) |
| DEFINE_INSTRUCTION(Sub64) |
| DEFINE_INSTRUCTION(Mod64) |
| DEFINE_INSTRUCTION(Modu64) |
| DEFINE_INSTRUCTION(Mul32) |
| DEFINE_INSTRUCTION(Mulh32) |
| DEFINE_INSTRUCTION(Mul64) |
| DEFINE_INSTRUCTION(Mulh64) |
| DEFINE_INSTRUCTION2(Div32) |
| DEFINE_INSTRUCTION2(Div64) |
| DEFINE_INSTRUCTION2(Divu32) |
| DEFINE_INSTRUCTION2(Divu64) |
| |
| DEFINE_INSTRUCTION(And) |
| DEFINE_INSTRUCTION(Or) |
| DEFINE_INSTRUCTION(Xor) |
| DEFINE_INSTRUCTION(Nor) |
| DEFINE_INSTRUCTION2(Neg) |
| |
| DEFINE_INSTRUCTION(Slt) |
| DEFINE_INSTRUCTION(Sltu) |
| DEFINE_INSTRUCTION(Sle) |
| DEFINE_INSTRUCTION(Sleu) |
| DEFINE_INSTRUCTION(Sgt) |
| DEFINE_INSTRUCTION(Sgtu) |
| DEFINE_INSTRUCTION(Sge) |
| DEFINE_INSTRUCTION(Sgeu) |
| DEFINE_INSTRUCTION(Seq) |
| DEFINE_INSTRUCTION(Sne) |
| |
| DEFINE_INSTRUCTION(Sll64) |
| DEFINE_INSTRUCTION(Sra64) |
| DEFINE_INSTRUCTION(Srl64) |
| DEFINE_INSTRUCTION(Sll32) |
| DEFINE_INSTRUCTION(Sra32) |
| DEFINE_INSTRUCTION(Srl32) |
| |
| DEFINE_INSTRUCTION2(Seqz) |
| DEFINE_INSTRUCTION2(Snez) |
| |
| DEFINE_INSTRUCTION(Ror) |
| DEFINE_INSTRUCTION(Dror) |
| |
| DEFINE_INSTRUCTION3(Li) |
| DEFINE_INSTRUCTION2(Mv) |
| |
| #undef DEFINE_INSTRUCTION |
| #undef DEFINE_INSTRUCTION2 |
| #undef DEFINE_INSTRUCTION3 |
| |
| void SmiUntag(Register dst, const MemOperand& src); |
| void SmiUntag(Register dst, Register src) { |
| DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits()); |
| if (COMPRESS_POINTERS_BOOL) { |
| sraiw(dst, src, kSmiShift); |
| } else { |
| srai(dst, src, kSmiShift); |
| } |
| } |
| |
| void SmiUntag(Register reg) { SmiUntag(reg, reg); } |
| void SmiToInt32(Register smi); |
| |
| // Enabled via --debug-code. |
| void AssertNotSmi(Register object, |
| AbortReason reason = AbortReason::kOperandIsASmi); |
| void AssertSmi(Register object, |
| AbortReason reason = AbortReason::kOperandIsASmi); |
| |
| int CalculateStackPassedDWords(int num_gp_arguments, int num_fp_arguments); |
| |
| // Before calling a C-function from generated code, align arguments on stack. |
| // After aligning the frame, non-register arguments must be stored on the |
| // stack, using helper: CFunctionArgumentOperand(). |
| // The argument count assumes all arguments are word sized. |
| // Some compilers/platforms require the stack to be aligned when calling |
| // C++ code. |
| // Needs a scratch register to do some arithmetic. This register will be |
| // trashed. |
| void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, |
| Register scratch); |
| void PrepareCallCFunction(int num_reg_arguments, Register scratch); |
| |
| // Arguments 1-8 are placed in registers a0 through a7 respectively. |
| // Arguments 9..n are stored to stack |
| |
| // Calls a C function and cleans up the space for arguments allocated |
| // by PrepareCallCFunction. The called function is not allowed to trigger a |
| // garbage collection, since that might move the code and invalidate the |
| // return address (unless this is somehow accounted for by the called |
| // function). |
| void CallCFunction(ExternalReference function, int num_arguments); |
| void CallCFunction(Register function, int num_arguments); |
| void CallCFunction(ExternalReference function, int num_reg_arguments, |
| int num_double_arguments); |
| void CallCFunction(Register function, int num_reg_arguments, |
| int num_double_arguments); |
| void MovFromFloatResult(DoubleRegister dst); |
| void MovFromFloatParameter(DoubleRegister dst); |
| |
| // These functions abstract parameter passing for the three different ways |
| // we call C functions from generated code. |
| void MovToFloatParameter(DoubleRegister src); |
| void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); |
| void MovToFloatResult(DoubleRegister src); |
| |
| // See comments at the beginning of Builtins::Generate_CEntry. |
| inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); } |
| inline void PrepareCEntryFunction(const ExternalReference& ref) { |
| li(a1, ref); |
| } |
| |
| void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, |
| Label* condition_met); |
| #undef COND_ARGS |
| |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. See ECMA-262 9.5: ToInt32. |
| // Exits with 'result' holding the answer. |
| void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, |
| DoubleRegister double_input, StubCallMode stub_mode); |
| |
| void CompareI(Register rd, Register rs, const Operand& rt, Condition cond); |
| |
