blob: dedb447bf2ecaf48f8a9325c1971fa73afd94fc6 [file] [log] [blame] [edit]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/interpreter/interpreter-assembler.h"
#include <limits>
#include <ostream>
#include "src/builtins/builtins-inl.h"
#include "src/codegen/code-stub-assembler-inl.h"
#include "src/codegen/interface-descriptors-inl.h"
#include "src/codegen/machine-type.h"
#include "src/interpreter/bytecodes.h"
#include "src/interpreter/interpreter.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
namespace interpreter {
#include "src/codegen/define-code-stub-assembler-macros.inc"
using compiler::CodeAssemblerState;
InterpreterAssembler::InterpreterAssembler(CodeAssemblerState* state,
Bytecode bytecode,
OperandScale operand_scale)
: CodeStubAssembler(state),
bytecode_(bytecode),
operand_scale_(operand_scale),
TVARIABLE_CONSTRUCTOR(interpreted_frame_pointer_),
TVARIABLE_CONSTRUCTOR(bytecode_array_,
Parameter<BytecodeArray>(
InterpreterDispatchDescriptor::kBytecodeArray)),
TVARIABLE_CONSTRUCTOR(
bytecode_offset_,
UncheckedParameter<IntPtrT>(
InterpreterDispatchDescriptor::kBytecodeOffset)),
TVARIABLE_CONSTRUCTOR(dispatch_table_,
UncheckedParameter<ExternalReference>(
InterpreterDispatchDescriptor::kDispatchTable)),
TVARIABLE_CONSTRUCTOR(
accumulator_,
Parameter<Object>(InterpreterDispatchDescriptor::kAccumulator)),
implicit_register_use_(ImplicitRegisterUse::kNone),
made_call_(false),
reloaded_frame_ptr_(false),
bytecode_array_valid_(true) {
#ifdef V8_TRACE_UNOPTIMIZED
TraceBytecode(Runtime::kTraceUnoptimizedBytecodeEntry);
#endif
RegisterCallGenerationCallbacks([this] { CallPrologue(); },
[this] { CallEpilogue(); });
// Save the bytecode offset immediately if bytecode will make a call along
// the critical path, or it is a return bytecode.
if (Bytecodes::MakesCallAlongCriticalPath(bytecode) ||
Bytecodes::Returns(bytecode)) {
SaveBytecodeOffset();
}
}
InterpreterAssembler::~InterpreterAssembler() {
// If the following check fails the handler does not use the
// accumulator in the way described in the bytecode definitions in
// bytecodes.h.
DCHECK_EQ(implicit_register_use_,
Bytecodes::GetImplicitRegisterUse(bytecode_));
UnregisterCallGenerationCallbacks();
}
TNode<RawPtrT> InterpreterAssembler::GetInterpretedFramePointer() {
if (!interpreted_frame_pointer_.IsBound()) {
interpreted_frame_pointer_ = LoadParentFramePointer();
} else if (Bytecodes::MakesCallAlongCriticalPath(bytecode_) && made_call_ &&
!reloaded_frame_ptr_) {
interpreted_frame_pointer_ = LoadParentFramePointer();
reloaded_frame_ptr_ = true;
}
return interpreted_frame_pointer_.value();
}
TNode<IntPtrT> InterpreterAssembler::BytecodeOffset() {
if (Bytecodes::MakesCallAlongCriticalPath(bytecode_) && made_call_ &&
(bytecode_offset_.value() ==
UncheckedParameter<IntPtrT>(
InterpreterDispatchDescriptor::kBytecodeOffset))) {
bytecode_offset_ = ReloadBytecodeOffset();
}
return bytecode_offset_.value();
}
TNode<IntPtrT> InterpreterAssembler::ReloadBytecodeOffset() {
TNode<IntPtrT> offset = LoadAndUntagRegister(Register::bytecode_offset());
if (operand_scale() != OperandScale::kSingle) {
// Add one to the offset such that it points to the actual bytecode rather
// than the Wide / ExtraWide prefix bytecode.
offset = IntPtrAdd(offset, IntPtrConstant(1));
}
return offset;
}
void InterpreterAssembler::SaveBytecodeOffset() {
TNode<IntPtrT> bytecode_offset = BytecodeOffset();
if (operand_scale() != OperandScale::kSingle) {
// Subtract one from the bytecode_offset such that it points to the Wide /
// ExtraWide prefix bytecode.
bytecode_offset = IntPtrSub(BytecodeOffset(), IntPtrConstant(1));
}
int store_offset =
Register::bytecode_offset().ToOperand() * kSystemPointerSize;
TNode<RawPtrT> base = GetInterpretedFramePointer();
if (SmiValuesAre32Bits()) {
int zero_offset = store_offset + 4;
int payload_offset = store_offset;
#if V8_TARGET_LITTLE_ENDIAN
std::swap(zero_offset, payload_offset);
#endif
StoreNoWriteBarrier(MachineRepresentation::kWord32, base,
IntPtrConstant(zero_offset), Int32Constant(0));
StoreNoWriteBarrier(MachineRepresentation::kWord32, base,
IntPtrConstant(payload_offset),
TruncateIntPtrToInt32(bytecode_offset));
} else {
StoreFullTaggedNoWriteBarrier(base, IntPtrConstant(store_offset),
SmiTag(bytecode_offset));
}
}
TNode<BytecodeArray> InterpreterAssembler::BytecodeArrayTaggedPointer() {
// Force a re-load of the bytecode array after every call in case the debugger
// has been activated.
if (!bytecode_array_valid_) {
bytecode_array_ = CAST(LoadRegister(Register::bytecode_array()));
bytecode_array_valid_ = true;
}
return bytecode_array_.value();
}
TNode<ExternalReference> InterpreterAssembler::DispatchTablePointer() {
if (Bytecodes::MakesCallAlongCriticalPath(bytecode_) && made_call_ &&
(dispatch_table_.value() ==
UncheckedParameter<ExternalReference>(
InterpreterDispatchDescriptor::kDispatchTable))) {
dispatch_table_ = ExternalConstant(
ExternalReference::interpreter_dispatch_table_address(isolate()));
}
return dispatch_table_.value();
}
TNode<Object> InterpreterAssembler::GetAccumulatorUnchecked() {
return accumulator_.value();
}
TNode<Object> InterpreterAssembler::GetAccumulator() {
DCHECK(Bytecodes::ReadsAccumulator(bytecode_));
implicit_register_use_ =
implicit_register_use_ | ImplicitRegisterUse::kReadAccumulator;
return GetAccumulatorUnchecked();
}
void InterpreterAssembler::SetAccumulator(TNode<Object> value) {
DCHECK(Bytecodes::WritesAccumulator(bytecode_));
implicit_register_use_ =
implicit_register_use_ | ImplicitRegisterUse::kWriteAccumulator;
accumulator_ = value;
}
void InterpreterAssembler::ClobberAccumulator(TNode<Object> clobber_value) {
DCHECK(Bytecodes::ClobbersAccumulator(bytecode_));
implicit_register_use_ =
implicit_register_use_ | ImplicitRegisterUse::kClobberAccumulator;
accumulator_ = clobber_value;
}
TNode<Context> InterpreterAssembler::GetContext() {
return CAST(LoadRegister(Register::current_context()));
}
void InterpreterAssembler::SetContext(TNode<Context> value) {
StoreRegister(value, Register::current_context());
}
TNode<Context> InterpreterAssembler::GetContextAtDepth(TNode<Context> context,
TNode<Uint32T> depth) {
TVARIABLE(Context, cur_context, context);
TVARIABLE(Uint32T, cur_depth, depth);
Label context_found(this);
Label context_search(this, {&cur_depth, &cur_context});
// Fast path if the depth is 0.
Branch(Word32Equal(depth, Int32Constant(0)), &context_found, &context_search);
// Loop until the depth is 0.
