blob: db3f79b27e5c641a60c59daa37086a089985748a [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ic/ic.h"
#include <optional>
#include <tuple>
#include "src/api/api-arguments-inl.h"
#include "src/ast/ast.h"
#include "src/base/logging.h"
#include "src/builtins/accessors.h"
#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/execution/arguments-inl.h"
#include "src/execution/execution.h"
#include "src/execution/frames-inl.h"
#include "src/execution/isolate-inl.h"
#include "src/execution/isolate.h"
#include "src/execution/protectors-inl.h"
#include "src/execution/tiering-manager.h"
#include "src/handles/handles-inl.h"
#include "src/handles/maybe-handles.h"
#include "src/heap/heap-layout-inl.h"
#include "src/ic/call-optimization.h"
#include "src/ic/handler-configuration-inl.h"
#include "src/ic/handler-configuration.h"
#include "src/ic/ic-inl.h"
#include "src/ic/ic-stats.h"
#include "src/ic/stub-cache.h"
#include "src/numbers/conversions.h"
#include "src/objects/api-callbacks.h"
#include "src/objects/field-type.h"
#include "src/objects/instance-type.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/megadom-handler.h"
#include "src/objects/property-descriptor.h"
#include "src/objects/prototype.h"
#include "src/runtime/runtime.h"
#include "src/tracing/trace-event.h"
#include "src/tracing/tracing-category-observer.h"
#include "src/utils/ostreams.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/struct-types.h"
#endif // V8_ENABLE_WEBASSEMBLY
namespace v8 {
namespace internal {
// Aliases to avoid having to repeat the class.
// With C++20 we can use "using" to introduce scoped enums.
constexpr InlineCacheState NO_FEEDBACK = InlineCacheState::NO_FEEDBACK;
constexpr InlineCacheState UNINITIALIZED = InlineCacheState::UNINITIALIZED;
constexpr InlineCacheState MONOMORPHIC = InlineCacheState::MONOMORPHIC;
constexpr InlineCacheState RECOMPUTE_HANDLER =
InlineCacheState::RECOMPUTE_HANDLER;
constexpr InlineCacheState POLYMORPHIC = InlineCacheState::POLYMORPHIC;
constexpr InlineCacheState MEGAMORPHIC = InlineCacheState::MEGAMORPHIC;
constexpr InlineCacheState MEGADOM = InlineCacheState::MEGADOM;
constexpr InlineCacheState GENERIC = InlineCacheState::GENERIC;
char IC::TransitionMarkFromState(IC::State state) {
switch (state) {
case NO_FEEDBACK:
return 'X';
case UNINITIALIZED:
return '0';
case MONOMORPHIC:
return '1';
case RECOMPUTE_HANDLER:
return '^';
case POLYMORPHIC:
return 'P';
case MEGAMORPHIC:
return 'N';
case MEGADOM:
return 'D';
case GENERIC:
return 'G';
}
UNREACHABLE();
}
namespace {
const char* GetModifier(KeyedAccessLoadMode mode) {
switch (mode) {
case KeyedAccessLoadMode::kHandleOOB:
return ".OOB";
case KeyedAccessLoadMode::kHandleHoles:
return ".HOLES";
case KeyedAccessLoadMode::kHandleOOBAndHoles:
return ".OOB+HOLES";
case KeyedAccessLoadMode::kInBounds:
return "";
}
}
const char* GetModifier(KeyedAccessStoreMode mode) {
switch (mode) {
case KeyedAccessStoreMode::kHandleCOW:
return ".COW";
case KeyedAccessStoreMode::kGrowAndHandleCOW:
return ".STORE+COW";
case KeyedAccessStoreMode::kIgnoreTypedArrayOOB:
return ".IGNORE_OOB";
case KeyedAccessStoreMode::kInBounds:
return "";
}
UNREACHABLE();
}
} // namespace
void IC::TraceIC(const char* type, DirectHandle<Object> name) {
if (V8_LIKELY(!TracingFlags::is_ic_stats_enabled())) return;
State new_state =
(state() == NO_FEEDBACK) ? NO_FEEDBACK : nexus()->ic_state();
TraceIC(type, name, state(), new_state);
}
void IC::TraceIC(const char* type, DirectHandle<Object> name, State old_state,
State new_state) {
if (V8_LIKELY(!TracingFlags::is_ic_stats_enabled())) return;
DirectHandle<Map> map = lookup_start_object_map(); // Might be empty.