| void LoadZeroIfConditionNotZero(Register dest, Register condition); |
| void LoadZeroIfConditionZero(Register dest, Register condition); |
| |
| void SignExtendByte(Register rd, Register rs) { |
| slli(rd, rs, 64 - 8); |
| srai(rd, rd, 64 - 8); |
| } |
| |
| void SignExtendShort(Register rd, Register rs) { |
| slli(rd, rs, 64 - 16); |
| srai(rd, rd, 64 - 16); |
| } |
| |
| void SignExtendWord(Register rd, Register rs) { sext_w(rd, rs); } |
| void ZeroExtendWord(Register rd, Register rs) { |
| slli(rd, rs, 32); |
| srli(rd, rd, 32); |
| } |
| |
| void Clz32(Register rd, Register rs); |
| void Clz64(Register rd, Register rs); |
| void Ctz32(Register rd, Register rs); |
| void Ctz64(Register rd, Register rs); |
| void Popcnt32(Register rd, Register rs, Register scratch); |
| void Popcnt64(Register rd, Register rs, Register scratch); |
| |
| // Bit field starts at bit pos and extending for size bits is extracted from |
| // rs and stored zero/sign-extended and right-justified in rt |
| void ExtractBits(Register rt, Register rs, uint16_t pos, uint16_t size, |
| bool sign_extend = false); |
| void ExtractBits(Register dest, Register source, Register pos, int size, |
| bool sign_extend = false) { |
| sra(dest, source, pos); |
| ExtractBits(dest, dest, 0, size, sign_extend); |
| } |
| |
| // Insert bits [0, size) of source to bits [pos, pos+size) of dest |
| void InsertBits(Register dest, Register source, Register pos, int size); |
| |
| void Neg_s(FPURegister fd, FPURegister fs); |
| void Neg_d(FPURegister fd, FPURegister fs); |
| |
| // Change endianness |
| void ByteSwap(Register dest, Register src, int operand_size, |
| Register scratch); |
| |
| void Clear_if_nan_d(Register rd, FPURegister fs); |
| void Clear_if_nan_s(Register rd, FPURegister fs); |
| // Convert single to unsigned word. |
| void Trunc_uw_s(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // helper functions for unaligned load/store |
| template <int NBYTES, bool IS_SIGNED> |
| void UnalignedLoadHelper(Register rd, const MemOperand& rs); |
| template <int NBYTES> |
| void UnalignedStoreHelper(Register rd, const MemOperand& rs, |
| Register scratch_other = no_reg); |
| |
| template <int NBYTES> |
| void UnalignedFLoadHelper(FPURegister frd, const MemOperand& rs, |
| Register scratch); |
| template <int NBYTES> |
| void UnalignedFStoreHelper(FPURegister frd, const MemOperand& rs, |
| Register scratch); |
| |
| template <typename Reg_T, typename Func> |
| void AlignedLoadHelper(Reg_T target, const MemOperand& rs, Func generator); |
| template <typename Reg_T, typename Func> |
| void AlignedStoreHelper(Reg_T value, const MemOperand& rs, Func generator); |
| |
| template <int NBYTES, bool LOAD_SIGNED> |
| void LoadNBytes(Register rd, const MemOperand& rs, Register scratch); |
| template <int NBYTES, bool LOAD_SIGNED> |
| void LoadNBytesOverwritingBaseReg(const MemOperand& rs, Register scratch0, |
| Register scratch1); |
| // load/store macros |
| void Ulh(Register rd, const MemOperand& rs); |
| void Ulhu(Register rd, const MemOperand& rs); |
| void Ush(Register rd, const MemOperand& rs); |
| |
| void Ulw(Register rd, const MemOperand& rs); |
| void Ulwu(Register rd, const MemOperand& rs); |
| void Usw(Register rd, const MemOperand& rs); |
| |
| void Uld(Register rd, const MemOperand& rs); |
| void Usd(Register rd, const MemOperand& rs); |
| |
| void ULoadFloat(FPURegister fd, const MemOperand& rs, Register scratch); |
| void UStoreFloat(FPURegister fd, const MemOperand& rs, Register scratch); |
| |
| void ULoadDouble(FPURegister fd, const MemOperand& rs, Register scratch); |
| void UStoreDouble(FPURegister fd, const MemOperand& rs, Register scratch); |
| |
| void Lb(Register rd, const MemOperand& rs); |
| void Lbu(Register rd, const MemOperand& rs); |
| void Sb(Register rd, const MemOperand& rs); |
| |
| void Lh(Register rd, const MemOperand& rs); |
| void Lhu(Register rd, const MemOperand& rs); |
| void Sh(Register rd, const MemOperand& rs); |
| |
| void Lw(Register rd, const MemOperand& rs); |
| void Lwu(Register rd, const MemOperand& rs); |
| void Sw(Register rd, const MemOperand& rs); |
| |
| void LoadFloat(FPURegister fd, const MemOperand& src); |
| void StoreFloat(FPURegister fs, const MemOperand& dst); |
| |
| void LoadDouble(FPURegister fd, const MemOperand& src); |
| void StoreDouble(FPURegister fs, const MemOperand& dst); |
| |
| void Ll(Register rd, const MemOperand& rs); |
| void Sc(Register rd, const MemOperand& rs); |
