blob: b73ab0bd6a6be5b171a1c1258d65e05c0c8f079f [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Defined when linking against shared lib on Windows.
#if defined(USING_V8_SHARED) && !defined(V8_SHARED)
#define V8_SHARED
#endif
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#ifdef V8_SHARED
#include <assert.h>
#endif // V8_SHARED
#ifndef V8_SHARED
#include <algorithm>
#include <vector>
#endif // !V8_SHARED
#ifdef V8_SHARED
#include "include/v8-testing.h"
#endif // V8_SHARED
#if !defined(V8_SHARED) && defined(ENABLE_GDB_JIT_INTERFACE)
#include "src/gdb-jit.h"
#endif
#ifdef ENABLE_VTUNE_JIT_INTERFACE
#include "src/third_party/vtune/v8-vtune.h"
#endif
#include "src/d8.h"
#include "include/libplatform/libplatform.h"
#ifndef V8_SHARED
#include "src/api.h"
#include "src/base/cpu.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#include "src/base/sys-info.h"
#include "src/basic-block-profiler.h"
#include "src/snapshot/natives.h"
#include "src/utils.h"
#include "src/v8.h"
#endif // !V8_SHARED
#if !defined(_WIN32) && !defined(_WIN64)
#include <unistd.h> // NOLINT
#else
#include <windows.h> // NOLINT
#if defined(_MSC_VER)
#include <crtdbg.h> // NOLINT
#endif // defined(_MSC_VER)
#endif // !defined(_WIN32) && !defined(_WIN64)
#ifndef DCHECK
#define DCHECK(condition) assert(condition)
#endif
#ifndef CHECK
#define CHECK(condition) assert(condition)
#endif
namespace v8 {
namespace {
const int MB = 1024 * 1024;
#ifndef V8_SHARED
const int kMaxWorkers = 50;
#endif
class ShellArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
virtual void* Allocate(size_t length) {
void* data = AllocateUninitialized(length);
return data == NULL ? data : memset(data, 0, length);
}
virtual void* AllocateUninitialized(size_t length) { return malloc(length); }
virtual void Free(void* data, size_t) { free(data); }
};
class MockArrayBufferAllocator : public v8::ArrayBuffer::Allocator {
public:
void* Allocate(size_t length) override {
size_t actual_length = length > 10 * MB ? 1 : length;
void* data = AllocateUninitialized(actual_length);
return data == NULL ? data : memset(data, 0, actual_length);
}
void* AllocateUninitialized(size_t length) override {
return length > 10 * MB ? malloc(1) : malloc(length);
}
void Free(void* p, size_t) override { free(p); }
};
v8::Platform* g_platform = NULL;
static Local<Value> Throw(Isolate* isolate, const char* message) {
return isolate->ThrowException(
String::NewFromUtf8(isolate, message, NewStringType::kNormal)
.ToLocalChecked());
}
#ifndef V8_SHARED
bool FindInObjectList(Local<Object> object, const Shell::ObjectList& list) {
for (int i = 0; i < list.length(); ++i) {
if (list[i]->StrictEquals(object)) {
return true;
}
}
return false;
}
Worker* GetWorkerFromInternalField(Isolate* isolate, Local<Object> object) {
if (object->InternalFieldCount() != 1) {
Throw(isolate, "this is not a Worker");
return NULL;
}
Worker* worker =
static_cast<Worker*>(object->GetAlignedPointerFromInternalField(0));
if (worker == NULL) {
Throw(isolate, "Worker is defunct because main thread is terminating");
return NULL;
}
return worker;
}
#endif // !V8_SHARED
} // namespace
class PerIsolateData {
public:
explicit PerIsolateData(Isolate* isolate) : isolate_(isolate), realms_(NULL) {
HandleScope scope(isolate);
isolate->SetData(0, this);
}
~PerIsolateData() {
isolate_->SetData(0, NULL); // Not really needed, just to be sure...
}
inline static PerIsolateData* Get(Isolate* isolate) {
return reinterpret_cast<PerIsolateData*>(isolate->GetData(0));
}
class RealmScope {
public:
explicit RealmScope(PerIsolateData* data);
~RealmScope();
private:
PerIsolateData* data_;
};
private:
friend class Shell;
friend class RealmScope;
Isolate* isolate_;
int realm_count_;
int realm_current_;
int realm_switch_;
Global<Context>* realms_;
Global<Value> realm_shared_;
int RealmIndexOrThrow(const v8::FunctionCallbackInfo<v8::Value>& args,
int arg_offset);
int RealmFind(Local<Context> context);
};
#ifndef V8_SHARED
CounterMap* Shell::counter_map_;
base::OS::MemoryMappedFile* Shell::counters_file_ = NULL;
CounterCollection Shell::local_counters_;
CounterCollection* Shell::counters_ = &local_counters_;
base::LazyMutex Shell::context_mutex_;
const base::TimeTicks Shell::kInitialTicks =
base::TimeTicks::HighResolutionNow();
Global<Context> Shell::utility_context_;
base::LazyMutex Shell::workers_mutex_;
bool Shell::allow_new_workers_ = true;
i::List<Worker*> Shell::workers_;
i::List<SharedArrayBuffer::Contents> Shell::externalized_shared_contents_;
#endif // !V8_SHARED
Global<Context> Shell::evaluation_context_;
ArrayBuffer::Allocator* Shell::array_buffer_allocator;
ShellOptions Shell::options;
base::OnceType Shell::quit_once_ = V8_ONCE_INIT;
#ifndef V8_SHARED
bool CounterMap::Match(void* key1, void* key2) {
const char* name1 = reinterpret_cast<const char*>(key1);
const char* name2 = reinterpret_cast<const char*>(key2);
return strcmp(name1, name2) == 0;
}
#endif // !V8_SHARED
// Converts a V8 value to a C string.
const char* Shell::ToCString(const v8::String::Utf8Value& value) {
return *value ? *value : "<string conversion failed>";
}
ScriptCompiler::CachedData* CompileForCachedData(
Local<String> source, Local<Value> name,
ScriptCompiler::CompileOptions compile_options) {
int source_length = source->Length();
uint16_t* source_buffer = new uint16_t[source_length];
source->Write(source_buffer, 0, source_length);
int name_length = 0;
uint16_t* name_buffer = NULL;
if (name->IsString()) {
Local<String> name_string = Local<String>::Cast(name);
name_length = name_string->Length();
name_buffer = new uint16_t[name_length];
name_string->Write(name_buffer, 0, name_length);
}
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* temp_isolate = Isolate::New(create_params);
ScriptCompiler::CachedData* result = NULL;
{
Isolate::Scope isolate_scope(temp_isolate);
HandleScope handle_scope(temp_isolate);
Context::Scope context_scope(Context::New(temp_isolate));
Local<String> source_copy =
v8::String::NewFromTwoByte(temp_isolate, source_buffer,
v8::NewStringType::kNormal,
source_length).ToLocalChecked();
Local<Value> name_copy;
if (name_buffer) {
name_copy = v8::String::NewFromTwoByte(temp_isolate, name_buffer,
v8::NewStringType::kNormal,
name_length).ToLocalChecked();
} else {
name_copy = v8::Undefined(temp_isolate);
}
ScriptCompiler::Source script_source(source_copy, ScriptOrigin(name_copy));
if (!ScriptCompiler::CompileUnboundScript(temp_isolate, &script_source,
compile_options).IsEmpty() &&
script_source.GetCachedData()) {
int length = script_source.GetCachedData()->length;
uint8_t* cache = new uint8_t[length];
memcpy(cache, script_source.GetCachedData()->data, length);
result = new ScriptCompiler::CachedData(
cache, length, ScriptCompiler::CachedData::BufferOwned);
}
}
temp_isolate->Dispose();
delete[] source_buffer;
delete[] name_buffer;
return result;
}
// Compile a string within the current v8 context.
MaybeLocal<Script> Shell::CompileString(
Isolate* isolate, Local<String> source, Local<Value> name,
ScriptCompiler::CompileOptions compile_options, SourceType source_type) {
Local<Context> context(isolate->GetCurrentContext());
ScriptOrigin origin(name);
if (compile_options == ScriptCompiler::kNoCompileOptions) {
ScriptCompiler::Source script_source(source, origin);
return source_type == SCRIPT
? ScriptCompiler::Compile(context, &script_source,
compile_options)
: ScriptCompiler::CompileModule(context, &script_source,
compile_options);
}
ScriptCompiler::CachedData* data =
CompileForCachedData(source, name, compile_options);
ScriptCompiler::Source cached_source(source, origin, data);
if (compile_options == ScriptCompiler::kProduceCodeCache) {
compile_options = ScriptCompiler::kConsumeCodeCache;
} else if (compile_options == ScriptCompiler::kProduceParserCache) {
compile_options = ScriptCompiler::kConsumeParserCache;
} else {
DCHECK(false); // A new compile option?