const char* modifier = "";
if (state() == NO_FEEDBACK) {
modifier = "";
} else if (IsKeyedLoadIC()) {
KeyedAccessLoadMode mode = nexus()->GetKeyedAccessLoadMode();
modifier = GetModifier(mode);
} else if (IsKeyedStoreIC() || IsStoreInArrayLiteralIC() ||
IsDefineKeyedOwnIC()) {
KeyedAccessStoreMode mode = nexus()->GetKeyedAccessStoreMode();
modifier = GetModifier(mode);
}
bool keyed_prefix = is_keyed() && !IsStoreInArrayLiteralIC();
if (!(TracingFlags::ic_stats.load(std::memory_order_relaxed) &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING)) {
LOG(isolate(), ICEvent(type, keyed_prefix, map, name,
TransitionMarkFromState(old_state),
TransitionMarkFromState(new_state), modifier,
slow_stub_reason_));
return;
}
JavaScriptStackFrameIterator it(isolate());
JavaScriptFrame* frame = it.frame();
DisallowGarbageCollection no_gc;
Tagged<JSFunction> function = frame->function();
ICStats::instance()->Begin();
ICInfo& ic_info = ICStats::instance()->Current();
ic_info.type = keyed_prefix ? "Keyed" : "";
ic_info.type += type;
int code_offset = 0;
Tagged<AbstractCode> code;
std::tie(code, code_offset) = frame->GetActiveCodeAndOffset();
JavaScriptFrame::CollectFunctionAndOffsetForICStats(isolate(), function, code,
code_offset);
// Reserve enough space for IC transition state, the longest length is 17.
ic_info.state.reserve(17);
ic_info.state = "(";
ic_info.state += TransitionMarkFromState(old_state);
ic_info.state += "->";
ic_info.state += TransitionMarkFromState(new_state);
ic_info.state += modifier;
ic_info.state += ")";
if (!map.is_null()) {
ic_info.map = reinterpret_cast<void*>(map->ptr());
ic_info.is_dictionary_map = map->is_dictionary_map();
ic_info.number_of_own_descriptors = map->NumberOfOwnDescriptors();
ic_info.instance_type = std::to_string(map->instance_type());
} else {
ic_info.map = nullptr;
}
// TODO(lpy) Add name as key field in ICStats.
ICStats::instance()->End();
}
IC::IC(Isolate* isolate, Handle<FeedbackVector> vector, FeedbackSlot slot,
FeedbackSlotKind kind)
: isolate_(isolate),
vector_set_(false),
kind_(kind),
target_maps_set_(false),
slow_stub_reason_(nullptr),
nexus_(isolate, vector, slot) {
DCHECK_IMPLIES(!vector.is_null(), kind_ == nexus_.kind());
state_ = (vector.is_null()) ? NO_FEEDBACK : nexus_.ic_state();
old_state_ = state_;
}
static void LookupForRead(LookupIterator* it, bool is_has_property) {
for (;; it->Next()) {
switch (it->state()) {
case LookupIterator::TRANSITION:
UNREACHABLE();
case LookupIterator::JSPROXY:
case LookupIterator::WASM_OBJECT:
return;
case LookupIterator::INTERCEPTOR: {
// If there is a getter, return; otherwise loop to perform the lookup.
DirectHandle<JSObject> holder = it->GetHolder<JSObject>();
if (!IsUndefined(holder->GetNamedInterceptor()->getter(),
it->isolate())) {
return;
}
if (is_has_property &&
!IsUndefined(holder->GetNamedInterceptor()->query(),
it->isolate())) {
return;
}
continue;
}
case LookupIterator::ACCESS_CHECK:
// ICs know how to perform access checks on global proxies.
if (it->GetHolder<JSObject>().is_identical_to(
it->isolate()->global_proxy()) &&
!it->isolate()->global_object()->IsDetached()) {
continue;
}
return;
case LookupIterator::ACCESSOR:
case LookupIterator::TYPED_ARRAY_INDEX_NOT_FOUND:
case LookupIterator::DATA:
case LookupIterator::NOT_FOUND:
return;
}
UNREACHABLE();
}
}
bool IC::ShouldRecomputeHandler(DirectHandle<String> name) {
if (!RecomputeHandlerForName(name)) return false;
// This is a contextual access, always just update the handler and stay
// monomorphic.
if (IsGlobalIC()) return true;
MaybeObjectHandle maybe_handler =
nexus()->FindHandlerForMap(lookup_start_object_map());
// The current map wasn't handled yet. There's no reason to stay monomorphic,
// *unless* we're moving from a deprecated map to its replacement, or
// to a more general elements kind.