| |
| void Lld(Register rd, const MemOperand& rs); |
| void Scd(Register rd, const MemOperand& rs); |
| |
| void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2); |
| void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2); |
| void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2); |
| void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2); |
| template <typename F> |
| void FloatMinMaxHelper(FPURegister dst, FPURegister src1, FPURegister src2, |
| MaxMinKind kind); |
| |
| bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; } |
| bool IsSingleZeroRegSet() { return has_single_zero_reg_set_; } |
| |
| inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); } |
| |
| inline void Move(Register dst, Register src) { |
| if (dst != src) { |
| mv(dst, src); |
| } |
| } |
| |
| inline void MoveDouble(FPURegister dst, FPURegister src) { |
| if (dst != src) fmv_d(dst, src); |
| } |
| |
| inline void MoveFloat(FPURegister dst, FPURegister src) { |
| if (dst != src) fmv_s(dst, src); |
| } |
| |
| inline void Move(FPURegister dst, FPURegister src) { MoveDouble(dst, src); } |
| |
| inline void Move(Register dst_low, Register dst_high, FPURegister src) { |
| fmv_x_d(dst_high, src); |
| fmv_x_w(dst_low, src); |
| srli(dst_high, dst_high, 32); |
| } |
| |
| inline void Move(Register dst, FPURegister src) { fmv_x_d(dst, src); } |
| |
| inline void Move(FPURegister dst, Register src) { fmv_d_x(dst, src); } |
| |
| // Extract sign-extended word from high-half of FPR to GPR |
| inline void ExtractHighWordFromF64(Register dst_high, FPURegister src) { |
| fmv_x_d(dst_high, src); |
| srai(dst_high, dst_high, 32); |
| } |
| |
| // Insert low-word from GPR (src_high) to the high-half of FPR (dst) |
| void InsertHighWordF64(FPURegister dst, Register src_high); |
| |
| // Extract sign-extended word from low-half of FPR to GPR |
| inline void ExtractLowWordFromF64(Register dst_low, FPURegister src) { |
| fmv_x_w(dst_low, src); |
| } |
| |
| // Insert low-word from GPR (src_high) to the low-half of FPR (dst) |
| void InsertLowWordF64(FPURegister dst, Register src_low); |
| |
| void LoadFPRImmediate(FPURegister dst, float imm) { |
| LoadFPRImmediate(dst, base::bit_cast<uint32_t>(imm)); |
| } |
| void LoadFPRImmediate(FPURegister dst, double imm) { |
| LoadFPRImmediate(dst, base::bit_cast<uint64_t>(imm)); |
| } |
| void LoadFPRImmediate(FPURegister dst, uint32_t src); |
| void LoadFPRImmediate(FPURegister dst, uint64_t src); |
| |
| // AddOverflow64 sets overflow register to a negative value if |
| // overflow occured, otherwise it is zero or positive |
| void AddOverflow64(Register dst, Register left, const Operand& right, |
| Register overflow); |
| // SubOverflow64 sets overflow register to a negative value if |
| // overflow occured, otherwise it is zero or positive |
| void SubOverflow64(Register dst, Register left, const Operand& right, |
| Register overflow); |
| // MulOverflow32 sets overflow register to zero if no overflow occured |
| void MulOverflow32(Register dst, Register left, const Operand& right, |
| Register overflow); |
| |
| // MIPS-style 32-bit unsigned mulh |
| void Mulhu32(Register dst, Register left, const Operand& right, |
| Register left_zero, Register right_zero); |
| |
| // Number of instructions needed for calculation of switch table entry address |
| static const int kSwitchTablePrologueSize = 6; |
| |
| // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a |
| // functor/function with 'Label *func(size_t index)' declaration. |
| template <typename Func> |
| void GenerateSwitchTable(Register index, size_t case_count, |
| Func GetLabelFunction); |
| |
| // Load an object from the root table. |
| void LoadRoot(Register destination, RootIndex index) final; |
| void LoadRoot(Register destination, RootIndex index, Condition cond, |
| Register src1, const Operand& src2); |
| |
| void LoadMap(Register destination, Register object); |
| |
| // If the value is a NaN, canonicalize the value else, do nothing. |
| void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); |
| |
| // --------------------------------------------------------------------------- |
| // FPU macros. These do not handle special cases like NaN or +- inf. |
| |
| // Convert unsigned word to double. |
| void Cvt_d_uw(FPURegister fd, Register rs); |
| |
| // convert signed word to double. |
| void Cvt_d_w(FPURegister fd, Register rs); |
| |