}
if (data == NULL) compile_options = ScriptCompiler::kNoCompileOptions;
MaybeLocal<Script> result =
source_type == SCRIPT
? ScriptCompiler::Compile(context, &cached_source, compile_options)
: ScriptCompiler::CompileModule(context, &cached_source,
compile_options);
CHECK(data == NULL || !data->rejected);
return result;
}
// Executes a string within the current v8 context.
bool Shell::ExecuteString(Isolate* isolate, Local<String> source,
Local<Value> name, bool print_result,
bool report_exceptions, SourceType source_type) {
HandleScope handle_scope(isolate);
TryCatch try_catch(isolate);
MaybeLocal<Value> maybe_result;
{
PerIsolateData* data = PerIsolateData::Get(isolate);
Local<Context> realm =
Local<Context>::New(isolate, data->realms_[data->realm_current_]);
Context::Scope context_scope(realm);
Local<Script> script;
if (!Shell::CompileString(isolate, source, name, options.compile_options,
source_type).ToLocal(&script)) {
// Print errors that happened during compilation.
if (report_exceptions) ReportException(isolate, &try_catch);
return false;
}
maybe_result = script->Run(realm);
EmptyMessageQueues(isolate);
data->realm_current_ = data->realm_switch_;
}
Local<Value> result;
if (!maybe_result.ToLocal(&result)) {
DCHECK(try_catch.HasCaught());
// Print errors that happened during execution.
if (report_exceptions) ReportException(isolate, &try_catch);
return false;
}
DCHECK(!try_catch.HasCaught());
if (print_result) {
#if !defined(V8_SHARED)
if (options.test_shell) {
#endif
if (!result->IsUndefined()) {
// If all went well and the result wasn't undefined then print
// the returned value.
v8::String::Utf8Value str(result);
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
#if !defined(V8_SHARED)
} else {
v8::TryCatch try_catch(isolate);
v8::Local<v8::Context> context =
v8::Local<v8::Context>::New(isolate, utility_context_);
v8::Context::Scope context_scope(context);
Local<Object> global = context->Global();
Local<Value> fun =
global->Get(context, String::NewFromUtf8(isolate, "Stringify",
v8::NewStringType::kNormal)
.ToLocalChecked()).ToLocalChecked();
Local<Value> argv[1] = {result};
Local<Value> s;
if (!Local<Function>::Cast(fun)
->Call(context, global, 1, argv)
.ToLocal(&s)) {
return true;
}
DCHECK(!try_catch.HasCaught());
v8::String::Utf8Value str(s);
fwrite(*str, sizeof(**str), str.length(), stdout);
printf("\n");
}
#endif
}
return true;
}
PerIsolateData::RealmScope::RealmScope(PerIsolateData* data) : data_(data) {
data_->realm_count_ = 1;
data_->realm_current_ = 0;
data_->realm_switch_ = 0;
data_->realms_ = new Global<Context>[1];
data_->realms_[0].Reset(data_->isolate_,
data_->isolate_->GetEnteredContext());
}
PerIsolateData::RealmScope::~RealmScope() {
// Drop realms to avoid keeping them alive.
for (int i = 0; i < data_->realm_count_; ++i)
data_->realms_[i].Reset();
delete[] data_->realms_;
if (!data_->realm_shared_.IsEmpty())
data_->realm_shared_.Reset();
}
int PerIsolateData::RealmFind(Local<Context> context) {
for (int i = 0; i < realm_count_; ++i) {
if (realms_[i] == context) return i;
}
return -1;
}
int PerIsolateData::RealmIndexOrThrow(
const v8::FunctionCallbackInfo<v8::Value>& args,
int arg_offset) {
if (args.Length() < arg_offset || !args[arg_offset]->IsNumber()) {
Throw(args.GetIsolate(), "Invalid argument");
return -1;
}
int index = args[arg_offset]
->Int32Value(args.GetIsolate()->GetCurrentContext())
.FromMaybe(-1);
if (index < 0 || index >= realm_count_ || realms_[index].IsEmpty()) {
Throw(args.GetIsolate(), "Invalid realm index");
return -1;
}
return index;
}
#ifndef V8_SHARED
// performance.now() returns a time stamp as double, measured in milliseconds.
// When FLAG_verify_predictable mode is enabled it returns current value
// of Heap::allocations_count().
void Shell::PerformanceNow(const v8::FunctionCallbackInfo<v8::Value>& args) {
if (i::FLAG_verify_predictable) {
Isolate* v8_isolate = args.GetIsolate();
i::Heap* heap = reinterpret_cast<i::Isolate*>(v8_isolate)->heap();
args.GetReturnValue().Set(heap->synthetic_time());
} else {
base::TimeDelta delta =
base::TimeTicks::HighResolutionNow() - kInitialTicks;
args.GetReturnValue().Set(delta.InMillisecondsF());
}
}
#endif // !V8_SHARED
// Realm.current() returns the index of the currently active realm.
void Shell::RealmCurrent(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmFind(isolate->GetEnteredContext());
if (index == -1) return;
args.GetReturnValue().Set(index);
}
// Realm.owner(o) returns the index of the realm that created o.
void Shell::RealmOwner(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (args.Length() < 1 || !args[0]->IsObject()) {
Throw(args.GetIsolate(), "Invalid argument");
return;
}
int index = data->RealmFind(args[0]
->ToObject(isolate->GetCurrentContext())
.ToLocalChecked()
->CreationContext());
if (index == -1) return;
args.GetReturnValue().Set(index);
}
// Realm.global(i) returns the global object of realm i.
// (Note that properties of global objects cannot be read/written cross-realm.)
void Shell::RealmGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
PerIsolateData* data = PerIsolateData::Get(args.GetIsolate());
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
args.GetReturnValue().Set(
Local<Context>::New(args.GetIsolate(), data->realms_[index])->Global());
}
// Realm.create() creates a new realm and returns its index.
void Shell::RealmCreate(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
TryCatch try_catch(isolate);
PerIsolateData* data = PerIsolateData::Get(isolate);
Global<Context>* old_realms = data->realms_;
int index = data->realm_count_;
data->realms_ = new Global<Context>[++data->realm_count_];
for (int i = 0; i < index; ++i) {
data->realms_[i].Reset(isolate, old_realms[i]);
old_realms[i].Reset();
}
delete[] old_realms;
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
Local<Context> context = Context::New(isolate, NULL, global_template);
if (context.IsEmpty()) {
DCHECK(try_catch.HasCaught());
try_catch.ReThrow();
return;
}
data->realms_[index].Reset(isolate, context);
args.GetReturnValue().Set(index);
}
// Realm.dispose(i) disposes the reference to the realm i.
void Shell::RealmDispose(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (index == 0 ||
index == data->realm_current_ || index == data->realm_switch_) {
Throw(args.GetIsolate(), "Invalid realm index");
return;
}
data->realms_[index].Reset();
isolate->ContextDisposedNotification();
isolate->IdleNotificationDeadline(g_platform->MonotonicallyIncreasingTime());
}
// Realm.switch(i) switches to the realm i for consecutive interactive inputs.
void Shell::RealmSwitch(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
data->realm_switch_ = index;
}
// Realm.eval(i, s) evaluates s in realm i and returns the result.
void Shell::RealmEval(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
int index = data->RealmIndexOrThrow(args, 0);
if (index == -1) return;
if (args.Length() < 2 || !args[1]->IsString()) {
Throw(args.GetIsolate(), "Invalid argument");
return;
}
ScriptCompiler::Source script_source(
args[1]->ToString(isolate->GetCurrentContext()).ToLocalChecked());
Local<UnboundScript> script;
if (!ScriptCompiler::CompileUnboundScript(isolate, &script_source)
.ToLocal(&script)) {
return;
}
Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
realm->Enter();
Local<Value> result;
if (!script->BindToCurrentContext()->Run(realm).ToLocal(&result)) {
realm->Exit();
return;
}
realm->Exit();
args.GetReturnValue().Set(result);
}
// Realm.shared is an accessor for a single shared value across realms.
void Shell::RealmSharedGet(Local<String> property,
const PropertyCallbackInfo<Value>& info) {
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
if (data->realm_shared_.IsEmpty()) return;
info.GetReturnValue().Set(data->realm_shared_);
}
void Shell::RealmSharedSet(Local<String> property,
Local<Value> value,
const PropertyCallbackInfo<void>& info) {
Isolate* isolate = info.GetIsolate();
PerIsolateData* data = PerIsolateData::Get(isolate);
data->realm_shared_.Reset(isolate, value);
}
void Shell::Print(const v8::FunctionCallbackInfo<v8::Value>& args) {
Write(args);
printf("\n");
fflush(stdout);
}
void Shell::Write(const v8::FunctionCallbackInfo<v8::Value>& args) {
for (int i = 0; i < args.Length(); i++) {
HandleScope handle_scope(args.GetIsolate());
if (i != 0) {
printf(" ");
}
// Explicitly catch potential exceptions in toString().
v8::TryCatch try_catch(args.GetIsolate());
Local<String> str_obj;
if (!args[i]
->ToString(args.GetIsolate()->GetCurrentContext())
.ToLocal(&str_obj)) {
try_catch.ReThrow();
return;
}
v8::String::Utf8Value str(str_obj);
int n = static_cast<int>(fwrite(*str, sizeof(**str), str.length(), stdout));
if (n != str.length()) {
printf("Error in fwrite\n");
Exit(1);
}
}
}
void Shell::Read(const v8::FunctionCallbackInfo<v8::Value>& args) {
String::Utf8Value file(args[0]);
if (*file == NULL) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Local<String> source = ReadFile(args.GetIsolate(), *file);
if (source.IsEmpty()) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
args.GetReturnValue().Set(source);
}
Local<String> Shell::ReadFromStdin(Isolate* isolate) {
static const int kBufferSize = 256;
char buffer[kBufferSize];
Local<String> accumulator =
String::NewFromUtf8(isolate, "", NewStringType::kNormal).ToLocalChecked();
int length;
while (true) {
// Continue reading if the line ends with an escape '\\' or the line has
// not been fully read into the buffer yet (does not end with '\n').