// TODO(verwaest): Check if the current map is actually what the old map
// would transition to.
if (maybe_handler.is_null()) {
if (!IsJSObjectMap(*lookup_start_object_map())) return false;
Tagged<Map> first_map = FirstTargetMap();
if (first_map.is_null()) return false;
DirectHandle<Map> old_map(first_map, isolate());
if (old_map->is_deprecated()) return true;
return IsMoreGeneralElementsKindTransition(
old_map->elements_kind(), lookup_start_object_map()->elements_kind());
}
return true;
}
bool IC::RecomputeHandlerForName(DirectHandle<Object> name) {
if (is_keyed()) {
// Determine whether the failure is due to a name failure.
if (!IsName(*name)) return false;
Tagged<Name> stub_name = nexus()->GetName();
if (*name != stub_name) return false;
}
return true;
}
void IC::UpdateState(DirectHandle<Object> lookup_start_object,
DirectHandle<Object> name) {
if (state() == NO_FEEDBACK) return;
update_lookup_start_object_map(lookup_start_object);
if (!IsString(*name)) return;
if (state() != MONOMORPHIC && state() != POLYMORPHIC) return;
if (IsNullOrUndefined(*lookup_start_object, isolate())) return;
// Remove the target from the code cache if it became invalid
// because of changes in the prototype chain to avoid hitting it
// again.
if (ShouldRecomputeHandler(Cast<String>(name))) {
MarkRecomputeHandler(name);
}
}
MaybeHandle<Object> IC::TypeError(MessageTemplate index, Handle<Object> object,
Handle<Object> key) {
HandleScope scope(isolate());
THROW_NEW_ERROR(isolate(), NewTypeError(index, key, object));
}
MaybeHandle<Object> IC::ReferenceError(Handle<Name> name) {
HandleScope scope(isolate());
THROW_NEW_ERROR(isolate(),
NewReferenceError(MessageTemplate::kNotDefined, name));
}
void IC::OnFeedbackChanged(const char* reason) {
vector_set_ = true;
Tagged<FeedbackVector> vector = nexus()->vector();
FeedbackSlot slot = nexus()->slot();
OnFeedbackChanged(isolate(), vector, slot, reason);
}
// static
void IC::OnFeedbackChanged(Isolate* isolate, Tagged<FeedbackVector> vector,
FeedbackSlot slot, const char* reason) {
#ifdef V8_TRACE_FEEDBACK_UPDATES
if (v8_flags.trace_feedback_updates) {
FeedbackVector::TraceFeedbackChange(isolate, vector, slot, reason);
}
#endif
isolate->tiering_manager()->NotifyICChanged(vector);
}
namespace {
bool MigrateDeprecated(Isolate* isolate, DirectHandle<Object> object) {
if (!IsJSObject(*object)) return false;
DirectHandle<JSObject> receiver = Cast<JSObject>(object);
if (!receiver->map()->is_deprecated()) return false;
JSObject::MigrateInstance(isolate, receiver);
return true;
}
} // namespace
bool IC::ConfigureVectorState(IC::State new_state, DirectHandle<Object> key) {
DCHECK_EQ(MEGAMORPHIC, new_state);
DCHECK_IMPLIES(!is_keyed(), IsName(*key));
bool changed = nexus()->ConfigureMegamorphic(
IsName(*key) ? IcCheckType::kProperty : IcCheckType::kElement);
if (changed) {
OnFeedbackChanged("Megamorphic");
}
return changed;
}
void IC::ConfigureVectorState(DirectHandle<Name> name, DirectHandle<Map> map,
Handle<Object> handler) {
ConfigureVectorState(name, map, MaybeObjectHandle(handler));
}
void IC::ConfigureVectorState(DirectHandle<Name> name, DirectHandle<Map> map,
const MaybeObjectHandle& handler) {
if (IsGlobalIC()) {
nexus()->ConfigureHandlerMode(handler);
} else {
// Non-keyed ICs don't track the name explicitly.
if (!is_keyed()) name = Handle<Name>::null();
nexus()->ConfigureMonomorphic(name, map, handler);
}
OnFeedbackChanged(IsLoadGlobalIC() ? "LoadGlobal" : "Monomorphic");
}
void IC::ConfigureVectorState(DirectHandle<Name> name, MapHandlesSpan maps,
MaybeObjectHandles* handlers) {
DCHECK(!IsGlobalIC());
MapsAndHandlers maps_and_handlers;
maps_and_handlers.reserve(maps.size());
DCHECK_EQ(maps.size(), handlers->size());
for (size_t i = 0; i < maps.size(); i++) {
maps_and_handlers.push_back(MapAndHandler(maps[i], handlers->at(i)));
}
ConfigureVectorState(name, maps_and_handlers);
}
void IC::ConfigureVectorState(DirectHandle<Name> name,
MapsAndHandlers const& maps_and_handlers) {
DCHECK(!IsGlobalIC());
// Non-keyed ICs don't track the name explicitly.
if (!is_keyed()) name = Handle<Name>::null();
nexus()->ConfigurePolymorphic(name, maps_and_handlers);
OnFeedbackChanged("Polymorphic");
}
MaybeHandle<Object> LoadIC::Load(Handle<JSAny> object, Handle<Name> name,
bool update_feedback,
DirectHandle<JSAny> receiver) {
bool use_ic = (state() != NO_FEEDBACK) && v8_flags.use_ic && update_feedback;
if (receiver.is_null()) {
receiver = object;
}
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (IsAnyHas() ? !IsJSReceiver(*object)
: IsNullOrUndefined(*object, isolate())) {
if (use_ic) {
// Ensure the IC state progresses.