| // Convert unsigned long to double. |
| void Cvt_d_ul(FPURegister fd, Register rs); |
| |
| // Convert unsigned word to float. |
| void Cvt_s_uw(FPURegister fd, Register rs); |
| |
| // convert signed word to float. |
| void Cvt_s_w(FPURegister fd, Register rs); |
| |
| // Convert unsigned long to float. |
| void Cvt_s_ul(FPURegister fd, Register rs); |
| |
| // Convert double to unsigned word. |
| void Trunc_uw_d(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Convert double to signed word. |
| void Trunc_w_d(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Convert single to signed word. |
| void Trunc_w_s(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Convert double to unsigned long. |
| void Trunc_ul_d(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Convert singled to signed long. |
| void Trunc_l_d(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Convert single to unsigned long. |
| void Trunc_ul_s(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Convert singled to signed long. |
| void Trunc_l_s(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Round single to signed word. |
| void Round_w_s(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Round double to signed word. |
| void Round_w_d(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Ceil single to signed word. |
| void Ceil_w_s(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Ceil double to signed word. |
| void Ceil_w_d(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Floor single to signed word. |
| void Floor_w_s(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Floor double to signed word. |
| void Floor_w_d(Register rd, FPURegister fs, Register result = no_reg); |
| |
| // Round double functions |
| void Trunc_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); |
| void Round_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); |
| void Floor_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); |
| void Ceil_d_d(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); |
| |
| // Round float functions |
| void Trunc_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); |
| void Round_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); |
| void Floor_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); |
| void Ceil_s_s(FPURegister fd, FPURegister fs, FPURegister fpu_scratch); |
| |
| void Ceil_f(VRegister dst, VRegister src, Register scratch, |
| VRegister v_scratch); |
| |
| void Ceil_d(VRegister dst, VRegister src, Register scratch, |
| VRegister v_scratch); |
| |
| void Floor_f(VRegister dst, VRegister src, Register scratch, |
| VRegister v_scratch); |
| void Floor_d(VRegister dst, VRegister src, Register scratch, |
| VRegister v_scratch); |
| void Trunc_f(VRegister dst, VRegister src, Register scratch, |
| VRegister v_scratch); |
| void Trunc_d(VRegister dst, VRegister src, Register scratch, |
| VRegister v_scratch); |
| void Round_f(VRegister dst, VRegister src, Register scratch, |
| VRegister v_scratch); |
| void Round_d(VRegister dst, VRegister src, Register scratch, |
| VRegister v_scratch); |
| |
| // ------------------------------------------------------------------------- |
| // Smi utilities. |
| |
| void SmiTag(Register dst, Register src) { |
| static_assert(kSmiTag == 0); |
| if (SmiValuesAre32Bits()) { |
| // Smi goes to upper 32 |
| slli(dst, src, 32); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| // Smi is shifted left by 1 |
| Add32(dst, src, src); |
| } |
| } |
| |
| void SmiTag(Register reg) { SmiTag(reg, reg); } |
| |
| // Jump the register contains a smi. |
| void JumpIfSmi(Register value, Label* smi_label); |
| |
| void JumpIfEqual(Register a, int32_t b, Label* dest) { |
| Branch(dest, eq, a, Operand(b)); |
| } |
| |
| void JumpIfLessThan(Register a, int32_t b, Label* dest) { |
| Branch(dest, lt, a, Operand(b)); |
| } |
| |
| // Push a standard frame, consisting of ra, fp, context and JS function. |
| void PushStandardFrame(Register function_reg); |
| |
| // Get the actual activation frame alignment for target environment. |
| static int ActivationFrameAlignment(); |
| |
| // Calculated scaled address (rd) as rt + rs << sa |
| void CalcScaledAddress(Register rd, Register rs, Register rt, uint8_t sa); |
| |
| // Compute the start of the generated instruction stream from the current PC. |
| // This is an alternative to embedding the {CodeObject} handle as a reference. |
| void ComputeCodeStartAddress(Register dst); |