// If fgets gets an error, just give up.
char* input = NULL;
input = fgets(buffer, kBufferSize, stdin);
if (input == NULL) return Local<String>();
length = static_cast<int>(strlen(buffer));
if (length == 0) {
return accumulator;
} else if (buffer[length-1] != '\n') {
accumulator = String::Concat(
accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length)
.ToLocalChecked());
} else if (length > 1 && buffer[length-2] == '\\') {
buffer[length-2] = '\n';
accumulator = String::Concat(
accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
length - 1).ToLocalChecked());
} else {
return String::Concat(
accumulator,
String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
length - 1).ToLocalChecked());
}
}
}
void Shell::Load(const v8::FunctionCallbackInfo<v8::Value>& args) {
for (int i = 0; i < args.Length(); i++) {
HandleScope handle_scope(args.GetIsolate());
String::Utf8Value file(args[i]);
if (*file == NULL) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Local<String> source = ReadFile(args.GetIsolate(), *file);
if (source.IsEmpty()) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
if (!ExecuteString(
args.GetIsolate(), source,
String::NewFromUtf8(args.GetIsolate(), *file,
NewStringType::kNormal).ToLocalChecked(),
false, true)) {
Throw(args.GetIsolate(), "Error executing file");
return;
}
}
}
#ifndef V8_SHARED
void Shell::WorkerNew(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
if (args.Length() < 1 || !args[0]->IsString()) {
Throw(args.GetIsolate(), "1st argument must be string");
return;
}
if (!args.IsConstructCall()) {
Throw(args.GetIsolate(), "Worker must be constructed with new");
return;
}
{
base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer());
if (workers_.length() >= kMaxWorkers) {
Throw(args.GetIsolate(), "Too many workers, I won't let you create more");
return;
}
// Initialize the internal field to NULL; if we return early without
// creating a new Worker (because the main thread is terminating) we can
// early-out from the instance calls.
args.Holder()->SetAlignedPointerInInternalField(0, NULL);
if (!allow_new_workers_) return;
Worker* worker = new Worker;
args.Holder()->SetAlignedPointerInInternalField(0, worker);
workers_.Add(worker);
String::Utf8Value script(args[0]);
if (!*script) {
Throw(args.GetIsolate(), "Can't get worker script");
return;
}
worker->StartExecuteInThread(*script);
}
}
void Shell::WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
Local<Context> context = isolate->GetCurrentContext();
if (args.Length() < 1) {
Throw(isolate, "Invalid argument");
return;
}
Worker* worker = GetWorkerFromInternalField(isolate, args.Holder());
if (!worker) {
return;
}
Local<Value> message = args[0];
ObjectList to_transfer;
if (args.Length() >= 2) {
if (!args[1]->IsArray()) {
Throw(isolate, "Transfer list must be an Array");
return;
}
Local<Array> transfer = Local<Array>::Cast(args[1]);
uint32_t length = transfer->Length();
for (uint32_t i = 0; i < length; ++i) {
Local<Value> element;
if (transfer->Get(context, i).ToLocal(&element)) {
if (!element->IsArrayBuffer() && !element->IsSharedArrayBuffer()) {
Throw(isolate,
"Transfer array elements must be an ArrayBuffer or "
"SharedArrayBuffer.");
break;
}
to_transfer.Add(Local<Object>::Cast(element));
}
}
}
ObjectList seen_objects;
SerializationData* data = new SerializationData;
if (SerializeValue(isolate, message, to_transfer, &seen_objects, data)) {
worker->PostMessage(data);
} else {
delete data;
}
}
void Shell::WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
Worker* worker = GetWorkerFromInternalField(isolate, args.Holder());
if (!worker) {
return;
}
SerializationData* data = worker->GetMessage();
if (data) {
int offset = 0;
Local<Value> data_value;
if (Shell::DeserializeValue(isolate, *data, &offset).ToLocal(&data_value)) {
args.GetReturnValue().Set(data_value);
}
delete data;
}
}
void Shell::WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
Worker* worker = GetWorkerFromInternalField(isolate, args.Holder());
if (!worker) {
return;
}
worker->Terminate();
}
#endif // !V8_SHARED
void Shell::QuitOnce(v8::FunctionCallbackInfo<v8::Value>* args) {
int exit_code = (*args)[0]
->Int32Value(args->GetIsolate()->GetCurrentContext())
.FromMaybe(0);
#ifndef V8_SHARED
CleanupWorkers();
#endif // !V8_SHARED
OnExit(args->GetIsolate());
Exit(exit_code);
}
void Shell::Quit(const v8::FunctionCallbackInfo<v8::Value>& args) {
base::CallOnce(&quit_once_, &QuitOnce,
const_cast<v8::FunctionCallbackInfo<v8::Value>*>(&args));
}
void Shell::Version(const v8::FunctionCallbackInfo<v8::Value>& args) {
args.GetReturnValue().Set(
String::NewFromUtf8(args.GetIsolate(), V8::GetVersion(),
NewStringType::kNormal).ToLocalChecked());
}
void Shell::ReportException(Isolate* isolate, v8::TryCatch* try_catch) {
HandleScope handle_scope(isolate);
#ifndef V8_SHARED
Local<Context> utility_context;
bool enter_context = !isolate->InContext();
if (enter_context) {
utility_context = Local<Context>::New(isolate, utility_context_);
utility_context->Enter();
}
#endif // !V8_SHARED
v8::String::Utf8Value exception(try_catch->Exception());
const char* exception_string = ToCString(exception);
Local<Message> message = try_catch->Message();
if (message.IsEmpty()) {
// V8 didn't provide any extra information about this error; just
// print the exception.
printf("%s\n", exception_string);
} else {
// Print (filename):(line number): (message).
v8::String::Utf8Value filename(message->GetScriptOrigin().ResourceName());
const char* filename_string = ToCString(filename);
int linenum =
message->GetLineNumber(isolate->GetCurrentContext()).FromJust();
printf("%s:%i: %s\n", filename_string, linenum, exception_string);
// Print line of source code.
v8::String::Utf8Value sourceline(
message->GetSourceLine(isolate->GetCurrentContext()).ToLocalChecked());
const char* sourceline_string = ToCString(sourceline);
printf("%s\n", sourceline_string);
// Print wavy underline (GetUnderline is deprecated).
int start =
message->GetStartColumn(isolate->GetCurrentContext()).FromJust();
for (int i = 0; i < start; i++) {
printf(" ");
}
int end = message->GetEndColumn(isolate->GetCurrentContext()).FromJust();
for (int i = start; i < end; i++) {
printf("^");
}
printf("\n");
Local<Value> stack_trace_string;
if (try_catch->StackTrace(isolate->GetCurrentContext())
.ToLocal(&stack_trace_string) &&
stack_trace_string->IsString()) {
v8::String::Utf8Value stack_trace(
Local<String>::Cast(stack_trace_string));
printf("%s\n", ToCString(stack_trace));
}
}
printf("\n");
#ifndef V8_SHARED
if (enter_context) utility_context->Exit();
#endif // !V8_SHARED
}
#ifndef V8_SHARED
int32_t* Counter::Bind(const char* name, bool is_histogram) {
int i;
for (i = 0; i < kMaxNameSize - 1 && name[i]; i++)
name_[i] = static_cast<char>(name[i]);
name_[i] = '\0';
is_histogram_ = is_histogram;
return ptr();
}
void Counter::AddSample(int32_t sample) {
count_++;
sample_total_ += sample;
}
CounterCollection::CounterCollection() {
magic_number_ = 0xDEADFACE;
max_counters_ = kMaxCounters;
max_name_size_ = Counter::kMaxNameSize;
counters_in_use_ = 0;
}
Counter* CounterCollection::GetNextCounter() {
if (counters_in_use_ == kMaxCounters) return NULL;
return &counters_[counters_in_use_++];
}
void Shell::MapCounters(v8::Isolate* isolate, const char* name) {
counters_file_ = base::OS::MemoryMappedFile::create(
name, sizeof(CounterCollection), &local_counters_);
void* memory = (counters_file_ == NULL) ?
NULL : counters_file_->memory();
if (memory == NULL) {
printf("Could not map counters file %s\n", name);
Exit(1);
}
counters_ = static_cast<CounterCollection*>(memory);
isolate->SetCounterFunction(LookupCounter);
isolate->SetCreateHistogramFunction(CreateHistogram);
isolate->SetAddHistogramSampleFunction(AddHistogramSample);
}
int CounterMap::Hash(const char* name) {
int h = 0;
int c;
while ((c = *name++) != 0) {
h += h << 5;
h += c;
}
return h;
}
Counter* Shell::GetCounter(const char* name, bool is_histogram) {
Counter* counter = counter_map_->Lookup(name);
if (counter == NULL) {
counter = counters_->GetNextCounter();
if (counter != NULL) {
counter_map_->Set(name, counter);
counter->Bind(name, is_histogram);
}
} else {
DCHECK(counter->is_histogram() == is_histogram);
}
return counter;
}
int* Shell::LookupCounter(const char* name) {
Counter* counter = GetCounter(name, false);
if (counter != NULL) {
return counter->ptr();
} else {
return NULL;
}
}
void* Shell::CreateHistogram(const char* name,
int min,
int max,
size_t buckets) {
return GetCounter(name, true);
}
void Shell::AddHistogramSample(void* histogram, int sample) {
Counter* counter = reinterpret_cast<Counter*>(histogram);
counter->AddSample(sample);
}
class NoUseStrongForUtilityScriptScope {
public:
NoUseStrongForUtilityScriptScope() : flag_(i::FLAG_use_strong) {
i::FLAG_use_strong = false;
}
~NoUseStrongForUtilityScriptScope() { i::FLAG_use_strong = flag_; }
private:
bool flag_;
};
void Shell::InstallUtilityScript(Isolate* isolate) {
NoUseStrongForUtilityScriptScope no_use_strong;
HandleScope scope(isolate);
// If we use the utility context, we have to set the security tokens so that
// utility, evaluation and debug context can all access each other.