BIND(&context_search);
{
cur_depth = Unsigned(Int32Sub(cur_depth.value(), Int32Constant(1)));
cur_context =
CAST(LoadContextElement(cur_context.value(), Context::PREVIOUS_INDEX));
Branch(Word32Equal(cur_depth.value(), Int32Constant(0)), &context_found,
&context_search);
}
BIND(&context_found);
return cur_context.value();
}
TNode<IntPtrT> InterpreterAssembler::RegisterLocation(
TNode<IntPtrT> reg_index) {
return Signed(
IntPtrAdd(GetInterpretedFramePointer(), RegisterFrameOffset(reg_index)));
}
TNode<IntPtrT> InterpreterAssembler::RegisterLocation(Register reg) {
return RegisterLocation(IntPtrConstant(reg.ToOperand()));
}
TNode<IntPtrT> InterpreterAssembler::RegisterFrameOffset(TNode<IntPtrT> index) {
return TimesSystemPointerSize(index);
}
TNode<Object> InterpreterAssembler::LoadRegister(TNode<IntPtrT> reg_index) {
return LoadFullTagged(GetInterpretedFramePointer(),
RegisterFrameOffset(reg_index));
}
TNode<Object> InterpreterAssembler::LoadRegister(Register reg) {
return LoadFullTagged(GetInterpretedFramePointer(),
IntPtrConstant(reg.ToOperand() * kSystemPointerSize));
}
TNode<IntPtrT> InterpreterAssembler::LoadAndUntagRegister(Register reg) {
TNode<RawPtrT> base = GetInterpretedFramePointer();
int index = reg.ToOperand() * kSystemPointerSize;
if (SmiValuesAre32Bits()) {
#if V8_TARGET_LITTLE_ENDIAN
index += 4;
#endif
return ChangeInt32ToIntPtr(Load<Int32T>(base, IntPtrConstant(index)));
} else {
return SmiToIntPtr(CAST(LoadFullTagged(base, IntPtrConstant(index))));
}
}
TNode<Object> InterpreterAssembler::LoadRegisterAtOperandIndex(
int operand_index) {
return LoadRegister(BytecodeOperandReg(operand_index));
}
std::pair<TNode<Object>, TNode<Object>>
InterpreterAssembler::LoadRegisterPairAtOperandIndex(int operand_index) {
DCHECK_EQ(OperandType::kRegPair,
Bytecodes::GetOperandType(bytecode_, operand_index));
TNode<IntPtrT> first_reg_index = BytecodeOperandReg(operand_index);
TNode<IntPtrT> second_reg_index = NextRegister(first_reg_index);
return std::make_pair(LoadRegister(first_reg_index),
LoadRegister(second_reg_index));
}
InterpreterAssembler::RegListNodePair
InterpreterAssembler::GetRegisterListAtOperandIndex(int operand_index) {
DCHECK(Bytecodes::IsRegisterListOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
DCHECK_EQ(OperandType::kRegCount,
Bytecodes::GetOperandType(bytecode_, operand_index + 1));
TNode<IntPtrT> base_reg = RegisterLocation(BytecodeOperandReg(operand_index));
TNode<Uint32T> reg_count = BytecodeOperandCount(operand_index + 1);
return RegListNodePair(base_reg, reg_count);
}
TNode<Object> InterpreterAssembler::LoadRegisterFromRegisterList(
const RegListNodePair& reg_list, int index) {
TNode<IntPtrT> location = RegisterLocationInRegisterList(reg_list, index);
return LoadFullTagged(location);
}
TNode<IntPtrT> InterpreterAssembler::RegisterLocationInRegisterList(
const RegListNodePair& reg_list, int index) {
CSA_DCHECK(this,
Uint32GreaterThan(reg_list.reg_count(), Int32Constant(index)));
TNode<IntPtrT> offset = RegisterFrameOffset(IntPtrConstant(index));
// Register indexes are negative, so subtract index from base location to get
// location.
return Signed(IntPtrSub(reg_list.base_reg_location(), offset));
}
void InterpreterAssembler::StoreRegister(TNode<Object> value, Register reg) {
StoreFullTaggedNoWriteBarrier(
GetInterpretedFramePointer(),
IntPtrConstant(reg.ToOperand() * kSystemPointerSize), value);
}
void InterpreterAssembler::StoreRegister(TNode<Object> value,
TNode<IntPtrT> reg_index) {
StoreFullTaggedNoWriteBarrier(GetInterpretedFramePointer(),
RegisterFrameOffset(reg_index), value);
}
void InterpreterAssembler::StoreRegisterForShortStar(TNode<Object> value,
TNode<WordT> opcode) {
DCHECK(Bytecodes::IsShortStar(bytecode_));
implicit_register_use_ =
implicit_register_use_ | ImplicitRegisterUse::kWriteShortStar;
CSA_DCHECK(
this, UintPtrGreaterThanOrEqual(opcode, UintPtrConstant(static_cast<int>(
Bytecode::kFirstShortStar))));
CSA_DCHECK(
this,
UintPtrLessThanOrEqual(
opcode, UintPtrConstant(static_cast<int>(Bytecode::kLastShortStar))));
// Compute the constant that we can add to a Bytecode value to map the range
// [Bytecode::kStar15, Bytecode::kStar0] to the range
// [Register(15).ToOperand(), Register(0).ToOperand()].
constexpr int short_star_to_operand =
Register(0).ToOperand() - static_cast<int>(Bytecode::kStar0);
// Make sure the values count in the right direction.
static_assert(short_star_to_operand ==
Register(1).ToOperand() - static_cast<int>(Bytecode::kStar1));
TNode<IntPtrT> offset =
IntPtrAdd(RegisterFrameOffset(Signed(opcode)),
IntPtrConstant(short_star_to_operand * kSystemPointerSize));
StoreFullTaggedNoWriteBarrier(GetInterpretedFramePointer(), offset, value);
}
void InterpreterAssembler::StoreRegisterAtOperandIndex(TNode<Object> value,
int operand_index) {
StoreRegister(value, BytecodeOperandReg(operand_index));
}
void InterpreterAssembler::StoreRegisterPairAtOperandIndex(TNode<Object> value1,
TNode<Object> value2,
int operand_index) {
DCHECK_EQ(OperandType::kRegOutPair,
Bytecodes::GetOperandType(bytecode_, operand_index));
TNode<IntPtrT> first_reg_index = BytecodeOperandReg(operand_index);
StoreRegister(value1, first_reg_index);
TNode<IntPtrT> second_reg_index = NextRegister(first_reg_index);
StoreRegister(value2, second_reg_index);
}
void InterpreterAssembler::StoreRegisterTripleAtOperandIndex(
TNode<Object> value1, TNode<Object> value2, TNode<Object> value3,
int operand_index) {
DCHECK_EQ(OperandType::kRegOutTriple,
Bytecodes::GetOperandType(bytecode_, operand_index));
TNode<IntPtrT> first_reg_index = BytecodeOperandReg(operand_index);
StoreRegister(value1, first_reg_index);
TNode<IntPtrT> second_reg_index = NextRegister(first_reg_index);
StoreRegister(value2, second_reg_index);
TNode<IntPtrT> third_reg_index = NextRegister(second_reg_index);
StoreRegister(value3, third_reg_index);
}
TNode<IntPtrT> InterpreterAssembler::NextRegister(TNode<IntPtrT> reg_index) {
// Register indexes are negative, so the next index is minus one.
return Signed(IntPtrAdd(reg_index, IntPtrConstant(-1)));
}
TNode<IntPtrT> InterpreterAssembler::OperandOffset(int operand_index) {
return IntPtrConstant(
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale()));
}
TNode<Uint8T> InterpreterAssembler::BytecodeOperandUnsignedByte(
int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kByte, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
TNode<IntPtrT> operand_offset = OperandOffset(operand_index);
return Load<Uint8T>(BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), operand_offset));
}
TNode<Int8T> InterpreterAssembler::BytecodeOperandSignedByte(
int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kByte, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
TNode<IntPtrT> operand_offset = OperandOffset(operand_index);
return Load<Int8T>(BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), operand_offset));
}
TNode<Word32T> InterpreterAssembler::BytecodeOperandReadUnaligned(
int relative_offset, MachineType result_type) {
static const int kMaxCount = 4;
DCHECK(!TargetSupportsUnalignedAccess());
int count;
switch (result_type.representation()) {
case MachineRepresentation::kWord16:
count = 2;
break;
case MachineRepresentation::kWord32:
count = 4;
break;
default:
UNREACHABLE();
}
MachineType msb_type =
result_type.IsSigned() ? MachineType::Int8() : MachineType::Uint8();
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
int msb_offset = count - 1;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
int msb_offset = 0;
#else
#error "Unknown Architecture"
#endif
// Read the most signicant bytecode into bytes[0] and then in order
// down to least significant in bytes[count - 1].