TRACE_HANDLER_STATS(isolate(), LoadIC_NonReceiver);
update_lookup_start_object_map(object);
SetCache(name, LoadHandler::LoadSlow(isolate()));
TraceIC("LoadIC", name);
}
if (*name == ReadOnlyRoots(isolate()).iterator_symbol()) {
isolate()->Throw(*ErrorUtils::NewIteratorError(isolate(), object));
return MaybeHandle<Object>();
}
if (IsAnyHas()) {
return TypeError(MessageTemplate::kInvalidInOperatorUse, object, name);
} else {
DCHECK(IsNullOrUndefined(*object, isolate()));
ErrorUtils::ThrowLoadFromNullOrUndefined(isolate(), object, name);
return MaybeHandle<Object>();
}
}
// If we encounter an object with a deprecated map, we want to update the
// feedback vector with the migrated map.
// Mark ourselves as RECOMPUTE_HANDLER so that we don't turn megamorphic due
// to seeing the same map and handler.
if (MigrateDeprecated(isolate(), object)) {
UpdateState(object, name);
}
JSObject::MakePrototypesFast(object, kStartAtReceiver, isolate());
update_lookup_start_object_map(object);
PropertyKey key(isolate(), name);
LookupIterator it = LookupIterator(isolate(), receiver, key, object);
// Named lookup in the object.
LookupForRead(&it, IsAnyHas());
if (it.IsFound() || !ShouldThrowReferenceError()) {
// Update inline cache and stub cache.
if (use_ic) {
UpdateCaches(&it);
} else if (state() == NO_FEEDBACK) {
// Tracing IC stats
IsLoadGlobalIC() ? TraceIC("LoadGlobalIC", name)
: TraceIC("LoadIC", name);
}
if (IsAnyHas()) {
// Named lookup in the object.
Maybe<bool> maybe = JSReceiver::HasProperty(&it);
if (maybe.IsNothing()) return MaybeHandle<Object>();
return isolate()->factory()->ToBoolean(maybe.FromJust());
}
// Get the property.
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
Object::GetProperty(&it, IsLoadGlobalIC()));
if (it.IsFound()) {
return result;
} else if (!ShouldThrowReferenceError()) {
return result;
}
}
return ReferenceError(name);
}
MaybeHandle<Object> LoadGlobalIC::Load(Handle<Name> name,
bool update_feedback) {
Handle<JSGlobalObject> global = isolate()->global_object();
if (IsString(*name)) {
// Look up in script context table.
DirectHandle<String> str_name = Cast<String>(name);
DirectHandle<ScriptContextTable> script_contexts(
global->native_context()->script_context_table(), isolate());
VariableLookupResult lookup_result;
if (script_contexts->Lookup(str_name, &lookup_result)) {
DirectHandle<Context> script_context(
script_contexts->get(lookup_result.context_index), isolate());
Handle<Object> result(script_context->get(lookup_result.slot_index),
isolate());
if (IsTheHole(*result, isolate())) {
// Do not install stubs and stay pre-monomorphic for
// uninitialized accesses.
THROW_NEW_ERROR(
isolate(),
NewReferenceError(MessageTemplate::kAccessedUninitializedVariable,
name));
}
bool use_ic =
(state() != NO_FEEDBACK) && v8_flags.use_ic && update_feedback;
if (use_ic) {
// 'const' Variables are mutable if REPL mode is enabled. This disables
// compiler inlining for all 'const' variables declared in REPL mode.
if (nexus()->ConfigureLexicalVarMode(
lookup_result.context_index, lookup_result.slot_index,
(IsImmutableLexicalVariableMode(lookup_result.mode) &&
!lookup_result.is_repl_mode))) {
TRACE_HANDLER_STATS(isolate(), LoadGlobalIC_LoadScriptContextField);
} else {
// Given combination of indices can't be encoded, so use slow stub.