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
utility_context_.Reset(isolate, Context::New(isolate, NULL, global_template));
v8::Local<v8::Context> utility_context =
v8::Local<v8::Context>::New(isolate, utility_context_);
v8::Local<v8::Context> evaluation_context =
v8::Local<v8::Context>::New(isolate, evaluation_context_);
utility_context->SetSecurityToken(Undefined(isolate));
evaluation_context->SetSecurityToken(Undefined(isolate));
v8::Context::Scope context_scope(utility_context);
// Run the d8 shell utility script in the utility context
int source_index = i::NativesCollection<i::D8>::GetIndex("d8");
i::Vector<const char> shell_source =
i::NativesCollection<i::D8>::GetScriptSource(source_index);
i::Vector<const char> shell_source_name =
i::NativesCollection<i::D8>::GetScriptName(source_index);
Local<String> source =
String::NewFromUtf8(isolate, shell_source.start(), NewStringType::kNormal,
shell_source.length()).ToLocalChecked();
Local<String> name =
String::NewFromUtf8(isolate, shell_source_name.start(),
NewStringType::kNormal,
shell_source_name.length()).ToLocalChecked();
ScriptOrigin origin(name);
Local<Script> script =
Script::Compile(utility_context, source, &origin).ToLocalChecked();
script->Run(utility_context).ToLocalChecked();
// Mark the d8 shell script as native to avoid it showing up as normal source
// in the debugger.
i::Handle<i::Object> compiled_script = Utils::OpenHandle(*script);
i::Handle<i::Script> script_object = compiled_script->IsJSFunction()
? i::Handle<i::Script>(i::Script::cast(
i::JSFunction::cast(*compiled_script)->shared()->script()))
: i::Handle<i::Script>(i::Script::cast(
i::SharedFunctionInfo::cast(*compiled_script)->script()));
script_object->set_type(i::Script::TYPE_NATIVE);
}
#endif // !V8_SHARED
Local<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
Local<ObjectTemplate> global_template = ObjectTemplate::New(isolate);
global_template->Set(
String::NewFromUtf8(isolate, "print", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Print));
global_template->Set(
String::NewFromUtf8(isolate, "write", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Write));
global_template->Set(
String::NewFromUtf8(isolate, "read", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Read));
global_template->Set(
String::NewFromUtf8(isolate, "readbuffer", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, ReadBuffer));
global_template->Set(
String::NewFromUtf8(isolate, "readline", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, ReadLine));
global_template->Set(
String::NewFromUtf8(isolate, "load", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Load));
// Some Emscripten-generated code tries to call 'quit', which in turn would
// call C's exit(). This would lead to memory leaks, because there is no way
// we can terminate cleanly then, so we need a way to hide 'quit'.
if (!options.omit_quit) {
global_template->Set(
String::NewFromUtf8(isolate, "quit", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Quit));
}
global_template->Set(
String::NewFromUtf8(isolate, "version", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, Version));
// Bind the Realm object.
Local<ObjectTemplate> realm_template = ObjectTemplate::New(isolate);
realm_template->Set(
String::NewFromUtf8(isolate, "current", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmCurrent));
realm_template->Set(
String::NewFromUtf8(isolate, "owner", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmOwner));
realm_template->Set(
String::NewFromUtf8(isolate, "global", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmGlobal));
realm_template->Set(
String::NewFromUtf8(isolate, "create", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmCreate));
realm_template->Set(
String::NewFromUtf8(isolate, "dispose", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmDispose));
realm_template->Set(
String::NewFromUtf8(isolate, "switch", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmSwitch));
realm_template->Set(
String::NewFromUtf8(isolate, "eval", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, RealmEval));
realm_template->SetAccessor(
String::NewFromUtf8(isolate, "shared", NewStringType::kNormal)
.ToLocalChecked(),
RealmSharedGet, RealmSharedSet);
global_template->Set(
String::NewFromUtf8(isolate, "Realm", NewStringType::kNormal)
.ToLocalChecked(),
realm_template);
#ifndef V8_SHARED
Local<ObjectTemplate> performance_template = ObjectTemplate::New(isolate);
performance_template->Set(
String::NewFromUtf8(isolate, "now", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, PerformanceNow));
global_template->Set(
String::NewFromUtf8(isolate, "performance", NewStringType::kNormal)
.ToLocalChecked(),
performance_template);
Local<FunctionTemplate> worker_fun_template =
FunctionTemplate::New(isolate, WorkerNew);
Local<Signature> worker_signature =
Signature::New(isolate, worker_fun_template);
worker_fun_template->SetClassName(
String::NewFromUtf8(isolate, "Worker", NewStringType::kNormal)
.ToLocalChecked());
worker_fun_template->ReadOnlyPrototype();
worker_fun_template->PrototypeTemplate()->Set(
String::NewFromUtf8(isolate, "terminate", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, WorkerTerminate, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
String::NewFromUtf8(isolate, "postMessage", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, WorkerPostMessage, Local<Value>(),
worker_signature));
worker_fun_template->PrototypeTemplate()->Set(
String::NewFromUtf8(isolate, "getMessage", NewStringType::kNormal)
.ToLocalChecked(),
FunctionTemplate::New(isolate, WorkerGetMessage, Local<Value>(),
worker_signature));
worker_fun_template->InstanceTemplate()->SetInternalFieldCount(1);
global_template->Set(
String::NewFromUtf8(isolate, "Worker", NewStringType::kNormal)
.ToLocalChecked(),
worker_fun_template);
#endif // !V8_SHARED
Local<ObjectTemplate> os_templ = ObjectTemplate::New(isolate);
AddOSMethods(isolate, os_templ);
global_template->Set(
String::NewFromUtf8(isolate, "os", NewStringType::kNormal)
.ToLocalChecked(),
os_templ);
return global_template;
}
void Shell::Initialize(Isolate* isolate) {
#ifndef V8_SHARED
// Set up counters
if (i::StrLength(i::FLAG_map_counters) != 0)
MapCounters(isolate, i::FLAG_map_counters);
#endif // !V8_SHARED
}
Local<Context> Shell::CreateEvaluationContext(Isolate* isolate) {
#ifndef V8_SHARED
// This needs to be a critical section since this is not thread-safe
base::LockGuard<base::Mutex> lock_guard(context_mutex_.Pointer());
#endif // !V8_SHARED
// Initialize the global objects
Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
EscapableHandleScope handle_scope(isolate);
Local<Context> context = Context::New(isolate, NULL, global_template);
DCHECK(!context.IsEmpty());
Context::Scope scope(context);
#ifndef V8_SHARED
i::Factory* factory = reinterpret_cast<i::Isolate*>(isolate)->factory();
i::JSArguments js_args = i::FLAG_js_arguments;
i::Handle<i::FixedArray> arguments_array =
factory->NewFixedArray(js_args.argc);
for (int j = 0; j < js_args.argc; j++) {
i::Handle<i::String> arg =
factory->NewStringFromUtf8(i::CStrVector(js_args[j])).ToHandleChecked();
arguments_array->set(j, *arg);
}
i::Handle<i::JSArray> arguments_jsarray =
factory->NewJSArrayWithElements(arguments_array);
context->Global()
->Set(context,
String::NewFromUtf8(isolate, "arguments", NewStringType::kNormal)
.ToLocalChecked(),
Utils::ToLocal(arguments_jsarray))
.FromJust();
#endif // !V8_SHARED
return handle_scope.Escape(context);
}
void Shell::Exit(int exit_code) {
// Use _exit instead of exit to avoid races between isolate
// threads and static destructors.