DCHECK_LE(count, kMaxCount);
TNode<Word32T> bytes[kMaxCount];
for (int i = 0; i < count; i++) {
MachineType machine_type = (i == 0) ? msb_type : MachineType::Uint8();
TNode<IntPtrT> offset =
IntPtrConstant(relative_offset + msb_offset + i * kStep);
TNode<IntPtrT> array_offset = IntPtrAdd(BytecodeOffset(), offset);
bytes[i] = UncheckedCast<Word32T>(
Load(machine_type, BytecodeArrayTaggedPointer(), array_offset));
}
// Pack LSB to MSB.
TNode<Word32T> result = bytes[--count];
for (int i = 1; --count >= 0; i++) {
TNode<Int32T> shift = Int32Constant(i * kBitsPerByte);
TNode<Word32T> value = Word32Shl(bytes[count], shift);
result = Word32Or(value, result);
}
return result;
}
TNode<Uint16T> InterpreterAssembler::BytecodeOperandUnsignedShort(
int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(
OperandSize::kShort,
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load<Uint16T>(
BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return UncheckedCast<Uint16T>(
BytecodeOperandReadUnaligned(operand_offset, MachineType::Uint16()));
}
}
TNode<Int16T> InterpreterAssembler::BytecodeOperandSignedShort(
int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(
OperandSize::kShort,
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load<Int16T>(
BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return UncheckedCast<Int16T>(
BytecodeOperandReadUnaligned(operand_offset, MachineType::Int16()));
}
}
TNode<Uint32T> InterpreterAssembler::BytecodeOperandUnsignedQuad(
int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kQuad, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load<Uint32T>(
BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return UncheckedCast<Uint32T>(
BytecodeOperandReadUnaligned(operand_offset, MachineType::Uint32()));
}
}
TNode<Int32T> InterpreterAssembler::BytecodeOperandSignedQuad(
int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kQuad, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load<Int32T>(
BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return UncheckedCast<Int32T>(
BytecodeOperandReadUnaligned(operand_offset, MachineType::Int32()));
}
}
TNode<Int32T> InterpreterAssembler::BytecodeSignedOperand(
int operand_index, OperandSize operand_size) {
DCHECK(!Bytecodes::IsUnsignedOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
switch (operand_size) {
case OperandSize::kByte:
return BytecodeOperandSignedByte(operand_index);
case OperandSize::kShort:
return BytecodeOperandSignedShort(operand_index);
case OperandSize::kQuad:
return BytecodeOperandSignedQuad(operand_index);
case OperandSize::kNone:
UNREACHABLE();
}
}
TNode<Uint32T> InterpreterAssembler::BytecodeUnsignedOperand(
int operand_index, OperandSize operand_size) {
DCHECK(Bytecodes::IsUnsignedOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
switch (operand_size) {
case OperandSize::kByte:
return BytecodeOperandUnsignedByte(operand_index);
case OperandSize::kShort:
return BytecodeOperandUnsignedShort(operand_index);
case OperandSize::kQuad:
return BytecodeOperandUnsignedQuad(operand_index);
case OperandSize::kNone:
UNREACHABLE();
}
}
TNode<Uint32T> InterpreterAssembler::BytecodeOperandCount(int operand_index) {
DCHECK_EQ(OperandType::kRegCount,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeUnsignedOperand(operand_index, operand_size);
}
TNode<Uint32T> InterpreterAssembler::BytecodeOperandFlag8(int operand_index) {
DCHECK_EQ(OperandType::kFlag8,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kByte);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
TNode<Uint32T> InterpreterAssembler::BytecodeOperandFlag16(int operand_index) {
DCHECK_EQ(OperandType::kFlag16,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kShort);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
TNode<Uint32T> InterpreterAssembler::BytecodeOperandUImm(int operand_index) {
DCHECK_EQ(OperandType::kUImm,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeUnsignedOperand(operand_index, operand_size);
}
TNode<UintPtrT> InterpreterAssembler::BytecodeOperandUImmWord(
int operand_index) {
return ChangeUint32ToWord(BytecodeOperandUImm(operand_index));
}
TNode<Smi> InterpreterAssembler::BytecodeOperandUImmSmi(int operand_index) {
return SmiFromUint32(BytecodeOperandUImm(operand_index));
}
TNode<Int32T> InterpreterAssembler::BytecodeOperandImm(int operand_index) {
DCHECK_EQ(OperandType::kImm,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeSignedOperand(operand_index, operand_size);
}
TNode<IntPtrT> InterpreterAssembler::BytecodeOperandImmIntPtr(
int operand_index) {
return ChangeInt32ToIntPtr(BytecodeOperandImm(operand_index));
}
TNode<Smi> InterpreterAssembler::BytecodeOperandImmSmi(int operand_index) {
return SmiFromInt32(BytecodeOperandImm(operand_index));
}
TNode<Uint32T> InterpreterAssembler::BytecodeOperandIdxInt32(
int operand_index) {
DCHECK_EQ(OperandType::kIdx,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeUnsignedOperand(operand_index, operand_size);
}
TNode<UintPtrT> InterpreterAssembler::BytecodeOperandIdx(int operand_index) {
return ChangeUint32ToWord(BytecodeOperandIdxInt32(operand_index));
}
TNode<Smi> InterpreterAssembler::BytecodeOperandIdxSmi(int operand_index) {
return SmiTag(Signed(BytecodeOperandIdx(operand_index)));
}
TNode<TaggedIndex> InterpreterAssembler::BytecodeOperandIdxTaggedIndex(
int operand_index) {
TNode<IntPtrT> index =
ChangeInt32ToIntPtr(Signed(BytecodeOperandIdxInt32(operand_index)));
return IntPtrToTaggedIndex(index);
}
TNode<UintPtrT> InterpreterAssembler::BytecodeOperandConstantPoolIdx(
int operand_index) {
DCHECK_EQ(OperandType::kIdx,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return ChangeUint32ToWord(
BytecodeUnsignedOperand(operand_index, operand_size));
}
TNode<IntPtrT> InterpreterAssembler::BytecodeOperandReg(int operand_index) {
DCHECK(Bytecodes::IsRegisterOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return ChangeInt32ToIntPtr(
BytecodeSignedOperand(operand_index, operand_size));
}
TNode<Uint32T> InterpreterAssembler::BytecodeOperandRuntimeId(
int operand_index) {
DCHECK_EQ(OperandType::kRuntimeId,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kShort);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
TNode<UintPtrT> InterpreterAssembler::BytecodeOperandNativeContextIndex(
int operand_index) {
DCHECK_EQ(OperandType::kNativeContextIndex,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return ChangeUint32ToWord(
BytecodeUnsignedOperand(operand_index, operand_size));
}
TNode<Uint32T> InterpreterAssembler::BytecodeOperandIntrinsicId(
int operand_index) {
DCHECK_EQ(OperandType::kIntrinsicId,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kByte);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
TNode<Object> InterpreterAssembler::LoadConstantPoolEntry(TNode<WordT> index) {
TNode<TrustedFixedArray> constant_pool = CAST(LoadProtectedPointerField(
BytecodeArrayTaggedPointer(), BytecodeArray::kConstantPoolOffset));
return CAST(LoadArrayElement(constant_pool, TrustedFixedArray::kHeaderSize,
UncheckedCast<IntPtrT>(index), 0));
}
TNode<IntPtrT> InterpreterAssembler::LoadAndUntagConstantPoolEntry(
TNode<WordT> index) {
return SmiUntag(CAST(LoadConstantPoolEntry(index)));
}
TNode<Object> InterpreterAssembler::LoadConstantPoolEntryAtOperandIndex(
int operand_index) {
TNode<UintPtrT> index = BytecodeOperandConstantPoolIdx(operand_index);
return LoadConstantPoolEntry(index);
}
TNode<IntPtrT>
InterpreterAssembler::LoadAndUntagConstantPoolEntryAtOperandIndex(
int operand_index) {
return SmiUntag(CAST(LoadConstantPoolEntryAtOperandIndex(operand_index)));
}
TNode<JSFunction> InterpreterAssembler::LoadFunctionClosure() {
return CAST(LoadRegister(Register::function_closure()));
}
TNode<HeapObject> InterpreterAssembler::LoadFeedbackVector() {
return CAST(LoadRegister(Register::feedback_vector()));
}
void InterpreterAssembler::CallPrologue() {
if (!Bytecodes::MakesCallAlongCriticalPath(bytecode_)) {
// Bytecodes that make a call along the critical path save the bytecode
// offset in the bytecode handler's prologue. For other bytecodes, if
// there are multiple calls in the bytecode handler, you need to spill
// before each of them, unless SaveBytecodeOffset has explicitly been called
// in a path that dominates _all_ of those calls (which we don't track).