TRACE_HANDLER_STATS(isolate(), LoadGlobalIC_SlowStub);
SetCache(name, LoadHandler::LoadSlow(isolate()));
}
TraceIC("LoadGlobalIC", name);
} else if (state() == NO_FEEDBACK) {
TraceIC("LoadGlobalIC", name);
}
if (v8_flags.script_context_mutable_heap_number) {
return handle(
*Context::LoadScriptContextElement(
script_context, lookup_result.slot_index, result, isolate()),
isolate());
}
return result;
}
}
return LoadIC::Load(global, name, update_feedback);
}
namespace {
bool AddOneReceiverMapIfMissing(MapHandles* receiver_maps,
Handle<Map> new_receiver_map) {
DCHECK(!new_receiver_map.is_null());
for (DirectHandle<Map> map : *receiver_maps) {
if (!map.is_null() && map.is_identical_to(new_receiver_map)) {
return false;
}
}
receiver_maps->push_back(new_receiver_map);
return true;
}
bool AddOneReceiverMapIfMissing(MapsAndHandlers* receiver_maps_and_handlers,
Handle<Map> new_receiver_map) {
DCHECK(!new_receiver_map.is_null());
if (new_receiver_map->is_deprecated()) return false;
for (MapAndHandler map_and_handler : *receiver_maps_and_handlers) {
DirectHandle<Map> map = map_and_handler.first;
if (!map.is_null() && map.is_identical_to(new_receiver_map)) {
return false;
}
}
receiver_maps_and_handlers->push_back(
MapAndHandler(new_receiver_map, MaybeObjectHandle()));
return true;
}
Handle<NativeContext> GetAccessorContext(
const CallOptimization& call_optimization, Tagged<Map> holder_map,
Isolate* isolate) {
std::optional<Tagged<NativeContext>> maybe_context =
call_optimization.GetAccessorContext(holder_map);
// Holders which are remote objects are not expected in the IC system.
CHECK(maybe_context.has_value());
return handle(maybe_context.value(), isolate);
}
} // namespace
bool IC::UpdateMegaDOMIC(const MaybeObjectHandle& handler,
DirectHandle<Name> name) {
if (!v8_flags.mega_dom_ic) return false;
// TODO(gsathya): Enable fuzzing once this feature is more stable.
if (v8_flags.fuzzing) return false;
// TODO(gsathya): Support KeyedLoadIC, StoreIC and KeyedStoreIC.
if (!IsLoadIC()) return false;
// Check if DOM protector cell is valid.
if (!Protectors::IsMegaDOMIntact(isolate())) return false;
// Check if current lookup object is an API object
Handle<Map> map = lookup_start_object_map();
if (!InstanceTypeChecker::IsJSApiObject(map->instance_type())) return false;
Handle<Object> accessor_obj;
// TODO(gsathya): Check if there are overloads possible for this accessor and
// transition only if it isn't possible.
if (!accessor().ToHandle(&accessor_obj)) return false;
// TODO(gsathya): This is also created in IC::ComputeHandler, find a way to
// reuse it here.
CallOptimization call_optimization(isolate(), accessor_obj);
// Check if accessor is an API function
if (!call_optimization.is_simple_api_call()) return false;
// Check if accessor requires access checks
if (call_optimization.accept_any_receiver()) return false;
// Check if accessor requires signature checks
if (!call_optimization.requires_signature_check()) return false;
// Check if the receiver is the holder
CallOptimization::HolderLookup holder_lookup;
call_optimization.LookupHolderOfExpectedType(isolate(), map, &holder_lookup);
if (holder_lookup != CallOptimization::kHolderIsReceiver) return false;
Handle<NativeContext> accessor_context =
GetAccessorContext(call_optimization, *map, isolate());
Handle<FunctionTemplateInfo> fti;
if (IsJSFunction(*accessor_obj)) {
fti = handle(Cast<JSFunction>(*accessor_obj)->shared()->api_func_data(),
isolate());
} else {
fti = Cast<FunctionTemplateInfo>(accessor_obj);
}
Handle<MegaDomHandler> new_handler = isolate()->factory()->NewMegaDomHandler(
MaybeObjectHandle::Weak(fti), MaybeObjectHandle::Weak(accessor_context));
nexus()->ConfigureMegaDOM(MaybeObjectHandle(new_handler));
return true;
}
bool IC::UpdatePolymorphicIC(DirectHandle<Name> name,
const MaybeObjectHandle& handler) {
DCHECK(IsHandler(*handler));
if (is_keyed() && state() != RECOMPUTE_HANDLER) {
if (nexus()->GetName() != *name) return false;
}
Handle<Map> map = lookup_start_object_map();
MapsAndHandlers maps_and_handlers;
maps_and_handlers.reserve(v8_flags.max_valid_polymorphic_map_count);
int deprecated_maps = 0;
int handler_to_overwrite = -1;
{
DisallowGarbageCollection no_gc;
int i = 0;
for (FeedbackIterator it(nexus()); !it.done(); it.Advance()) {
if (it.handler().IsCleared()) continue;
MaybeObjectHandle existing_handler = handle(it.handler(), isolate());
Handle<Map> existing_map = handle(it.map(), isolate());
maps_and_handlers.push_back(
MapAndHandler(existing_map, existing_handler));
if (existing_map->is_deprecated()) {
// Filter out deprecated maps to ensure their instances get migrated.