fflush(stdout);
fflush(stderr);
_exit(exit_code);
}
#ifndef V8_SHARED
struct CounterAndKey {
Counter* counter;
const char* key;
};
inline bool operator<(const CounterAndKey& lhs, const CounterAndKey& rhs) {
return strcmp(lhs.key, rhs.key) < 0;
}
#endif // !V8_SHARED
void Shell::OnExit(v8::Isolate* isolate) {
#ifndef V8_SHARED
reinterpret_cast<i::Isolate*>(isolate)->DumpAndResetCompilationStats();
if (i::FLAG_dump_counters) {
int number_of_counters = 0;
for (CounterMap::Iterator i(counter_map_); i.More(); i.Next()) {
number_of_counters++;
}
CounterAndKey* counters = new CounterAndKey[number_of_counters];
int j = 0;
for (CounterMap::Iterator i(counter_map_); i.More(); i.Next(), j++) {
counters[j].counter = i.CurrentValue();
counters[j].key = i.CurrentKey();
}
std::sort(counters, counters + number_of_counters);
printf("+----------------------------------------------------------------+"
"-------------+\n");
printf("| Name |"
" Value |\n");
printf("+----------------------------------------------------------------+"
"-------------+\n");
for (j = 0; j < number_of_counters; j++) {
Counter* counter = counters[j].counter;
const char* key = counters[j].key;
if (counter->is_histogram()) {
printf("| c:%-60s | %11i |\n", key, counter->count());
printf("| t:%-60s | %11i |\n", key, counter->sample_total());
} else {
printf("| %-62s | %11i |\n", key, counter->count());
}
}
printf("+----------------------------------------------------------------+"
"-------------+\n");
delete [] counters;
}
delete counters_file_;
delete counter_map_;
#endif // !V8_SHARED
}
static FILE* FOpen(const char* path, const char* mode) {
#if defined(_MSC_VER) && (defined(_WIN32) || defined(_WIN64))
FILE* result;
if (fopen_s(&result, path, mode) == 0) {
return result;
} else {
return NULL;
}
#else
FILE* file = fopen(path, mode);
if (file == NULL) return NULL;
struct stat file_stat;
if (fstat(fileno(file), &file_stat) != 0) return NULL;
bool is_regular_file = ((file_stat.st_mode & S_IFREG) != 0);
if (is_regular_file) return file;
fclose(file);
return NULL;
#endif
}
static char* ReadChars(Isolate* isolate, const char* name, int* size_out) {
FILE* file = FOpen(name, "rb");
if (file == NULL) return NULL;
fseek(file, 0, SEEK_END);
size_t size = ftell(file);
rewind(file);
char* chars = new char[size + 1];
chars[size] = '\0';
for (size_t i = 0; i < size;) {
i += fread(&chars[i], 1, size - i, file);
if (ferror(file)) {
fclose(file);
delete[] chars;
return nullptr;
}
}
fclose(file);
*size_out = static_cast<int>(size);
return chars;
}
struct DataAndPersistent {
uint8_t* data;
int byte_length;
Global<ArrayBuffer> handle;
};
static void ReadBufferWeakCallback(
const v8::WeakCallbackInfo<DataAndPersistent>& data) {
int byte_length = data.GetParameter()->byte_length;
data.GetIsolate()->AdjustAmountOfExternalAllocatedMemory(
-static_cast<intptr_t>(byte_length));
delete[] data.GetParameter()->data;
data.GetParameter()->handle.Reset();
delete data.GetParameter();
}
void Shell::ReadBuffer(const v8::FunctionCallbackInfo<v8::Value>& args) {
DCHECK(sizeof(char) == sizeof(uint8_t)); // NOLINT
String::Utf8Value filename(args[0]);
int length;
if (*filename == NULL) {
Throw(args.GetIsolate(), "Error loading file");
return;
}
Isolate* isolate = args.GetIsolate();
DataAndPersistent* data = new DataAndPersistent;
data->data = reinterpret_cast<uint8_t*>(
ReadChars(args.GetIsolate(), *filename, &length));
if (data->data == NULL) {
delete data;
Throw(args.GetIsolate(), "Error reading file");
return;
}
data->byte_length = length;
Local<v8::ArrayBuffer> buffer = ArrayBuffer::New(isolate, data->data, length);
data->handle.Reset(isolate, buffer);
data->handle.SetWeak(data, ReadBufferWeakCallback,
v8::WeakCallbackType::kParameter);
data->handle.MarkIndependent();
isolate->AdjustAmountOfExternalAllocatedMemory(length);
args.GetReturnValue().Set(buffer);
}
// Reads a file into a v8 string.
Local<String> Shell::ReadFile(Isolate* isolate, const char* name) {
int size = 0;
char* chars = ReadChars(isolate, name, &size);
if (chars == NULL) return Local<String>();
Local<String> result =
String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size)
.ToLocalChecked();
delete[] chars;
return result;
}
void Shell::RunShell(Isolate* isolate) {
HandleScope outer_scope(isolate);
v8::Local<v8::Context> context =
v8::Local<v8::Context>::New(isolate, evaluation_context_);
v8::Context::Scope context_scope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Local<String> name =
String::NewFromUtf8(isolate, "(d8)", NewStringType::kNormal)
.ToLocalChecked();
printf("V8 version %s\n", V8::GetVersion());
while (true) {
HandleScope inner_scope(isolate);
printf("d8> ");
#if defined(__native_client__)
// Native Client libc is used to being embedded in Chrome and
// has trouble recognizing when to flush.
fflush(stdout);
#endif
Local<String> input = Shell::ReadFromStdin(isolate);
if (input.IsEmpty()) break;
ExecuteString(isolate, input, name, true, true);
}
printf("\n");
}
SourceGroup::~SourceGroup() {
#ifndef V8_SHARED
delete thread_;
thread_ = NULL;
#endif // !V8_SHARED
}
void SourceGroup::Execute(Isolate* isolate) {
bool exception_was_thrown = false;
for (int i = begin_offset_; i < end_offset_; ++i) {
const char* arg = argv_[i];
Shell::SourceType source_type = Shell::SCRIPT;
if (strcmp(arg, "-e") == 0 && i + 1 < end_offset_) {
// Execute argument given to -e option directly.
HandleScope handle_scope(isolate);
Local<String> file_name =
String::NewFromUtf8(isolate, "unnamed", NewStringType::kNormal)
.ToLocalChecked();
Local<String> source =
String::NewFromUtf8(isolate, argv_[i + 1], NewStringType::kNormal)
.ToLocalChecked();
Shell::options.script_executed = true;
if (!Shell::ExecuteString(isolate, source, file_name, false, true)) {
exception_was_thrown = true;
break;
}
++i;
continue;
} else if (strcmp(arg, "--module") == 0 && i + 1 < end_offset_) {
// Treat the next file as a module.
source_type = Shell::MODULE;
arg = argv_[++i];
} else if (arg[0] == '-') {
// Ignore other options. They have been parsed already.
continue;
}
// Use all other arguments as names of files to load and run.
HandleScope handle_scope(isolate);
Local<String> file_name =
String::NewFromUtf8(isolate, arg, NewStringType::kNormal)
.ToLocalChecked();
Local<String> source = ReadFile(isolate, arg);
if (source.IsEmpty()) {
printf("Error reading '%s'\n", arg);
Shell::Exit(1);
}
Shell::options.script_executed = true;
if (!Shell::ExecuteString(isolate, source, file_name, false, true,
source_type)) {
exception_was_thrown = true;
break;
}
}
if (exception_was_thrown != Shell::options.expected_to_throw) {
Shell::Exit(1);
}
}
Local<String> SourceGroup::ReadFile(Isolate* isolate, const char* name) {
int size;
char* chars = ReadChars(isolate, name, &size);
if (chars == NULL) return Local<String>();
Local<String> result =
String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size)
.ToLocalChecked();
delete[] chars;
return result;
}
#ifndef V8_SHARED
base::Thread::Options SourceGroup::GetThreadOptions() {
// On some systems (OSX 10.6) the stack size default is 0.5Mb or less
// which is not enough to parse the big literal expressions used in tests.
// The stack size should be at least StackGuard::kLimitSize + some
// OS-specific padding for thread startup code. 2Mbytes seems to be enough.
return base::Thread::Options("IsolateThread", 2 * MB);
}
void SourceGroup::ExecuteInThread() {
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* isolate = Isolate::New(create_params);
for (int i = 0; i < Shell::options.stress_runs; ++i) {
next_semaphore_.Wait();
{
Isolate::Scope iscope(isolate);
{
HandleScope scope(isolate);
PerIsolateData data(isolate);
Local<Context> context = Shell::CreateEvaluationContext(isolate);
{
Context::Scope cscope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Execute(isolate);
}
}
Shell::CollectGarbage(isolate);
}
done_semaphore_.Signal();
}
isolate->Dispose();
}
void SourceGroup::StartExecuteInThread() {
if (thread_ == NULL) {
thread_ = new IsolateThread(this);
thread_->Start();
}
next_semaphore_.Signal();
}
void SourceGroup::WaitForThread() {
if (thread_ == NULL) return;
done_semaphore_.Wait();
}
void SourceGroup::JoinThread() {
if (thread_ == NULL) return;
thread_->Join();
}
SerializationData::~SerializationData() {
// Any ArrayBuffer::Contents are owned by this SerializationData object if
// ownership hasn't been transferred out via ReadArrayBufferContents.
// SharedArrayBuffer::Contents may be used by multiple threads, so must be
// cleaned up by the main thread in Shell::CleanupWorkers().
for (int i = 0; i < array_buffer_contents_.length(); ++i) {
ArrayBuffer::Contents& contents = array_buffer_contents_[i];
if (contents.Data()) {
Shell::array_buffer_allocator->Free(contents.Data(),
contents.ByteLength());
}
}
}
void SerializationData::WriteTag(SerializationTag tag) { data_.Add(tag); }
void SerializationData::WriteMemory(const void* p, int length) {
if (length > 0) {
i::Vector<uint8_t> block = data_.AddBlock(0, length);
memcpy(&block[0], p, length);
}
}
void SerializationData::WriteArrayBufferContents(
const ArrayBuffer::Contents& contents) {
array_buffer_contents_.Add(contents);
WriteTag(kSerializationTagTransferredArrayBuffer);
int index = array_buffer_contents_.length() - 1;
Write(index);
}
void SerializationData::WriteSharedArrayBufferContents(
const SharedArrayBuffer::Contents& contents) {
shared_array_buffer_contents_.Add(contents);
WriteTag(kSerializationTagTransferredSharedArrayBuffer);
int index = shared_array_buffer_contents_.length() - 1;
Write(index);
}
SerializationTag SerializationData::ReadTag(int* offset) const {
return static_cast<SerializationTag>(Read<uint8_t>(offset));
}
void SerializationData::ReadMemory(void* p, int length, int* offset) const {
if (length > 0) {
memcpy(p, &data_[*offset], length);
(*offset) += length;
}
}
void SerializationData::ReadArrayBufferContents(ArrayBuffer::Contents* contents,
int* offset) const {
int index = Read<int>(offset);
DCHECK(index < array_buffer_contents_.length());
*contents = array_buffer_contents_[index];
// Ownership of this ArrayBuffer::Contents is passed to the caller. Neuter
// our copy so it won't be double-free'd when this SerializationData is
// destroyed.