| |
| // Control-flow integrity: |
| |
| // Define a function entrypoint. This doesn't emit any code for this |
| // architecture, as control-flow integrity is not supported for it. |
| void CodeEntry() {} |
| // Define an exception handler. |
| void ExceptionHandler() {} |
| // Define an exception handler and bind a label. |
| void BindExceptionHandler(Label* label) { bind(label); } |
| |
| // --------------------------------------------------------------------------- |
| // Pointer compression Support |
| |
| // Loads a field containing a HeapObject and decompresses it if pointer |
| // compression is enabled. |
| void LoadTaggedPointerField(const Register& destination, |
| const MemOperand& field_operand); |
| |
| // Loads a field containing any tagged value and decompresses it if necessary. |
| void LoadAnyTaggedField(const Register& destination, |
| const MemOperand& field_operand); |
| |
| // Loads a field containing a tagged signed value and decompresses it if |
| // necessary. |
| void LoadTaggedSignedField(const Register& destination, |
| const MemOperand& field_operand); |
| |
| // Loads a field containing smi value and untags it. |
| void SmiUntagField(Register dst, const MemOperand& src); |
| |
| // Compresses and stores tagged value to given on-heap location. |
| void StoreTaggedField(const Register& value, |
| const MemOperand& dst_field_operand); |
| |
| void DecompressTaggedSigned(const Register& destination, |
| const MemOperand& field_operand); |
| void DecompressTaggedPointer(const Register& destination, |
| const MemOperand& field_operand); |
| void DecompressTaggedPointer(const Register& destination, |
| const Register& source); |
| void DecompressAnyTagged(const Register& destination, |
| const MemOperand& field_operand); |
| void CmpTagged(const Register& rd, const Register& rs1, const Register& rs2) { |
| if (COMPRESS_POINTERS_BOOL) { |
| Sub32(rd, rs1, rs2); |
| } else { |
| Sub64(rd, rs1, rs2); |
| } |
| } |
| // Wasm into RVV |
| void WasmRvvExtractLane(Register dst, VRegister src, int8_t idx, VSew sew, |
| Vlmul lmul) { |
| VU.set(kScratchReg, sew, lmul); |
| VRegister Vsrc = idx != 0 ? kSimd128ScratchReg : src; |
| if (idx != 0) { |
| vslidedown_vi(kSimd128ScratchReg, src, idx); |
| } |
| vmv_xs(dst, Vsrc); |
| } |
| |
| void WasmRvvEq(VRegister dst, VRegister lhs, VRegister rhs, VSew sew, |
| Vlmul lmul); |
| |
| void WasmRvvNe(VRegister dst, VRegister lhs, VRegister rhs, VSew sew, |
| Vlmul lmul); |
| void WasmRvvGeS(VRegister dst, VRegister lhs, VRegister rhs, VSew sew, |
| Vlmul lmul); |
| void WasmRvvGeU(VRegister dst, VRegister lhs, VRegister rhs, VSew sew, |
| Vlmul lmul); |
| void WasmRvvGtS(VRegister dst, VRegister lhs, VRegister rhs, VSew sew, |
| Vlmul lmul); |
| void WasmRvvGtU(VRegister dst, VRegister lhs, VRegister rhs, VSew sew, |
| Vlmul lmul); |
| void WasmRvvS128const(VRegister dst, const uint8_t imms[16]); |
| |
| void LoadLane(int sz, VRegister dst, uint8_t laneidx, MemOperand src); |
| void StoreLane(int sz, VRegister src, uint8_t laneidx, MemOperand dst); |
| |
| protected: |
| inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch); |
| inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits); |
| |
| private: |
| bool has_double_zero_reg_set_ = false; |
| bool has_single_zero_reg_set_ = false; |
| |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it |
| // succeeds, otherwise falls through if result is saturated. On return |
| // 'result' either holds answer, or is clobbered on fall through. |
| void TryInlineTruncateDoubleToI(Register result, DoubleRegister input, |
| Label* done); |
| |
| void CallCFunctionHelper(Register function, int num_reg_arguments, |
| int num_double_arguments); |
| |
| // TODO(RISCV) Reorder parameters so out parameters come last. |
| bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits); |
| bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits, |
| Register* scratch, const Operand& rt); |
| |
| void BranchShortHelper(int32_t offset, Label* L); |
| bool BranchShortHelper(int32_t offset, Label* L, Condition cond, Register rs, |
| const Operand& rt); |
| bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs, |
| const Operand& rt); |
| |
| void BranchAndLinkShortHelper(int32_t offset, Label* L); |
| void BranchAndLinkShort(int32_t offset); |
| void BranchAndLinkShort(Label* L); |
| bool BranchAndLinkShortHelper(int32_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt); |
| bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt); |
| void BranchAndLinkLong(Label* L); |
| |
| template <typename F_TYPE> |
| void RoundHelper(FPURegister dst, FPURegister src, FPURegister fpu_scratch, |
| FPURoundingMode mode); |
| |
| template <typename F> |
| void RoundHelper(VRegister dst, VRegister src, Register scratch, |
| VRegister v_scratch, FPURoundingMode frm); |
| |
| template <typename TruncFunc> |
| void RoundFloatingPointToInteger(Register rd, FPURegister fs, Register result, |
| TruncFunc trunc); |
| |
| // Push a fixed frame, consisting of ra, fp. |
| void PushCommonFrame(Register marker_reg = no_reg); |
| }; |
| |
| // MacroAssembler implements a collection of frequently used macros. |
| class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler { |
| public: |
| using TurboAssembler::TurboAssembler; |
| |
| // It assumes that the arguments are located below the stack pointer. |
| // argc is the number of arguments not including the receiver. |
| // TODO(victorgomes): Remove this function once we stick with the reversed |
| // arguments order. |
| void LoadReceiver(Register dest, Register argc) { |
| Ld(dest, MemOperand(sp, 0)); |
| } |
| |
| void StoreReceiver(Register rec, Register argc, Register scratch) { |
| Sd(rec, MemOperand(sp, 0)); |
| } |
| |
| bool IsNear(Label* L, Condition cond, int rs_reg); |
| |
| // Swap two registers. If the scratch register is omitted then a slightly |
| // less efficient form using xor instead of mov is emitted. |
| void Swap(Register reg1, Register reg2, Register scratch = no_reg); |
| |
| void PushRoot(RootIndex index) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| LoadRoot(scratch, index); |
| Push(scratch); |
| } |
| |
| // Compare the object in a register to a value and jump if they are equal. |
| void JumpIfRoot(Register with, RootIndex index, Label* if_equal) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| LoadRoot(scratch, index); |
| Branch(if_equal, eq, with, Operand(scratch)); |
| } |
| |
| // Compare the object in a register to a value and jump if they are not equal. |
| void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| LoadRoot(scratch, index); |
| Branch(if_not_equal, ne, with, Operand(scratch)); |
| } |
| |
| // Checks if value is in range [lower_limit, higher_limit] using a single |
| // comparison. |
| void JumpIfIsInRange(Register value, unsigned lower_limit, |
| unsigned higher_limit, Label* on_in_range); |
| |
| // --------------------------------------------------------------------------- |
| // GC Support |
| |
| // Notify the garbage collector that we wrote a pointer into an object. |
| // |object| is the object being stored into, |value| is the object being |
| // stored. value and scratch registers are clobbered by the operation. |
| // The offset is the offset from the start of the object, not the offset from |
| // the tagged HeapObject pointer. For use with FieldOperand(reg, off). |
| void RecordWriteField(Register object, int offset, Register value, |
| RAStatus ra_status, SaveFPRegsMode save_fp, |
| SmiCheck smi_check = SmiCheck::kInline); |
| |
| // For a given |object| notify the garbage collector that the slot |address| |
| // has been written. |value| is the object being stored. The value and |
| // address registers are clobbered by the operation. |
| void RecordWrite(Register object, Operand offset, Register value, |
| RAStatus ra_status, SaveFPRegsMode save_fp, |
| SmiCheck smi_check = SmiCheck::kInline); |
| |
| // void Pref(int32_t hint, const MemOperand& rs); |
| |
| // --------------------------------------------------------------------------- |
| // Pseudo-instructions. |
| |
| void LoadWordPair(Register rd, const MemOperand& rs); |
| void StoreWordPair(Register rd, const MemOperand& rs); |
| |
| void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); |
| void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); |
| void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); |
| void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); |
| |
| // Enter exit frame. |
| // argc - argument count to be dropped by LeaveExitFrame. |
| // save_doubles - saves FPU registers on stack. |
| // stack_space - extra stack space. |
| void EnterExitFrame(bool save_doubles, int stack_space = 0, |
| StackFrame::Type frame_type = StackFrame::EXIT); |
| |
| // Leave the current exit frame. |
| void LeaveExitFrame(bool save_doubles, Register arg_count, |