deprecated_maps++;
} else if (map.is_identical_to(existing_map)) {
// If both map and handler stayed the same (and the name is also the
// same as checked above, for keyed accesses), we're not progressing
// in the lattice and need to go MEGAMORPHIC instead. There's one
// exception to this rule, which is when we're in RECOMPUTE_HANDLER
// state, there we allow to migrate to a new handler.
if (handler.is_identical_to(existing_handler) &&
state() != RECOMPUTE_HANDLER) {
return false;
}
// If the receiver type is already in the polymorphic IC, this indicates
// there was a prototoype chain failure. In that case, just overwrite
// the handler.
handler_to_overwrite = i;
} else if (handler_to_overwrite == -1 &&
IsTransitionOfMonomorphicTarget(*existing_map, *map)) {
handler_to_overwrite = i;
}
i++;
}
DCHECK_LE(i, maps_and_handlers.size());
}
int number_of_maps = static_cast<int>(maps_and_handlers.size());
int number_of_valid_maps =
number_of_maps - deprecated_maps - (handler_to_overwrite != -1);
if (number_of_valid_maps >= v8_flags.max_valid_polymorphic_map_count) {
return false;
}
if (deprecated_maps >= v8_flags.max_valid_polymorphic_map_count) {
return false;
}
if (number_of_maps == 0 && state() != MONOMORPHIC && state() != POLYMORPHIC) {
return false;
}
number_of_valid_maps++;
if (number_of_valid_maps == 1) {
ConfigureVectorState(name, lookup_start_object_map(), handler);
} else {
if (is_keyed() && nexus()->GetName() != *name) return false;
if (handler_to_overwrite >= 0) {
maps_and_handlers[handler_to_overwrite].second = handler;
if (!map.is_identical_to(
maps_and_handlers.at(handler_to_overwrite).first)) {
maps_and_handlers[handler_to_overwrite].first = map;
}
} else {
maps_and_handlers.push_back(MapAndHandler(map, handler));
}
ConfigureVectorState(name, maps_and_handlers);
}
return true;
}
void IC::UpdateMonomorphicIC(const MaybeObjectHandle& handler,
DirectHandle<Name> name) {
DCHECK(IsHandler(*handler));
ConfigureVectorState(name, lookup_start_object_map(), handler);
}
void IC::CopyICToMegamorphicCache(DirectHandle<Name> name) {
MapsAndHandlers maps_and_handlers;
nexus()->ExtractMapsAndHandlers(&maps_and_handlers);
for (const MapAndHandler& map_and_handler : maps_and_handlers) {
UpdateMegamorphicCache(map_and_handler.first, name, map_and_handler.second);
}
}
bool IC::IsTransitionOfMonomorphicTarget(Tagged<Map> source_map,
Tagged<Map> target_map) {
if (source_map.is_null()) return true;
if (target_map.is_null()) return false;
if (source_map->is_abandoned_prototype_map()) return false;
ElementsKind target_elements_kind = target_map->elements_kind();
bool more_general_transition = IsMoreGeneralElementsKindTransition(
source_map->elements_kind(), target_elements_kind);
Tagged<Map> transitioned_map;
if (more_general_transition) {
Handle<Map> single_map[1] = {handle(target_map, isolate_)};
transitioned_map = source_map->FindElementsKindTransitionedMap(
isolate(), single_map, ConcurrencyMode::kSynchronous);
}
return transitioned_map == target_map;
}
void IC::SetCache(DirectHandle<Name> name, Handle<Object> handler) {
SetCache(name, MaybeObjectHandle(handler));
}
void IC::SetCache(DirectHandle<Name> name, const MaybeObjectHandle& handler) {
DCHECK(IsHandler(*handler));
// Currently only load and store ICs support non-code handlers.