array_buffer_contents_[index] = ArrayBuffer::Contents();
}
void SerializationData::ReadSharedArrayBufferContents(
SharedArrayBuffer::Contents* contents, int* offset) const {
int index = Read<int>(offset);
DCHECK(index < shared_array_buffer_contents_.length());
*contents = shared_array_buffer_contents_[index];
}
void SerializationDataQueue::Enqueue(SerializationData* data) {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
data_.Add(data);
}
bool SerializationDataQueue::Dequeue(SerializationData** data) {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
*data = NULL;
if (data_.is_empty()) return false;
*data = data_.Remove(0);
return true;
}
bool SerializationDataQueue::IsEmpty() {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
return data_.is_empty();
}
void SerializationDataQueue::Clear() {
base::LockGuard<base::Mutex> lock_guard(&mutex_);
for (int i = 0; i < data_.length(); ++i) {
delete data_[i];
}
data_.Clear();
}
Worker::Worker()
: in_semaphore_(0),
out_semaphore_(0),
thread_(NULL),
script_(NULL),
running_(false) {}
Worker::~Worker() {
delete thread_;
thread_ = NULL;
delete[] script_;
script_ = NULL;
in_queue_.Clear();
out_queue_.Clear();
}
void Worker::StartExecuteInThread(const char* script) {
running_ = true;
script_ = i::StrDup(script);
thread_ = new WorkerThread(this);
thread_->Start();
}
void Worker::PostMessage(SerializationData* data) {
in_queue_.Enqueue(data);
in_semaphore_.Signal();
}
SerializationData* Worker::GetMessage() {
SerializationData* data = NULL;
while (!out_queue_.Dequeue(&data)) {
// If the worker is no longer running, and there are no messages in the
// queue, don't expect any more messages from it.
if (!base::NoBarrier_Load(&running_)) break;
out_semaphore_.Wait();
}
return data;
}
void Worker::Terminate() {
base::NoBarrier_Store(&running_, false);
// Post NULL to wake the Worker thread message loop, and tell it to stop
// running.
PostMessage(NULL);
}
void Worker::WaitForThread() {
Terminate();
thread_->Join();
}
void Worker::ExecuteInThread() {
Isolate::CreateParams create_params;
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
Isolate* isolate = Isolate::New(create_params);
{
Isolate::Scope iscope(isolate);
{
HandleScope scope(isolate);
PerIsolateData data(isolate);
Local<Context> context = Shell::CreateEvaluationContext(isolate);
{
Context::Scope cscope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
Local<Object> global = context->Global();
Local<Value> this_value = External::New(isolate, this);
Local<FunctionTemplate> postmessage_fun_template =
FunctionTemplate::New(isolate, PostMessageOut, this_value);
Local<Function> postmessage_fun;
if (postmessage_fun_template->GetFunction(context)
.ToLocal(&postmessage_fun)) {
global->Set(context, String::NewFromUtf8(isolate, "postMessage",
NewStringType::kNormal)
.ToLocalChecked(),
postmessage_fun).FromJust();
}
// First run the script
Local<String> file_name =
String::NewFromUtf8(isolate, "unnamed", NewStringType::kNormal)
.ToLocalChecked();
Local<String> source =
String::NewFromUtf8(isolate, script_, NewStringType::kNormal)
.ToLocalChecked();
if (Shell::ExecuteString(isolate, source, file_name, false, true)) {
// Get the message handler
Local<Value> onmessage =
global->Get(context, String::NewFromUtf8(isolate, "onmessage",
NewStringType::kNormal)
.ToLocalChecked()).ToLocalChecked();
if (onmessage->IsFunction()) {
Local<Function> onmessage_fun = Local<Function>::Cast(onmessage);
// Now wait for messages
while (true) {
in_semaphore_.Wait();
SerializationData* data;
if (!in_queue_.Dequeue(&data)) continue;
if (data == NULL) {
break;
}
int offset = 0;
Local<Value> data_value;
if (Shell::DeserializeValue(isolate, *data, &offset)
.ToLocal(&data_value)) {
Local<Value> argv[] = {data_value};
(void)onmessage_fun->Call(context, global, 1, argv);
}
delete data;
}
}
}
}
}
Shell::CollectGarbage(isolate);
}
isolate->Dispose();
// Post NULL to wake the thread waiting on GetMessage() if there is one.
out_queue_.Enqueue(NULL);
out_semaphore_.Signal();
}
void Worker::PostMessageOut(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = args.GetIsolate();
HandleScope handle_scope(isolate);
if (args.Length() < 1) {
Throw(isolate, "Invalid argument");
return;
}
Local<Value> message = args[0];
// TODO(binji): Allow transferring from worker to main thread?
Shell::ObjectList to_transfer;
Shell::ObjectList seen_objects;
SerializationData* data = new SerializationData;
if (Shell::SerializeValue(isolate, message, to_transfer, &seen_objects,
data)) {
DCHECK(args.Data()->IsExternal());
Local<External> this_value = Local<External>::Cast(args.Data());
Worker* worker = static_cast<Worker*>(this_value->Value());
worker->out_queue_.Enqueue(data);
worker->out_semaphore_.Signal();
} else {
delete data;
}
}
#endif // !V8_SHARED
void SetFlagsFromString(const char* flags) {
v8::V8::SetFlagsFromString(flags, static_cast<int>(strlen(flags)));
}
bool Shell::SetOptions(int argc, char* argv[]) {
bool logfile_per_isolate = false;
for (int i = 0; i < argc; i++) {
if (strcmp(argv[i], "--stress-opt") == 0) {
options.stress_opt = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--nostress-opt") == 0) {
options.stress_opt = false;
argv[i] = NULL;
} else if (strcmp(argv[i], "--stress-deopt") == 0) {
options.stress_deopt = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--mock-arraybuffer-allocator") == 0) {
options.mock_arraybuffer_allocator = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--noalways-opt") == 0) {
// No support for stressing if we can't use --always-opt.
options.stress_opt = false;
options.stress_deopt = false;
} else if (strcmp(argv[i], "--logfile-per-isolate") == 0) {
logfile_per_isolate = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--shell") == 0) {
options.interactive_shell = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--test") == 0) {
options.test_shell = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--notest") == 0 ||
strcmp(argv[i], "--no-test") == 0) {
options.test_shell = false;
argv[i] = NULL;
} else if (strcmp(argv[i], "--send-idle-notification") == 0) {
options.send_idle_notification = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--invoke-weak-callbacks") == 0) {
options.invoke_weak_callbacks = true;
// TODO(jochen) See issue 3351
options.send_idle_notification = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "--omit-quit") == 0) {
options.omit_quit = true;
argv[i] = NULL;
} else if (strcmp(argv[i], "-f") == 0) {
// Ignore any -f flags for compatibility with other stand-alone
// JavaScript engines.
continue;
} else if (strcmp(argv[i], "--isolate") == 0) {
#ifdef V8_SHARED
printf("D8 with shared library does not support multi-threading\n");
return false;
#endif // V8_SHARED
options.num_isolates++;
} else if (strcmp(argv[i], "--dump-heap-constants") == 0) {
#ifdef V8_SHARED
printf("D8 with shared library does not support constant dumping\n");
return false;
#else
options.dump_heap_constants = true;
argv[i] = NULL;
#endif // V8_SHARED
} else if (strcmp(argv[i], "--throws") == 0) {
options.expected_to_throw = true;
argv[i] = NULL;
} else if (strncmp(argv[i], "--icu-data-file=", 16) == 0) {
options.icu_data_file = argv[i] + 16;
argv[i] = NULL;
#ifdef V8_SHARED
} else if (strcmp(argv[i], "--dump-counters") == 0) {
printf("D8 with shared library does not include counters\n");
return false;
#endif // V8_SHARED
#ifdef V8_USE_EXTERNAL_STARTUP_DATA
} else if (strncmp(argv[i], "--natives_blob=", 15) == 0) {
options.natives_blob = argv[i] + 15;
argv[i] = NULL;
} else if (strncmp(argv[i], "--snapshot_blob=", 16) == 0) {
options.snapshot_blob = argv[i] + 16;
argv[i] = NULL;
#endif // V8_USE_EXTERNAL_STARTUP_DATA
} else if (strcmp(argv[i], "--cache") == 0 ||
strncmp(argv[i], "--cache=", 8) == 0) {
const char* value = argv[i] + 7;
if (!*value || strncmp(value, "=code", 6) == 0) {
options.compile_options = v8::ScriptCompiler::kProduceCodeCache;
} else if (strncmp(value, "=parse", 7) == 0) {
options.compile_options = v8::ScriptCompiler::kProduceParserCache;
} else if (strncmp(value, "=none", 6) == 0) {
options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
} else {
printf("Unknown option to --cache.\n");
return false;
}
argv[i] = NULL;
}
}
v8::V8::SetFlagsFromCommandLine(&argc, argv, true);
bool enable_harmony_modules = false;
// Set up isolated source groups.
options.isolate_sources = new SourceGroup[options.num_isolates];
SourceGroup* current = options.isolate_sources;
current->Begin(argv, 1);
for (int i = 1; i < argc; i++) {
const char* str = argv[i];
if (strcmp(str, "--isolate") == 0) {
current->End(i);
current++;
current->Begin(argv, i + 1);
} else if (strcmp(str, "--module") == 0) {
// Pass on to SourceGroup, which understands this option.