SaveBytecodeOffset();
}
bytecode_array_valid_ = false;
made_call_ = true;
}
void InterpreterAssembler::CallEpilogue() {}
void InterpreterAssembler::CallJSAndDispatch(
TNode<Object> function, TNode<Context> context, const RegListNodePair& args,
ConvertReceiverMode receiver_mode) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
DCHECK(Bytecodes::IsCallOrConstruct(bytecode_) ||
bytecode_ == Bytecode::kInvokeIntrinsic);
DCHECK_EQ(Bytecodes::GetReceiverMode(bytecode_), receiver_mode);
TNode<Word32T> args_count = args.reg_count();
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
// Add receiver. It is not included in args as it is implicit.
args_count = Int32Add(args_count, Int32Constant(kJSArgcReceiverSlots));
}
Builtin builtin = Builtins::InterpreterPushArgsThenCall(
receiver_mode, InterpreterPushArgsMode::kOther);
TailCallBuiltinThenBytecodeDispatch(builtin, context, args_count,
args.base_reg_location(), function);
// TailCallStubThenDispatch updates accumulator with result.
implicit_register_use_ =
implicit_register_use_ | ImplicitRegisterUse::kWriteAccumulator;
}
template <class... TArgs>
void InterpreterAssembler::CallJSAndDispatch(TNode<Object> function,
TNode<Context> context,
TNode<Word32T> arg_count,
ConvertReceiverMode receiver_mode,
TArgs... args) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
DCHECK(Bytecodes::IsCallOrConstruct(bytecode_) ||
bytecode_ == Bytecode::kInvokeIntrinsic);
DCHECK_EQ(Bytecodes::GetReceiverMode(bytecode_), receiver_mode);
Builtin builtin = Builtins::Call();
arg_count = JSParameterCount(arg_count);
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
// The first argument parameter (the receiver) is implied to be undefined.
TailCallBuiltinThenBytecodeDispatch(builtin, context, function, arg_count,
args..., UndefinedConstant());
} else {
TailCallBuiltinThenBytecodeDispatch(builtin, context, function, arg_count,
args...);
}
// TailCallStubThenDispatch updates accumulator with result.
implicit_register_use_ =
implicit_register_use_ | ImplicitRegisterUse::kWriteAccumulator;
}
// Instantiate CallJSAndDispatch() for argument counts used by interpreter
// generator.
template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch(
TNode<Object> function, TNode<Context> context, TNode<Word32T> arg_count,
ConvertReceiverMode receiver_mode);
template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch(
TNode<Object> function, TNode<Context> context, TNode<Word32T> arg_count,
ConvertReceiverMode receiver_mode, TNode<Object>);
template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch(
TNode<Object> function, TNode<Context> context, TNode<Word32T> arg_count,
ConvertReceiverMode receiver_mode, TNode<Object>, TNode<Object>);
template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch(
TNode<Object> function, TNode<Context> context, TNode<Word32T> arg_count,
ConvertReceiverMode receiver_mode, TNode<Object>, TNode<Object>,
TNode<Object>);
void InterpreterAssembler::CallJSWithSpreadAndDispatch(
TNode<Object> function, TNode<Context> context, const RegListNodePair& args,
TNode<UintPtrT> slot_id) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
DCHECK_EQ(Bytecodes::GetReceiverMode(bytecode_), ConvertReceiverMode::kAny);
#ifndef V8_JITLESS
TNode<HeapObject> maybe_feedback_vector = LoadFeedbackVector();
LazyNode<Object> receiver = [=, this] {
return LoadRegisterAtOperandIndex(1);
};
CollectCallFeedback(function, receiver, context, maybe_feedback_vector,
slot_id);
#endif // !V8_JITLESS
Comment("call using CallWithSpread builtin");
Builtin builtin = Builtins::InterpreterPushArgsThenCall(
ConvertReceiverMode::kAny, InterpreterPushArgsMode::kWithFinalSpread);
TNode<Word32T> args_count = args.reg_count();
TailCallBuiltinThenBytecodeDispatch(builtin, context, args_count,
args.base_reg_location(), function);
// TailCallStubThenDispatch updates accumulator with result.
implicit_register_use_ =
implicit_register_use_ | ImplicitRegisterUse::kWriteAccumulator;
}
TNode<Object> InterpreterAssembler::Construct(
TNode<Object> target, TNode<Context> context, TNode<Object> new_target,
const RegListNodePair& args, TNode<UintPtrT> slot_id,
TNode<HeapObject> maybe_feedback_vector) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
TVARIABLE(Object, var_result);
TVARIABLE(AllocationSite, var_site);
Label return_result(this), try_fast_construct(this), construct_generic(this),
construct_array(this, &var_site);
TNode<Word32T> args_count = JSParameterCount(args.reg_count());
// TODO(42200059): Propagate TaggedIndex usage.
CollectConstructFeedback(context, target, new_target, maybe_feedback_vector,
IntPtrToTaggedIndex(Signed(slot_id)),
UpdateFeedbackMode::kOptionalFeedback,
&try_fast_construct, &construct_array, &var_site);
BIND(&try_fast_construct);
{
Comment("call using FastConstruct builtin");
GotoIf(TaggedIsSmi(target), &construct_generic);
GotoIfNot(IsJSFunction(CAST(target)), &construct_generic);
var_result =
CallBuiltin(Builtin::kInterpreterPushArgsThenFastConstructFunction,
context, args_count, args.base_reg_location(), target,
new_target, UndefinedConstant());
Goto(&return_result);
}
BIND(&construct_generic);
{
// TODO(bmeurer): Remove the generic type_info parameter from the Construct.
Comment("call using Construct builtin");
Builtin builtin = Builtins::InterpreterPushArgsThenConstruct(
InterpreterPushArgsMode::kOther);
var_result =
CallBuiltin(builtin, context, args_count, args.base_reg_location(),
target, new_target, UndefinedConstant());
Goto(&return_result);
}
BIND(&construct_array);
{
// TODO(bmeurer): Introduce a dedicated builtin to deal with the Array
// constructor feedback collection inside of Ignition.
Comment("call using ConstructArray builtin");
Builtin builtin = Builtins::InterpreterPushArgsThenConstruct(
InterpreterPushArgsMode::kArrayFunction);
var_result =
CallBuiltin(builtin, context, args_count, args.base_reg_location(),
target, new_target, var_site.value());
Goto(&return_result);
}
BIND(&return_result);
return var_result.value();
}
TNode<Object> InterpreterAssembler::ConstructWithSpread(
TNode<Object> target, TNode<Context> context, TNode<Object> new_target,
const RegListNodePair& args, TNode<UintPtrT> slot_id) {
// TODO(bmeurer): Unify this with the Construct bytecode feedback
// above once we have a way to pass the AllocationSite to the Array
// constructor _and_ spread the last argument at the same time.
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
#ifndef V8_JITLESS
// TODO(syg): Is the feedback collection logic here the same as
// CollectConstructFeedback?
Label extra_checks(this, Label::kDeferred), construct(this);
TNode<HeapObject> maybe_feedback_vector = LoadFeedbackVector();
GotoIf(IsUndefined(maybe_feedback_vector), &construct);
TNode<FeedbackVector> feedback_vector = CAST(maybe_feedback_vector);
// Increment the call count.