| bool do_return = NO_EMIT_RETURN, |
| bool argument_count_is_length = false); |
| |
| // Make sure the stack is aligned. Only emits code in debug mode. |
| void AssertStackIsAligned(); |
| |
| // Load the global proxy from the current context. |
| void LoadGlobalProxy(Register dst) { |
| LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX); |
| } |
| |
| void LoadNativeContextSlot(Register dst, int index); |
| |
| // Load the initial map from the global function. The registers |
| // function and map can be the same, function is then overwritten. |
| void LoadGlobalFunctionInitialMap(Register function, Register map, |
| Register scratch); |
| |
| // ------------------------------------------------------------------------- |
| // JavaScript invokes. |
| |
| // Invoke the JavaScript function code by either calling or jumping. |
| void InvokeFunctionCode(Register function, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count, InvokeType type); |
| |
| // On function call, call into the debugger if necessary. |
| void CheckDebugHook(Register fun, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count); |
| |
| // Invoke the JavaScript function in the given register. Changes the |
| // current context to the context in the function before invoking. |
| void InvokeFunctionWithNewTarget(Register function, Register new_target, |
| Register actual_parameter_count, |
| InvokeType type); |
| void InvokeFunction(Register function, Register expected_parameter_count, |
| Register actual_parameter_count, InvokeType type); |
| |
| // Exception handling. |
| |
| // Push a new stack handler and link into stack handler chain. |
| void PushStackHandler(); |
| |
| // Unlink the stack handler on top of the stack from the stack handler chain. |
| // Must preserve the result register. |
| void PopStackHandler(); |
| |
| // ------------------------------------------------------------------------- |
| // Support functions. |
| |
| void GetObjectType(Register function, Register map, Register type_reg); |
| |
| void GetInstanceTypeRange(Register map, Register type_reg, |
| InstanceType lower_limit, Register range); |
| |
| // ------------------------------------------------------------------------- |
| // Runtime calls. |
| |
| // Call a runtime routine. |
| void CallRuntime(const Runtime::Function* f, int num_arguments, |
| SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId fid, |
| SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) { |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| CallRuntime(function, function->nargs, save_doubles); |
| } |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId fid, int num_arguments, |
| SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) { |
| CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); |
| } |
| |
| // Convenience function: tail call a runtime routine (jump). |
| void TailCallRuntime(Runtime::FunctionId fid); |
| |
| // Jump to the builtin routine. |
| void JumpToExternalReference(const ExternalReference& builtin, |
| bool builtin_exit_frame = false); |
| |
| // Generates a trampoline to jump to the off-heap instruction stream. |
| void JumpToOffHeapInstructionStream(Address entry); |
| |
| // --------------------------------------------------------------------------- |
| // In-place weak references. |
| void LoadWeakValue(Register out, Register in, Label* target_if_cleared); |
| |
| // ------------------------------------------------------------------------- |
| // StatsCounter support. |
| |
| void IncrementCounter(StatsCounter* counter, int value, Register scratch1, |
| Register scratch2) { |
| if (!FLAG_native_code_counters) return; |
| EmitIncrementCounter(counter, value, scratch1, scratch2); |
| } |
| void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1, |
| Register scratch2); |
| void DecrementCounter(StatsCounter* counter, int value, Register scratch1, |
| Register scratch2) { |
| if (!FLAG_native_code_counters) return; |
| EmitDecrementCounter(counter, value, scratch1, scratch2); |
| } |
| void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1, |
| Register scratch2); |
| |
| // ------------------------------------------------------------------------- |
| // Stack limit utilities |
| |
| enum StackLimitKind { kInterruptStackLimit, kRealStackLimit }; |
| void LoadStackLimit(Register destination, StackLimitKind kind); |
| void StackOverflowCheck(Register num_args, Register scratch1, |