enable_harmony_modules = true;
} else if (strncmp(argv[i], "--", 2) == 0) {
printf("Warning: unknown flag %s.\nTry --help for options\n", argv[i]);
} else if (strcmp(str, "-e") == 0 && i + 1 < argc) {
options.script_executed = true;
} else if (strncmp(str, "-", 1) != 0) {
// Not a flag, so it must be a script to execute.
options.script_executed = true;
}
}
current->End(argc);
if (!logfile_per_isolate && options.num_isolates) {
SetFlagsFromString("--nologfile_per_isolate");
}
if (enable_harmony_modules) {
SetFlagsFromString("--harmony-modules");
}
return true;
}
int Shell::RunMain(Isolate* isolate, int argc, char* argv[], bool last_run) {
#ifndef V8_SHARED
for (int i = 1; i < options.num_isolates; ++i) {
options.isolate_sources[i].StartExecuteInThread();
}
#endif // !V8_SHARED
{
HandleScope scope(isolate);
Local<Context> context = CreateEvaluationContext(isolate);
if (last_run && options.use_interactive_shell()) {
// Keep using the same context in the interactive shell.
evaluation_context_.Reset(isolate, context);
}
{
Context::Scope cscope(context);
PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
options.isolate_sources[0].Execute(isolate);
}
}
CollectGarbage(isolate);
#ifndef V8_SHARED
for (int i = 1; i < options.num_isolates; ++i) {
if (last_run) {
options.isolate_sources[i].JoinThread();
} else {
options.isolate_sources[i].WaitForThread();
}
}
CleanupWorkers();
#endif // !V8_SHARED
return 0;
}
void Shell::CollectGarbage(Isolate* isolate) {
if (options.send_idle_notification) {
const double kLongIdlePauseInSeconds = 1.0;
isolate->ContextDisposedNotification();
isolate->IdleNotificationDeadline(
g_platform->MonotonicallyIncreasingTime() + kLongIdlePauseInSeconds);
}
if (options.invoke_weak_callbacks) {
// By sending a low memory notifications, we will try hard to collect all
// garbage and will therefore also invoke all weak callbacks of actually
// unreachable persistent handles.
isolate->LowMemoryNotification();
}
}
void Shell::EmptyMessageQueues(Isolate* isolate) {
while (v8::platform::PumpMessageLoop(g_platform, isolate)) continue;
}
#ifndef V8_SHARED
bool Shell::SerializeValue(Isolate* isolate, Local<Value> value,
const ObjectList& to_transfer,
ObjectList* seen_objects,
SerializationData* out_data) {
DCHECK(out_data);
Local<Context> context = isolate->GetCurrentContext();
if (value->IsUndefined()) {
out_data->WriteTag(kSerializationTagUndefined);
} else if (value->IsNull()) {
out_data->WriteTag(kSerializationTagNull);
} else if (value->IsTrue()) {
out_data->WriteTag(kSerializationTagTrue);
} else if (value->IsFalse()) {
out_data->WriteTag(kSerializationTagFalse);
} else if (value->IsNumber()) {
Local<Number> num = Local<Number>::Cast(value);
double value = num->Value();
out_data->WriteTag(kSerializationTagNumber);
out_data->Write(value);
} else if (value->IsString()) {
v8::String::Utf8Value str(value);
out_data->WriteTag(kSerializationTagString);
out_data->Write(str.length());
out_data->WriteMemory(*str, str.length());
} else if (value->IsArray()) {
Local<Array> array = Local<Array>::Cast(value);
if (FindInObjectList(array, *seen_objects)) {
Throw(isolate, "Duplicated arrays not supported");
return false;
}
seen_objects->Add(array);
out_data->WriteTag(kSerializationTagArray);
uint32_t length = array->Length();
out_data->Write(length);
for (uint32_t i = 0; i < length; ++i) {
Local<Value> element_value;
if (array->Get(context, i).ToLocal(&element_value)) {
if (!SerializeValue(isolate, element_value, to_transfer, seen_objects,
out_data))
return false;
} else {
Throw(isolate, "Failed to serialize array element.");
return false;
}
}
} else if (value->IsArrayBuffer()) {
Local<ArrayBuffer> array_buffer = Local<ArrayBuffer>::Cast(value);
if (FindInObjectList(array_buffer, *seen_objects)) {
Throw(isolate, "Duplicated array buffers not supported");
return false;
}
seen_objects->Add(array_buffer);
if (FindInObjectList(array_buffer, to_transfer)) {
// Transfer ArrayBuffer
if (!array_buffer->IsNeuterable()) {
Throw(isolate, "Attempting to transfer an un-neuterable ArrayBuffer");
return false;
}
ArrayBuffer::Contents contents = array_buffer->IsExternal()
? array_buffer->GetContents()
: array_buffer->Externalize();
array_buffer->Neuter();
out_data->WriteArrayBufferContents(contents);
} else {
ArrayBuffer::Contents contents = array_buffer->GetContents();
// Clone ArrayBuffer
if (contents.ByteLength() > i::kMaxInt) {
Throw(isolate, "ArrayBuffer is too big to clone");
return false;
}
int32_t byte_length = static_cast<int32_t>(contents.ByteLength());
out_data->WriteTag(kSerializationTagArrayBuffer);
out_data->Write(byte_length);
out_data->WriteMemory(contents.Data(), byte_length);
}
} else if (value->IsSharedArrayBuffer()) {
Local<SharedArrayBuffer> sab = Local<SharedArrayBuffer>::Cast(value);
if (FindInObjectList(sab, *seen_objects)) {
Throw(isolate, "Duplicated shared array buffers not supported");
return false;
}
seen_objects->Add(sab);
if (!FindInObjectList(sab, to_transfer)) {
Throw(isolate, "SharedArrayBuffer must be transferred");
return false;
}
SharedArrayBuffer::Contents contents;
if (sab->IsExternal()) {
contents = sab->GetContents();
} else {
contents = sab->Externalize();
base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer());
externalized_shared_contents_.Add(contents);
}
out_data->WriteSharedArrayBufferContents(contents);
} else if (value->IsObject()) {
Local<Object> object = Local<Object>::Cast(value);
if (FindInObjectList(object, *seen_objects)) {
Throw(isolate, "Duplicated objects not supported");
return false;
}
seen_objects->Add(object);
Local<Array> property_names;
if (!object->GetOwnPropertyNames(context).ToLocal(&property_names)) {
Throw(isolate, "Unable to get property names");
return false;
}
uint32_t length = property_names->Length();
out_data->WriteTag(kSerializationTagObject);
out_data->Write(length);
for (uint32_t i = 0; i < length; ++i) {
Local<Value> name;
Local<Value> property_value;
if (property_names->Get(context, i).ToLocal(&name) &&
object->Get(context, name).ToLocal(&property_value)) {
if (!SerializeValue(isolate, name, to_transfer, seen_objects, out_data))
return false;
if (!SerializeValue(isolate, property_value, to_transfer, seen_objects,
out_data))
return false;
} else {
Throw(isolate, "Failed to serialize property.");
return false;
}
}
} else {
Throw(isolate, "Don't know how to serialize object");
return false;
}
return true;
}
MaybeLocal<Value> Shell::DeserializeValue(Isolate* isolate,
const SerializationData& data,
int* offset) {
DCHECK(offset);
EscapableHandleScope scope(isolate);
// This function should not use utility_context_ because it is running on a
// different thread.
Local<Value> result;
SerializationTag tag = data.ReadTag(offset);
switch (tag) {
case kSerializationTagUndefined:
result = Undefined(isolate);
break;
case kSerializationTagNull:
result = Null(isolate);
break;
case kSerializationTagTrue:
result = True(isolate);
break;
case kSerializationTagFalse:
result = False(isolate);
break;
case kSerializationTagNumber:
result = Number::New(isolate, data.Read<double>(offset));
break;
case kSerializationTagString: {
int length = data.Read<int>(offset);
CHECK(length >= 0);
std::vector<char> buffer(length + 1); // + 1 so it is never empty.
data.ReadMemory(&buffer[0], length, offset);
MaybeLocal<String> str =
String::NewFromUtf8(isolate, &buffer[0], NewStringType::kNormal,
length).ToLocalChecked();
if (!str.IsEmpty()) result = str.ToLocalChecked();
break;
}
case kSerializationTagArray: {
uint32_t length = data.Read<uint32_t>(offset);
Local<Array> array = Array::New(isolate, length);
for (uint32_t i = 0; i < length; ++i) {
Local<Value> element_value;
CHECK(DeserializeValue(isolate, data, offset).ToLocal(&element_value));
array->Set(isolate->GetCurrentContext(), i, element_value).FromJust();
}
result = array;
break;
}
case kSerializationTagObject: {
int length = data.Read<int>(offset);
Local<Object> object = Object::New(isolate);
for (int i = 0; i < length; ++i) {
Local<Value> property_name;
CHECK(DeserializeValue(isolate, data, offset).ToLocal(&property_name));
Local<Value> property_value;
CHECK(DeserializeValue(isolate, data, offset).ToLocal(&property_value));
object->Set(isolate->GetCurrentContext(), property_name, property_value)
.FromJust();
}
result = object;
break;
}
case kSerializationTagArrayBuffer: {
int32_t byte_length = data.Read<int32_t>(offset);
Local<ArrayBuffer> array_buffer = ArrayBuffer::New(isolate, byte_length);
ArrayBuffer::Contents contents = array_buffer->GetContents();
DCHECK(static_cast<size_t>(byte_length) == contents.ByteLength());
data.ReadMemory(contents.Data(), byte_length, offset);
result = array_buffer;
break;
}
case kSerializationTagTransferredArrayBuffer: {
ArrayBuffer::Contents contents;
data.ReadArrayBufferContents(&contents, offset);
result = ArrayBuffer::New(isolate, contents.Data(), contents.ByteLength(),
ArrayBufferCreationMode::kInternalized);
break;
}
case kSerializationTagTransferredSharedArrayBuffer: {
SharedArrayBuffer::Contents contents;
data.ReadSharedArrayBufferContents(&contents, offset);
result = SharedArrayBuffer::New(isolate, contents.Data(),
contents.ByteLength());
break;
}
default:
UNREACHABLE();
}
return scope.Escape(result);
}
void Shell::CleanupWorkers() {
// Make a copy of workers_, because we don't want to call Worker::Terminate
// while holding the workers_mutex_ lock. Otherwise, if a worker is about to
// create a new Worker, it would deadlock.