DCHECK(IsAnyLoad() || IsAnyStore() || IsAnyHas());
switch (state()) {
case NO_FEEDBACK:
UNREACHABLE();
case UNINITIALIZED:
UpdateMonomorphicIC(handler, name);
break;
case RECOMPUTE_HANDLER:
case MONOMORPHIC:
if (IsGlobalIC()) {
UpdateMonomorphicIC(handler, name);
break;
}
[[fallthrough]];
case POLYMORPHIC:
if (UpdatePolymorphicIC(name, handler)) break;
if (UpdateMegaDOMIC(handler, name)) break;
if (!is_keyed() || state() == RECOMPUTE_HANDLER) {
CopyICToMegamorphicCache(name);
}
[[fallthrough]];
case MEGADOM:
ConfigureVectorState(MEGAMORPHIC, name);
[[fallthrough]];
case MEGAMORPHIC:
UpdateMegamorphicCache(lookup_start_object_map(), name, handler);
// Indicate that we've handled this case.
vector_set_ = true;
break;
case GENERIC:
UNREACHABLE();
}
}
void LoadIC::UpdateCaches(LookupIterator* lookup) {
MaybeObjectHandle handler;
if (lookup->state() == LookupIterator::ACCESS_CHECK) {
handler = MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
} else if (!lookup->IsFound()) {
if (lookup->IsPrivateName()) {
handler = MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
} else {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNonexistentDH);
Handle<Smi> smi_handler = LoadHandler::LoadNonExistent(isolate());
handler = MaybeObjectHandle(LoadHandler::LoadFullChain(
isolate(), lookup_start_object_map(),
MaybeObjectHandle(isolate()->factory()->null_value()), smi_handler));
}
} else if (IsLoadGlobalIC() && lookup->state() == LookupIterator::JSPROXY) {
// If there is proxy just install the slow stub since we need to call the
// HasProperty trap for global loads. The ProxyGetProperty builtin doesn't
// handle this case.
handler = MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
} else {
if (IsLoadGlobalIC()) {
if (lookup->TryLookupCachedProperty()) {
DCHECK_EQ(LookupIterator::DATA, lookup->state());
}
if (lookup->state() == LookupIterator::DATA &&
lookup->GetReceiver().is_identical_to(lookup->GetHolder<Object>())) {
DCHECK(IsJSGlobalObject(*lookup->GetReceiver()));
// Now update the cell in the feedback vector.
nexus()->ConfigurePropertyCellMode(lookup->GetPropertyCell());
TraceIC("LoadGlobalIC", lookup->name());
return;
}
}
handler = ComputeHandler(lookup);
auto holder = lookup->GetHolder<Object>();
CHECK(*holder == *(lookup->lookup_start_object()) ||
LoadHandler::CanHandleHolderNotLookupStart(*handler.object()) ||
IsJSPrimitiveWrapper(*holder));
}
// Can't use {lookup->name()} because the LookupIterator might be in
// "elements" mode for keys that are strings representing integers above
// JSArray::kMaxIndex.
SetCache(lookup->GetName(), handler);
TraceIC("LoadIC", lookup->GetName());
}
StubCache* IC::stub_cache() {
// HasICs and each of the store own ICs require its own stub cache.
// Until we create them, don't allow accessing the load/store stub caches.
DCHECK(!IsAnyHas());
if (IsAnyLoad()) {
return isolate()->load_stub_cache();
} else if (IsAnyDefineOwn()) {
return isolate()->define_own_stub_cache();
} else {
DCHECK(IsAnyStore());
return isolate()->store_stub_cache();
}
}
void IC::UpdateMegamorphicCache(DirectHandle<Map> map, DirectHandle<Name> name,
const MaybeObjectHandle& handler) {
if (!IsAnyHas()) {
stub_cache()->Set(*name, *map, *handler);
}
}
MaybeObjectHandle LoadIC::ComputeHandler(LookupIterator* lookup) {
DirectHandle<Object> receiver = lookup->GetReceiver();
ReadOnlyRoots roots(isolate());
DirectHandle<Object> lookup_start_object = lookup->lookup_start_object();
// `in` cannot be called on strings, and will always return true for string
// wrapper length and function prototypes. The latter two cases are given
// LoadHandler::LoadNativeDataProperty below.
if (!IsAnyHas() && !lookup->IsElement()) {
if (IsString(*lookup_start_object) &&
*lookup->name() == roots.length_string()) {
TRACE_HANDLER_STATS(isolate(), LoadIC_StringLength);
return MaybeObjectHandle(BUILTIN_CODE(isolate(), LoadIC_StringLength));
}
if (IsStringWrapper(*lookup_start_object) &&
*lookup->name() == roots.length_string()) {
TRACE_HANDLER_STATS(isolate(), LoadIC_StringWrapperLength);
return MaybeObjectHandle(
BUILTIN_CODE(isolate(), LoadIC_StringWrapperLength));
}
// Use specialized code for getting prototype of functions.