IncrementCallCount(feedback_vector, slot_id);
// Check if we have monomorphic {new_target} feedback already.
TNode<HeapObjectReference> feedback =
CAST(LoadFeedbackVectorSlot(feedback_vector, slot_id));
Branch(IsWeakReferenceToObject(feedback, new_target), &construct,
&extra_checks);
BIND(&extra_checks);
{
Label check_initialized(this), initialize(this), mark_megamorphic(this);
// Check if it is a megamorphic {new_target}.
Comment("check if megamorphic");
TNode<BoolT> is_megamorphic = TaggedEqual(
feedback,
HeapConstantNoHole(FeedbackVector::MegamorphicSentinel(isolate())));
GotoIf(is_megamorphic, &construct);
Comment("check if weak reference");
GotoIfNot(IsWeakOrCleared(feedback), &check_initialized);
// If the weak reference is cleared, we have a new chance to become
// monomorphic.
Comment("check if weak reference is cleared");
Branch(IsCleared(feedback), &initialize, &mark_megamorphic);
BIND(&check_initialized);
{
// Check if it is uninitialized.
Comment("check if uninitialized");
TNode<BoolT> is_uninitialized =
TaggedEqual(feedback, UninitializedSymbolConstant());
Branch(is_uninitialized, &initialize, &mark_megamorphic);
}
BIND(&initialize);
{
Comment("check if function in same native context");
GotoIf(TaggedIsSmi(new_target), &mark_megamorphic);
// Check if the {new_target} is a JSFunction or JSBoundFunction
// in the current native context.
TVARIABLE(HeapObject, var_current, CAST(new_target));
Label loop(this, &var_current), done_loop(this);
Goto(&loop);
BIND(&loop);
{
Label if_boundfunction(this), if_function(this);
TNode<HeapObject> current = var_current.value();
TNode<Uint16T> current_instance_type = LoadInstanceType(current);
GotoIf(InstanceTypeEqual(current_instance_type, JS_BOUND_FUNCTION_TYPE),
&if_boundfunction);
Branch(IsJSFunctionInstanceType(current_instance_type), &if_function,
&mark_megamorphic);
BIND(&if_function);
{
// Check that the JSFunction {current} is in the current native
// context.
TNode<Context> current_context =
CAST(LoadObjectField(current, JSFunction::kContextOffset));
TNode<NativeContext> current_native_context =
LoadNativeContext(current_context);
Branch(
TaggedEqual(LoadNativeContext(context), current_native_context),
&done_loop, &mark_megamorphic);
}
BIND(&if_boundfunction);
{
// Continue with the [[BoundTargetFunction]] of {current}.
var_current = LoadObjectField<HeapObject>(
current, JSBoundFunction::kBoundTargetFunctionOffset);
Goto(&loop);
}
}
BIND(&done_loop);
StoreWeakReferenceInFeedbackVector(feedback_vector, slot_id,
CAST(new_target));
ReportFeedbackUpdate(feedback_vector, slot_id,
"ConstructWithSpread:Initialize");
Goto(&construct);
}
BIND(&mark_megamorphic);
{
// MegamorphicSentinel is an immortal immovable object so
// write-barrier is not needed.
Comment("transition to megamorphic");
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kmegamorphic_symbol));
StoreFeedbackVectorSlot(
feedback_vector, slot_id,
HeapConstantNoHole(FeedbackVector::MegamorphicSentinel(isolate())),
SKIP_WRITE_BARRIER);
ReportFeedbackUpdate(feedback_vector, slot_id,
"ConstructWithSpread:TransitionMegamorphic");
Goto(&construct);
}
}
BIND(&construct);
#endif // !V8_JITLESS
Comment("call using ConstructWithSpread builtin");
Builtin builtin = Builtins::InterpreterPushArgsThenConstruct(
InterpreterPushArgsMode::kWithFinalSpread);
TNode<Word32T> args_count = JSParameterCount(args.reg_count());
return CallBuiltin(builtin, context, args_count, args.base_reg_location(),
target, new_target, UndefinedConstant());
}
// TODO(v8:13249): Add a FastConstruct variant to avoid pushing arguments twice
// (once here, and once again in construct stub).
TNode<Object> InterpreterAssembler::ConstructForwardAllArgs(
TNode<Object> target, TNode<Context> context, TNode<Object> new_target,
TNode<TaggedIndex> slot_id) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
TVARIABLE(Object, var_result);
TVARIABLE(AllocationSite, var_site);
#ifndef V8_JITLESS
Label construct(this);
TNode<HeapObject> maybe_feedback_vector = LoadFeedbackVector();
GotoIf(IsUndefined(maybe_feedback_vector), &construct);
CollectConstructFeedback(context, target, new_target, maybe_feedback_vector,
slot_id, UpdateFeedbackMode::kOptionalFeedback,
&construct, &construct, &var_site);
BIND(&construct);
#endif // !V8_JITLESS
return CallBuiltin(Builtin::kInterpreterForwardAllArgsThenConstruct, context,
target, new_target);
}
template <class T>
TNode<T> InterpreterAssembler::CallRuntimeN(TNode<Uint32T> function_id,
TNode<Context> context,
const RegListNodePair& args,
int return_count) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
DCHECK(Bytecodes::IsCallRuntime(bytecode_));
// Get the function entry from the function id.
TNode<RawPtrT> function_table = ReinterpretCast<RawPtrT>(ExternalConstant(
ExternalReference::runtime_function_table_address(isolate())));
TNode<Word32T> function_offset =
Int32Mul(function_id, Int32Constant(sizeof(Runtime::Function)));
TNode<WordT> function =
IntPtrAdd(function_table, ChangeUint32ToWord(function_offset));
TNode<RawPtrT> function_entry = Load<RawPtrT>(
function, IntPtrConstant(offsetof(Runtime::Function, entry)));
Builtin centry = Builtins::InterpreterCEntry(return_count);
return CallBuiltin<T>(centry, context, args.reg_count(),
args.base_reg_location(), function_entry);
}
template V8_EXPORT_PRIVATE TNode<Object> InterpreterAssembler::CallRuntimeN(
TNode<Uint32T> function_id, TNode<Context> context,
const RegListNodePair& args, int return_count);
template V8_EXPORT_PRIVATE TNode<PairT<Object, Object>>
InterpreterAssembler::CallRuntimeN(TNode<Uint32T> function_id,
TNode<Context> context,
const RegListNodePair& args,
int return_count);
TNode<Int32T> InterpreterAssembler::UpdateInterruptBudget(
TNode<Int32T> weight) {
TNode<JSFunction> function = LoadFunctionClosure();
TNode<FeedbackCell> feedback_cell =
LoadObjectField<FeedbackCell>(function, JSFunction::kFeedbackCellOffset);
TNode<Int32T> old_budget = LoadObjectField<Int32T>(
feedback_cell, FeedbackCell::kInterruptBudgetOffset);
// Update budget by |weight| and check if it reaches zero.
TNode<Int32T> new_budget = Int32Sub(old_budget, weight);
// Update budget.
StoreObjectFieldNoWriteBarrier(
feedback_cell, FeedbackCell::kInterruptBudgetOffset, new_budget);
return new_budget;
}
void InterpreterAssembler::DecreaseInterruptBudget(
TNode<Int32T> weight, StackCheckBehavior stack_check_behavior) {
Comment("[ DecreaseInterruptBudget");
Label done(this), interrupt_check(this);
// Assert that the weight is positive.
CSA_DCHECK(this, Int32GreaterThanOrEqual(weight, Int32Constant(0)));
// Make sure we include the current bytecode in the budget calculation.