| Register scratch2, Label* stack_overflow, |
| Label* done = nullptr); |
| |
| // Left-shifted from int32 equivalent of Smi. |
| void SmiScale(Register dst, Register src, int scale) { |
| if (SmiValuesAre32Bits()) { |
| // The int portion is upper 32-bits of 64-bit word. |
| srai(dst, src, (kSmiShift - scale) & 0x3F); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| DCHECK_GE(scale, kSmiTagSize); |
| slliw(dst, src, scale - kSmiTagSize); |
| } |
| } |
| |
| // Test if the register contains a smi. |
| inline void SmiTst(Register value, Register scratch) { |
| And(scratch, value, Operand(kSmiTagMask)); |
| } |
| |
| enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver }; |
| enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes }; |
| void DropArguments(Register count, ArgumentsCountType type, |
| ArgumentsCountMode mode, Register scratch = no_reg); |
| void DropArgumentsAndPushNewReceiver(Register argc, Register receiver, |
| ArgumentsCountType type, |
| ArgumentsCountMode mode, |
| Register scratch = no_reg); |
| void JumpIfCodeTIsMarkedForDeoptimization( |
| Register codet, Register scratch, Label* if_marked_for_deoptimization); |
| Operand ClearedValue() const; |
| |
| // Jump if the register contains a non-smi. |
| void JumpIfNotSmi(Register value, Label* not_smi_label); |
| |
| |
| // Abort execution if argument is not a Constructor, enabled via --debug-code. |
| void AssertConstructor(Register object); |
| |
| // Abort execution if argument is not a JSFunction, enabled via --debug-code. |
| void AssertFunction(Register object); |
| |
| // Abort execution if argument is not a callable JSFunction, enabled via |
| // --debug-code. |
| void AssertCallableFunction(Register object); |
| |
| // Abort execution if argument is not a JSBoundFunction, |
| // enabled via --debug-code. |
| void AssertBoundFunction(Register object); |
| |
| // Abort execution if argument is not a JSGeneratorObject (or subclass), |
| // enabled via --debug-code. |
| void AssertGeneratorObject(Register object); |
| |
| // Abort execution if argument is not undefined or an AllocationSite, enabled |
| // via --debug-code. |
| void AssertUndefinedOrAllocationSite(Register object, Register scratch); |
| |
| template <typename Field> |
| void DecodeField(Register dst, Register src) { |
| ExtractBits(dst, src, Field::kShift, Field::kSize); |
| } |
| |
| template <typename Field> |
| void DecodeField(Register reg) { |
| DecodeField<Field>(reg, reg); |
| } |
| |
| private: |
| // Helper functions for generating invokes. |
| void InvokePrologue(Register expected_parameter_count, |
| Register actual_parameter_count, Label* done, |
| InvokeType type); |
| |
| // Compute memory operands for safepoint stack slots. |
| static int SafepointRegisterStackIndex(int reg_code); |
| |
| // Needs access to SafepointRegisterStackIndex for compiled frame |
| // traversal. |
| friend class CommonFrame; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler); |
| }; |
| |
| template <typename Func> |
| void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count, |
| Func GetLabelFunction) { |
| // Ensure that dd-ed labels following this instruction use 8 bytes aligned |
| // addresses. |
| BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + |
| kSwitchTablePrologueSize); |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| Register scratch2 = temps.Acquire(); |
| |
| Align(8); |
| // Load the address from the jump table at index and jump to it |
| auipc(scratch, 0); // Load the current PC into scratch |
| slli(scratch2, index, |
| kSystemPointerSizeLog2); // scratch2 = offset of indexth entry |
| add(scratch2, scratch2, |
| scratch); // scratch2 = (saved PC) + (offset of indexth entry) |
| ld(scratch2, scratch2, |
| 6 * kInstrSize); // Add the size of these 6 instructions to the |
| // offset, then load |
| jr(scratch2); // Jump to the address loaded from the table |
| nop(); // For 16-byte alignment |
| for (size_t index = 0; index < case_count; ++index) { |
| dd(GetLabelFunction(index)); |
| } |
| } |
| |
| struct MoveCycleState { |
| // Whether a move in the cycle needs the scratch or double scratch register. |
| bool pending_scratch_register_use = false; |
| bool pending_double_scratch_register_use = false; |
| }; |
| |
| #define ACCESS_MASM(masm) masm-> |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_CODEGEN_RISCV64_MACRO_ASSEMBLER_RISCV64_H_ |