i::List<Worker*> workers_copy;
{
base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer());
allow_new_workers_ = false;
workers_copy.AddAll(workers_);
workers_.Clear();
}
for (int i = 0; i < workers_copy.length(); ++i) {
Worker* worker = workers_copy[i];
worker->WaitForThread();
delete worker;
}
// Now that all workers are terminated, we can re-enable Worker creation.
base::LockGuard<base::Mutex> lock_guard(workers_mutex_.Pointer());
allow_new_workers_ = true;
for (int i = 0; i < externalized_shared_contents_.length(); ++i) {
const SharedArrayBuffer::Contents& contents =
externalized_shared_contents_[i];
Shell::array_buffer_allocator->Free(contents.Data(), contents.ByteLength());
}
externalized_shared_contents_.Clear();
}
static void DumpHeapConstants(i::Isolate* isolate) {
i::Heap* heap = isolate->heap();
// Dump the INSTANCE_TYPES table to the console.
printf("# List of known V8 instance types.\n");
#define DUMP_TYPE(T) printf(" %d: \"%s\",\n", i::T, #T);
printf("INSTANCE_TYPES = {\n");
INSTANCE_TYPE_LIST(DUMP_TYPE)
printf("}\n");
#undef DUMP_TYPE
// Dump the KNOWN_MAP table to the console.
printf("\n# List of known V8 maps.\n");
#define ROOT_LIST_CASE(type, name, camel_name) \
if (n == NULL && o == heap->name()) n = #camel_name;
#define STRUCT_LIST_CASE(upper_name, camel_name, name) \
if (n == NULL && o == heap->name##_map()) n = #camel_name "Map";
i::HeapObjectIterator it(heap->map_space());
printf("KNOWN_MAPS = {\n");
for (i::Object* o = it.Next(); o != NULL; o = it.Next()) {
i::Map* m = i::Map::cast(o);
const char* n = NULL;
intptr_t p = reinterpret_cast<intptr_t>(m) & 0xfffff;
int t = m->instance_type();
ROOT_LIST(ROOT_LIST_CASE)
STRUCT_LIST(STRUCT_LIST_CASE)
if (n == NULL) continue;
printf(" 0x%05" V8PRIxPTR ": (%d, \"%s\"),\n", p, t, n);
}
printf("}\n");
#undef STRUCT_LIST_CASE
#undef ROOT_LIST_CASE
// Dump the KNOWN_OBJECTS table to the console.
printf("\n# List of known V8 objects.\n");
#define ROOT_LIST_CASE(type, name, camel_name) \
if (n == NULL && o == heap->name()) n = #camel_name;
i::OldSpaces spit(heap);
printf("KNOWN_OBJECTS = {\n");
for (i::PagedSpace* s = spit.next(); s != NULL; s = spit.next()) {
i::HeapObjectIterator it(s);
const char* sname = AllocationSpaceName(s->identity());
for (i::Object* o = it.Next(); o != NULL; o = it.Next()) {
const char* n = NULL;
intptr_t p = reinterpret_cast<intptr_t>(o) & 0xfffff;
ROOT_LIST(ROOT_LIST_CASE)
if (n == NULL) continue;
printf(" (\"%s\", 0x%05" V8PRIxPTR "): \"%s\",\n", sname, p, n);
}
}
printf("}\n");
#undef ROOT_LIST_CASE
}
#endif // !V8_SHARED
int Shell::Main(int argc, char* argv[]) {
#if (defined(_WIN32) || defined(_WIN64))
UINT new_flags =
SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX;
UINT existing_flags = SetErrorMode(new_flags);
SetErrorMode(existing_flags | new_flags);
#if defined(_MSC_VER)
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR);
_set_error_mode(_OUT_TO_STDERR);
#endif // defined(_MSC_VER)
#endif // defined(_WIN32) || defined(_WIN64)
if (!SetOptions(argc, argv)) return 1;
v8::V8::InitializeICU(options.icu_data_file);
g_platform = v8::platform::CreateDefaultPlatform();
v8::V8::InitializePlatform(g_platform);
v8::V8::Initialize();
if (options.natives_blob || options.snapshot_blob) {
v8::V8::InitializeExternalStartupData(options.natives_blob,
options.snapshot_blob);
} else {
v8::V8::InitializeExternalStartupData(argv[0]);
}
SetFlagsFromString("--trace-hydrogen-file=hydrogen.cfg");
SetFlagsFromString("--trace-turbo-cfg-file=turbo.cfg");
SetFlagsFromString("--redirect-code-traces-to=code.asm");
int result = 0;
Isolate::CreateParams create_params;
ShellArrayBufferAllocator shell_array_buffer_allocator;
MockArrayBufferAllocator mock_arraybuffer_allocator;
if (options.mock_arraybuffer_allocator) {
Shell::array_buffer_allocator = &mock_arraybuffer_allocator;
} else {
Shell::array_buffer_allocator = &shell_array_buffer_allocator;
}
create_params.array_buffer_allocator = Shell::array_buffer_allocator;
#if !defined(V8_SHARED) && defined(ENABLE_GDB_JIT_INTERFACE)
if (i::FLAG_gdbjit) {
create_params.code_event_handler = i::GDBJITInterface::EventHandler;
}
#endif
#ifdef ENABLE_VTUNE_JIT_INTERFACE
create_params.code_event_handler = vTune::GetVtuneCodeEventHandler();
#endif
#ifndef V8_SHARED
create_params.constraints.ConfigureDefaults(
base::SysInfo::AmountOfPhysicalMemory(),
base::SysInfo::AmountOfVirtualMemory());
Shell::counter_map_ = new CounterMap();
if (i::FLAG_dump_counters || i::FLAG_track_gc_object_stats) {
create_params.counter_lookup_callback = LookupCounter;
create_params.create_histogram_callback = CreateHistogram;
create_params.add_histogram_sample_callback = AddHistogramSample;
}
#endif
Isolate* isolate = Isolate::New(create_params);
{
Isolate::Scope scope(isolate);
Initialize(isolate);
PerIsolateData data(isolate);
#ifndef V8_SHARED
if (options.dump_heap_constants) {
DumpHeapConstants(reinterpret_cast<i::Isolate*>(isolate));
return 0;
}
#endif
if (options.stress_opt || options.stress_deopt) {
Testing::SetStressRunType(options.stress_opt
? Testing::kStressTypeOpt
: Testing::kStressTypeDeopt);
options.stress_runs = Testing::GetStressRuns();
for (int i = 0; i < options.stress_runs && result == 0; i++) {
printf("============ Stress %d/%d ============\n", i + 1,
options.stress_runs);
Testing::PrepareStressRun(i);
bool last_run = i == options.stress_runs - 1;
result = RunMain(isolate, argc, argv, last_run);
}
printf("======== Full Deoptimization =======\n");
Testing::DeoptimizeAll();
#if !defined(V8_SHARED)
} else if (i::FLAG_stress_runs > 0) {
options.stress_runs = i::FLAG_stress_runs;
for (int i = 0; i < options.stress_runs && result == 0; i++) {
printf("============ Run %d/%d ============\n", i + 1,
options.stress_runs);
bool last_run = i == options.stress_runs - 1;
result = RunMain(isolate, argc, argv, last_run);
}
#endif
} else {
bool last_run = true;
result = RunMain(isolate, argc, argv, last_run);
}
// Run interactive shell if explicitly requested or if no script has been
// executed, but never on --test
if (options.use_interactive_shell()) {
#ifndef V8_SHARED
InstallUtilityScript(isolate);
#endif // !V8_SHARED
RunShell(isolate);
}
// Shut down contexts and collect garbage.
evaluation_context_.Reset();
#ifndef V8_SHARED
utility_context_.Reset();
#endif // !V8_SHARED
CollectGarbage(isolate);
}
OnExit(isolate);
#ifndef V8_SHARED
// Dump basic block profiling data.
if (i::BasicBlockProfiler* profiler =
reinterpret_cast<i::Isolate*>(isolate)->basic_block_profiler()) {
i::OFStream os(stdout);
os << *profiler;
}
#endif // !V8_SHARED
isolate->Dispose();
V8::Dispose();
V8::ShutdownPlatform();
delete g_platform;
return result;
}
} // namespace v8
#ifndef GOOGLE3
int main(int argc, char* argv[]) {
return v8::Shell::Main(argc, argv);
}
#endif