TNode<Int32T> weight_after_bytecode =
Int32Add(weight, Int32Constant(CurrentBytecodeSize()));
TNode<Int32T> new_budget = UpdateInterruptBudget(weight_after_bytecode);
Branch(Int32GreaterThanOrEqual(new_budget, Int32Constant(0)), &done,
&interrupt_check);
BIND(&interrupt_check);
TNode<JSFunction> function = LoadFunctionClosure();
CallRuntime(stack_check_behavior == kEnableStackCheck
? Runtime::kBytecodeBudgetInterruptWithStackCheck_Ignition
: Runtime::kBytecodeBudgetInterrupt_Ignition,
GetContext(), function);
Goto(&done);
BIND(&done);
Comment("] DecreaseInterruptBudget");
}
TNode<IntPtrT> InterpreterAssembler::Advance() {
return Advance(CurrentBytecodeSize());
}
TNode<IntPtrT> InterpreterAssembler::Advance(int delta) {
return Advance(IntPtrConstant(delta));
}
TNode<IntPtrT> InterpreterAssembler::Advance(TNode<IntPtrT> delta) {
TNode<IntPtrT> next_offset = IntPtrAdd(BytecodeOffset(), delta);
bytecode_offset_ = next_offset;
return next_offset;
}
void InterpreterAssembler::JumpToOffset(TNode<IntPtrT> new_bytecode_offset) {
DCHECK(!Bytecodes::IsStarLookahead(bytecode_, operand_scale_));
#ifdef V8_TRACE_UNOPTIMIZED
TraceBytecode(Runtime::kTraceUnoptimizedBytecodeExit);
#endif
bytecode_offset_ = new_bytecode_offset;
TNode<RawPtrT> target_bytecode =
UncheckedCast<RawPtrT>(LoadBytecode(new_bytecode_offset));
DispatchToBytecode(target_bytecode, new_bytecode_offset);
}
void InterpreterAssembler::Jump(TNode<IntPtrT> jump_offset) {
JumpToOffset(IntPtrAdd(BytecodeOffset(), jump_offset));
}
void InterpreterAssembler::JumpBackward(TNode<IntPtrT> jump_offset) {
DecreaseInterruptBudget(TruncateIntPtrToInt32(jump_offset),
kEnableStackCheck);
JumpToOffset(IntPtrSub(BytecodeOffset(), jump_offset));
}
void InterpreterAssembler::JumpConditional(TNode<BoolT> condition,
TNode<IntPtrT> jump_offset) {
Label match(this), no_match(this);
Branch(condition, &match, &no_match);
BIND(&match);
Jump(jump_offset);
BIND(&no_match);
Dispatch();
}
void InterpreterAssembler::JumpConditionalByImmediateOperand(
TNode<BoolT> condition, int operand_index) {
Label match(this), no_match(this);
Branch(condition, &match, &no_match);
BIND(&match);
TNode<IntPtrT> jump_offset = Signed(BytecodeOperandUImmWord(operand_index));
Jump(jump_offset);
BIND(&no_match);
Dispatch();
}
void InterpreterAssembler::JumpConditionalByConstantOperand(
TNode<BoolT> condition, int operand_index) {
Label match(this), no_match(this);
Branch(condition, &match, &no_match);
BIND(&match);
TNode<IntPtrT> jump_offset =
LoadAndUntagConstantPoolEntryAtOperandIndex(operand_index);
Jump(jump_offset);
BIND(&no_match);
Dispatch();
}
void InterpreterAssembler::JumpIfTaggedEqual(TNode<Object> lhs,
TNode<Object> rhs,
TNode<IntPtrT> jump_offset) {
JumpConditional(TaggedEqual(lhs, rhs), jump_offset);
}
void InterpreterAssembler::JumpIfTaggedEqual(TNode<Object> lhs,
TNode<Object> rhs,
int operand_index) {
JumpConditionalByImmediateOperand(TaggedEqual(lhs, rhs), operand_index);
}
void InterpreterAssembler::JumpIfTaggedEqualConstant(TNode<Object> lhs,
TNode<Object> rhs,
int operand_index) {
JumpConditionalByConstantOperand(TaggedEqual(lhs, rhs), operand_index);
}
void InterpreterAssembler::JumpIfTaggedNotEqual(TNode<Object> lhs,
TNode<Object> rhs,
TNode<IntPtrT> jump_offset) {
JumpConditional(TaggedNotEqual(lhs, rhs), jump_offset);
}
void InterpreterAssembler::JumpIfTaggedNotEqual(TNode<Object> lhs,
TNode<Object> rhs,
int operand_index) {
JumpConditionalByImmediateOperand(TaggedNotEqual(lhs, rhs), operand_index);
}
void InterpreterAssembler::JumpIfTaggedNotEqualConstant(TNode<Object> lhs,
TNode<Object> rhs,
int operand_index) {
JumpConditionalByConstantOperand(TaggedNotEqual(lhs, rhs), operand_index);
}
TNode<WordT> InterpreterAssembler::LoadBytecode(
TNode<IntPtrT> bytecode_offset) {
TNode<Uint8T> bytecode =
Load<Uint8T>(BytecodeArrayTaggedPointer(), bytecode_offset);
return ChangeUint32ToWord(bytecode);
}
TNode<IntPtrT> InterpreterAssembler::LoadParameterCountWithoutReceiver() {
TNode<Int32T> parameter_count =
LoadBytecodeArrayParameterCountWithoutReceiver(
BytecodeArrayTaggedPointer());
return ChangeInt32ToIntPtr(parameter_count);
}
void InterpreterAssembler::StarDispatchLookahead(TNode<WordT> target_bytecode) {
Label do_inline_star(this), done(this);
// Check whether the following opcode is one of the short Star codes. All
// opcodes higher than the short Star variants are invalid, and invalid
// opcodes are never deliberately written, so we can use a one-sided check.
// This is no less secure than the normal-length Star handler, which performs
// no validation on its operand.
static_assert(static_cast<int>(Bytecode::kLastShortStar) + 1 ==
static_cast<int>(Bytecode::kIllegal));
static_assert(Bytecode::kIllegal == Bytecode::kLast);
TNode<Int32T> first_short_star_bytecode =
Int32Constant(static_cast<int>(Bytecode::kFirstShortStar));
TNode<BoolT> is_star = Uint32GreaterThanOrEqual(
TruncateWordToInt32(target_bytecode), first_short_star_bytecode);
Branch(is_star, &do_inline_star, &done);
BIND(&do_inline_star);
{
InlineShortStar(target_bytecode);
// Rather than merging control flow to a single indirect jump, we can get
// better branch prediction by duplicating it. This is because the
// instruction following a merged X + StarN is a bad predictor of the
// instruction following a non-merged X, and vice versa.
DispatchToBytecode(LoadBytecode(BytecodeOffset()), BytecodeOffset());
}
BIND(&done);
}
void InterpreterAssembler::InlineShortStar(TNode<WordT> target_bytecode) {
Bytecode previous_bytecode = bytecode_;
ImplicitRegisterUse previous_acc_use = implicit_register_use_;
// At this point we don't know statically what bytecode we're executing, but
// kStar0 has the right attributes (namely, no operands) for any of the short
// Star codes.
bytecode_ = Bytecode::kStar0;
implicit_register_use_ = ImplicitRegisterUse::kNone;
#ifdef V8_TRACE_UNOPTIMIZED
TraceBytecode(Runtime::kTraceUnoptimizedBytecodeEntry);
#endif
StoreRegisterForShortStar(GetAccumulator(), target_bytecode);
DCHECK_EQ(implicit_register_use_,
Bytecodes::GetImplicitRegisterUse(bytecode_));
Advance();
bytecode_ = previous_bytecode;
implicit_register_use_ = previous_acc_use;
}
void InterpreterAssembler::Dispatch() {
Comment("========= Dispatch");
DCHECK_IMPLIES(Bytecodes::MakesCallAlongCriticalPath(bytecode_), made_call_);
TNode<IntPtrT> target_offset = Advance();
TNode<WordT> target_bytecode = LoadBytecode(target_offset);
DispatchToBytecodeWithOptionalStarLookahead(target_bytecode);
}
void InterpreterAssembler::DispatchToBytecodeWithOptionalStarLookahead(
TNode<WordT> target_bytecode) {
if (Bytecodes::IsStarLookahead(bytecode_, operand_scale_)) {
StarDispatchLookahead(target_bytecode);
}
DispatchToBytecode(target_bytecode, BytecodeOffset());
}
void InterpreterAssembler::DispatchToBytecode(
TNode<WordT> target_bytecode, TNode<IntPtrT> new_bytecode_offset) {
if (V8_IGNITION_DISPATCH_COUNTING_BOOL) {
TraceBytecodeDispatch(target_bytecode);
}
TNode<RawPtrT> target_code_entry = Load<RawPtrT>(
DispatchTablePointer(), TimesSystemPointerSize(target_bytecode));
DispatchToBytecodeHandlerEntry(target_code_entry, new_bytecode_offset);
}
void InterpreterAssembler::DispatchToBytecodeHandlerEntry(
TNode<RawPtrT> handler_entry, TNode<IntPtrT> bytecode_offset) {
TailCallBytecodeDispatch(
InterpreterDispatchDescriptor{}, handler_entry, GetAccumulatorUnchecked(),
bytecode_offset, BytecodeArrayTaggedPointer(), DispatchTablePointer());
}
void InterpreterAssembler::DispatchWide(OperandScale operand_scale) {
// Dispatching a wide bytecode requires treating the prefix
// bytecode a base pointer into the dispatch table and dispatching
// the bytecode that follows relative to this base.
//
// Indices 0-255 correspond to bytecodes with operand_scale == 0
// Indices 256-511 correspond to bytecodes with operand_scale == 1
// Indices 512-767 correspond to bytecodes with operand_scale == 2
DCHECK_IMPLIES(Bytecodes::MakesCallAlongCriticalPath(bytecode_), made_call_);
TNode<IntPtrT> next_bytecode_offset = Advance(1);
TNode<WordT> next_bytecode = LoadBytecode(next_bytecode_offset);
if (V8_IGNITION_DISPATCH_COUNTING_BOOL) {
TraceBytecodeDispatch(next_bytecode);
}
TNode<IntPtrT> base_index;
switch (operand_scale) {
case OperandScale::kDouble:
base_index = IntPtrConstant(1 << kBitsPerByte);
break;
case OperandScale::kQuadruple:
base_index = IntPtrConstant(2 << kBitsPerByte);
break;
default:
UNREACHABLE();
}
TNode<WordT> target_index = IntPtrAdd(base_index, next_bytecode);
TNode<RawPtrT> target_code_entry = Load<RawPtrT>(
DispatchTablePointer(), TimesSystemPointerSize(target_index));
DispatchToBytecodeHandlerEntry(target_code_entry, next_bytecode_offset);
}
void InterpreterAssembler::UpdateInterruptBudgetOnReturn() {
// TODO(rmcilroy): Investigate whether it is worth supporting self
// optimization of primitive functions like FullCodegen.
// Update profiling count by the number of bytes between the end of the
// current bytecode and the start of the first one, to simulate backedge to
// start of function.
//
// With headers and current offset, the bytecode array layout looks like:
//
// <---------- simulated backedge ----------
// | header | first bytecode | .... | return bytecode |
// |<------ current offset ------->
// ^ tagged bytecode array pointer
//
// UpdateInterruptBudget already handles adding the bytecode size to the
// length of the back-edge, so we just have to correct for the non-zero offset
// of the first bytecode.
TNode<Int32T> profiling_weight =
Int32Sub(TruncateIntPtrToInt32(BytecodeOffset()),
Int32Constant(kFirstBytecodeOffset));
DecreaseInterruptBudget(profiling_weight, kDisableStackCheck);
}
TNode<Int8T> InterpreterAssembler::LoadOsrState(
TNode<FeedbackVector> feedback_vector) {
// We're loading an 8-bit field, mask it.
return UncheckedCast<Int8T>(Word32And(
LoadObjectField<Int8T>(feedback_vector, FeedbackVector::kOsrStateOffset),
0xFF));
}
void InterpreterAssembler::Abort(AbortReason abort_reason) {
TNode<Smi> abort_id = SmiConstant(abort_reason);
CallRuntime(Runtime::kAbort, GetContext(), abort_id);
}
void InterpreterAssembler::AbortIfWordNotEqual(TNode<WordT> lhs,
TNode<WordT> rhs,
AbortReason abort_reason) {
Label ok(this), abort(this, Label::kDeferred);
Branch(WordEqual(lhs, rhs), &ok, &abort);
BIND(&abort);
Abort(abort_reason);
Goto(&ok);
BIND(&ok);
}
void InterpreterAssembler::OnStackReplacement(
TNode<Context> context, TNode<FeedbackVector> feedback_vector,
TNode<IntPtrT> relative_jump, TNode<Int32T> loop_depth,
TNode<IntPtrT> feedback_slot, TNode<Int8T> osr_state,
OnStackReplacementParams params) {
// Three cases may cause us to attempt OSR, in the following order:
//
// 1) Presence of cached OSR Turbofan/Maglev code.
// 2) Presence of cached OSR Sparkplug code.
// 3) The OSR urgency exceeds the current loop depth - in that case, trigger
// a Turbofan OSR compilation.
TVARIABLE(Object, maybe_target_code, SmiConstant(0));
Label osr_to_opt(this), osr_to_sparkplug(this);
// Case 1).
{
Label next(this);
TNode<MaybeObject> maybe_cached_osr_code =
LoadFeedbackVectorSlot(feedback_vector, feedback_slot);
GotoIf(IsCleared(maybe_cached_osr_code), &next);
maybe_target_code = GetHeapObjectAssumeWeak(maybe_cached_osr_code);
// Is it marked_for_deoptimization? If yes, clear the slot.
TNode<CodeWrapper> code_wrapper = CAST(maybe_target_code.value());
maybe_target_code =
LoadCodePointerFromObject(code_wrapper, CodeWrapper::kCodeOffset);
GotoIfNot(IsMarkedForDeoptimization(CAST(maybe_target_code.value())),
&osr_to_opt);
StoreFeedbackVectorSlot(feedback_vector, Unsigned(feedback_slot),
ClearedValue(), UNSAFE_SKIP_WRITE_BARRIER);
maybe_target_code = SmiConstant(0);
Goto(&next);
BIND(&next);
}
// Case 2).
if (params == OnStackReplacementParams::kBaselineCodeIsCached) {
Goto(&osr_to_sparkplug);
} else {
DCHECK_EQ(params, OnStackReplacementParams::kDefault);
TNode<SharedFunctionInfo> sfi = LoadObjectField<SharedFunctionInfo>(
LoadFunctionClosure(), JSFunction::kSharedFunctionInfoOffset);
GotoIf(SharedFunctionInfoHasBaselineCode(sfi), &osr_to_sparkplug);
// Case 3).
{
static_assert(FeedbackVector::OsrUrgencyBits::kShift == 0);
TNode<Int32T> osr_urgency = Word32And(
osr_state, Int32Constant(FeedbackVector::OsrUrgencyBits::kMask));
GotoIf(Uint32LessThan(loop_depth, osr_urgency), &osr_to_opt);
JumpBackward(relative_jump);
}
}
BIND(&osr_to_opt);
{
TNode<Uint32T> length =
LoadAndUntagBytecodeArrayLength(BytecodeArrayTaggedPointer());
TNode<Uint32T> weight =
Uint32Mul(length, Uint32Constant(v8_flags.osr_to_tierup));
DecreaseInterruptBudget(Signed(weight), kDisableStackCheck);
CallBuiltin(Builtin::kInterpreterOnStackReplacement, context,
maybe_target_code.value());
UpdateInterruptBudget(Int32Mul(Signed(weight), Int32Constant(-1)));
JumpBackward(relative_jump);
}
BIND(&osr_to_sparkplug);
{
// We already compiled the baseline code, so we don't need to handle failed
// compilation as in the Ignition -> Turbofan case. Therefore we can just
// tailcall to the OSR builtin.
SaveBytecodeOffset();
TailCallBuiltin(Builtin::kInterpreterOnStackReplacement_ToBaseline,
context);
}
}
void InterpreterAssembler::TraceBytecode(Runtime::FunctionId function_id) {
CallRuntime(function_id, GetContext(), BytecodeArrayTaggedPointer(),
SmiTag(BytecodeOffset()), GetAccumulatorUnchecked());
}
void InterpreterAssembler::TraceBytecodeDispatch(TNode<WordT> target_bytecode) {
TNode<ExternalReference> counters_table = ExternalConstant(
ExternalReference::interpreter_dispatch_counters(isolate()));
TNode<IntPtrT> source_bytecode_table_index = IntPtrConstant(
static_cast<int>(bytecode_) * (static_cast<int>(Bytecode::kLast) + 1));
TNode<WordT> counter_offset = TimesSystemPointerSize(
IntPtrAdd(source_bytecode_table_index, target_bytecode));
TNode<IntPtrT> old_counter = Load<IntPtrT>(counters_table, counter_offset);
Label counter_ok(this), counter_saturated(this, Label::kDeferred);
TNode<BoolT> counter_reached_max = WordEqual(
old_counter, IntPtrConstant(std::numeric_limits<uintptr_t>::max()));
Branch(counter_reached_max, &counter_saturated, &counter_ok);
BIND(&counter_ok);
{
TNode<IntPtrT> new_counter = IntPtrAdd(old_counter, IntPtrConstant(1));
StoreNoWriteBarrier(MachineType::PointerRepresentation(), counters_table,
counter_offset, new_counter);
Goto(&counter_saturated);
}
BIND(&counter_saturated);
}
// static
bool InterpreterAssembler::TargetSupportsUnalignedAccess() {
#if V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_RISCV32
return false;
#elif V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_S390 || \
V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_PPC64 || \
V8_TARGET_ARCH_LOONG64
return true;
#else
#error "Unknown Architecture"
#endif
}
void InterpreterAssembler::AbortIfRegisterCountInvalid(
TNode<FixedArray> parameters_and_registers, TNode<IntPtrT> parameter_count,
TNode<UintPtrT> register_count) {
TNode<IntPtrT> array_size =
LoadAndUntagFixedArrayBaseLength(parameters_and_registers);
Label ok(this), abort(this, Label::kDeferred);
Branch(UintPtrLessThanOrEqual(IntPtrAdd(parameter_count, register_count),
array_size),
&ok, &abort);
BIND(&abort);
Abort(AbortReason::kInvalidParametersAndRegistersInGenerator);
Goto(&ok);
BIND(&ok);
}
TNode<FixedArray> InterpreterAssembler::ExportParametersAndRegisterFile(
TNode<FixedArray> array, const RegListNodePair& registers) {
// Store the formal parameters (without receiver) followed by the
// registers into the generator's internal parameters_and_registers field.
TNode<IntPtrT> parameter_count = LoadParameterCountWithoutReceiver();
TNode<UintPtrT> register_count = ChangeUint32ToWord(registers.reg_count());
if (v8_flags.debug_code) {
CSA_DCHECK(this, IntPtrEqual(registers.base_reg_location(),
RegisterLocation(Register(0))));
AbortIfRegisterCountInvalid(array, parameter_count, register_count);
}
{
TVARIABLE(IntPtrT, var_index);
var_index = IntPtrConstant(0);
// Iterate over parameters and write them into the array.
Label loop(this, &var_index), done_loop(this);
TNode<IntPtrT> reg_base =
IntPtrConstant(Register::FromParameterIndex(0).ToOperand() + 1);
Goto(&loop);
BIND(&loop);
{
TNode<IntPtrT> index = var_index.value();
GotoIfNot(UintPtrLessThan(index, parameter_count), &done_loop);
TNode<IntPtrT> reg_index = IntPtrAdd(reg_base, index);
TNode<Object> value = LoadRegister(reg_index);
StoreFixedArrayElement(array, index, value);
var_index = IntPtrAdd(index, IntPtrConstant(1));
Goto(&loop);
}
BIND(&done_loop);
}
{
// Iterate over register file and write values into array.
// The mapping of register to array index must match that used in
// BytecodeGraphBuilder::VisitResumeGenerator.
TVARIABLE(IntPtrT, var_index);
var_index = IntPtrConstant(0);
Label loop(this, &var_index), done_loop(this);
Goto(&loop);
BIND(&loop);
{
TNode<IntPtrT> index = var_index.value();
GotoIfNot(UintPtrLessThan(index, register_count), &done_loop);
TNode<IntPtrT> reg_index =
IntPtrSub(IntPtrConstant(Register(0).ToOperand()), index);
TNode<Object> value = LoadRegister(reg_index);
TNode<IntPtrT> array_index = IntPtrAdd(parameter_count, index);
StoreFixedArrayElement(array, array_index, value);
var_index = IntPtrAdd(index, IntPtrConstant(1));
Goto(&loop);
}
BIND(&done_loop);
}
return array;
}
TNode<FixedArray> InterpreterAssembler::ImportRegisterFile(
TNode<FixedArray> array, const RegListNodePair& registers) {
TNode<IntPtrT> parameter_count = LoadParameterCountWithoutReceiver();
TNode<UintPtrT> register_count = ChangeUint32ToWord(registers.reg_count());
if (v8_flags.debug_code) {
CSA_DCHECK(this, IntPtrEqual(registers.base_reg_location(),
RegisterLocation(Register(0))));
AbortIfRegisterCountInvalid(array, parameter_count, register_count);
}
TVARIABLE(IntPtrT, var_index, IntPtrConstant(0));
// Iterate over array and write values into register file. Also erase the
// array contents to not keep them alive artificially.
Label loop(this, &var_index), done_loop(this);
Goto(&loop);
BIND(&loop);
{
TNode<IntPtrT> index = var_index.value();
GotoIfNot(UintPtrLessThan(index, register_count), &done_loop);
TNode<IntPtrT> array_index = IntPtrAdd(parameter_count, index);
TNode<Object> value = LoadFixedArrayElement(array, array_index);
TNode<IntPtrT> reg_index =
IntPtrSub(IntPtrConstant(Register(0).ToOperand()), index);
StoreRegister(value, reg_index);
StoreFixedArrayElement(array, array_index, StaleRegisterConstant());
var_index = IntPtrAdd(index, IntPtrConstant(1));
Goto(&loop);
}
BIND(&done_loop);
return array;
}
int InterpreterAssembler::CurrentBytecodeSize() const {
return Bytecodes::Size(bytecode_, operand_scale_);
}
void InterpreterAssembler::ToNumberOrNumeric(Object::Conversion mode) {
TNode<Object> object = GetAccumulator();
TNode<Context> context = GetContext();
TVARIABLE(Smi, var_type_feedback);
TVARIABLE(Numeric, var_result);
Label if_done(this), if_objectissmi(this), if_objectisheapnumber(this),
if_objectisother(this, Label::kDeferred);
GotoIf(TaggedIsSmi(object), &if_objectissmi);
Branch(IsHeapNumber(CAST(object)), &if_objectisheapnumber, &if_objectisother);
BIND(&if_objectissmi);
{
var_result = CAST(object);
var_type_feedback = SmiConstant(BinaryOperationFeedback::kSignedSmall);
Goto(&if_done);
}
BIND(&if_objectisheapnumber);
{
var_result = CAST(object);
var_type_feedback = SmiConstant(BinaryOperationFeedback::kNumber);
Goto(&if_done);
}
BIND(&if_objectisother);
{
auto builtin = Builtin::kNonNumberToNumber;
if (mode == Object::Conversion::kToNumeric) {
builtin = Builtin::kNonNumberToNumeric;
// Special case for collecting BigInt feedback.
Label not_bigint(this);
GotoIfNot(IsBigInt(CAST(object)), &not_bigint);
{
var_result = CAST(object);
var_type_feedback = SmiConstant(BinaryOperationFeedback::kBigInt);
Goto(&if_done);
}
BIND(&not_bigint);
}
// Convert {object} by calling out to the appropriate builtin.
var_result = CAST(CallBuiltin(builtin, context, object));
var_type_feedback = SmiConstant(BinaryOperationFeedback::kAny);
Goto(&if_done);
}
BIND(&if_done);
// Record the type feedback collected for {object}.
TNode<UintPtrT> slot_index = BytecodeOperandIdx(0);
TNode<HeapObject> maybe_feedback_vector = LoadFeedbackVector();
MaybeUpdateFeedback(var_type_feedback.value(), maybe_feedback_vector,
slot_index);
SetAccumulator(var_result.value());
Dispatch();
}
#undef TVARIABLE_CONSTRUCTOR
#include "src/codegen/undef-code-stub-assembler-macros.inc"
} // namespace interpreter
} // namespace internal
} // namespace v8