if (IsJSFunction(*lookup_start_object) &&
*lookup->name() == roots.prototype_string() &&
!Cast<JSFunction>(*lookup_start_object)
->PrototypeRequiresRuntimeLookup()) {
TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);
return MaybeObjectHandle(
BUILTIN_CODE(isolate(), LoadIC_FunctionPrototype));
}
}
Handle<Map> map = lookup_start_object_map();
bool holder_is_lookup_start_object =
lookup_start_object.is_identical_to(lookup->GetHolder<JSReceiver>());
switch (lookup->state()) {
case LookupIterator::INTERCEPTOR: {
Handle<JSObject> holder =
indirect_handle(lookup->GetHolder<JSObject>(), isolate());
Handle<Smi> smi_handler = LoadHandler::LoadInterceptor(isolate());
if (holder->GetNamedInterceptor()->non_masking()) {
MaybeObjectHandle holder_ref(isolate()->factory()->null_value());
if (!holder_is_lookup_start_object || IsLoadGlobalIC()) {
holder_ref = MaybeObjectHandle::Weak(holder);
}
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNonMaskingInterceptorDH);
return MaybeObjectHandle(LoadHandler::LoadFullChain(
isolate(), map, holder_ref, smi_handler));
}
if (holder_is_lookup_start_object) {
DCHECK(map->has_named_interceptor());
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadInterceptorDH);
return MaybeObjectHandle(smi_handler);
}
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadInterceptorFromPrototypeDH);
return MaybeObjectHandle(
LoadHandler::LoadFromPrototype(isolate(), map, holder, *smi_handler));
}
case LookupIterator::ACCESSOR: {
Handle<JSObject> holder =
indirect_handle(lookup->GetHolder<JSObject>(), isolate());
// Use simple field loads for some well-known callback properties.
// The method will only return true for absolute truths based on the
// lookup start object maps.
FieldIndex field_index;
if (Accessors::IsJSObjectFieldAccessor(isolate(), map, lookup->name(),
&field_index)) {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadFieldDH);
return MaybeObjectHandle(
LoadHandler::LoadField(isolate(), field_index));
}
if (IsJSModuleNamespace(*holder)) {
DirectHandle<ObjectHashTable> exports(
Cast<JSModuleNamespace>(holder)->module()->exports(), isolate());
InternalIndex entry =
exports->FindEntry(isolate(), roots, lookup->name(),
Smi::ToInt(Object::GetHash(*lookup->name())));
// We found the accessor, so the entry must exist.
DCHECK(entry.is_found());
int value_index = ObjectHashTable::EntryToValueIndex(entry);
Handle<Smi> smi_handler =
LoadHandler::LoadModuleExport(isolate(), value_index);
if (holder_is_lookup_start_object) {
return MaybeObjectHandle(smi_handler);
}
return MaybeObjectHandle(LoadHandler::LoadFromPrototype(
isolate(), map, holder, *smi_handler));
}
DirectHandle<Object> accessors = lookup->GetAccessors();
if (IsAccessorPair(*accessors)) {
DirectHandle<AccessorPair> accessor_pair =
Cast<AccessorPair>(accessors);
if (lookup->TryLookupCachedProperty(accessor_pair)) {
DCHECK_EQ(LookupIterator::DATA, lookup->state());
return MaybeObjectHandle(ComputeHandler(lookup));
}
Handle<Object> getter(accessor_pair->getter(), isolate());
if (!IsCallableJSFunction(*getter) &&
!IsFunctionTemplateInfo(*getter)) {
// TODO(jgruber): Update counter name.
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
}
set_accessor(getter);
if ((IsFunctionTemplateInfo(*getter) &&
Cast<FunctionTemplateInfo>(*getter)->BreakAtEntry(isolate())) ||
(IsJSFunction(*getter) &&
Cast<JSFunction>(*getter)->shared()->BreakAtEntry(isolate()))) {
// Do not install an IC if the api function has a breakpoint.
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
}
Handle<Smi> smi_handler;
CallOptimization call_optimization(isolate(), getter);
if (call_optimization.is_simple_api_call()) {
CallOptimization::HolderLookup holder_lookup;
DirectHandle<JSObject> api_holder =
call_optimization.LookupHolderOfExpectedType(isolate(), map,
&holder_lookup);
if (!call_optimization.IsCompatibleReceiverMap(api_holder, holder,
holder_lookup) ||
!holder->HasFastProperties()) {
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
}
smi_handler = LoadHandler::LoadApiGetter(
isolate(), holder_lookup == CallOptimization::kHolderIsReceiver);
Handle<NativeContext> accessor_context =
GetAccessorContext(call_optimization, holder->map(), isolate());
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadApiGetterFromPrototypeDH);
return MaybeObjectHandle(LoadHandler::LoadFromPrototype(
isolate(), map, holder, *smi_handler,
MaybeObjectHandle::Weak(call_optimization.api_call_info()),
MaybeObjectHandle::Weak(accessor_context)));
}
if (holder->HasFastProperties()) {
DCHECK(IsCallableJSFunction(*getter));
if (holder_is_lookup_start_object) {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadAccessorDH);
return MaybeObjectHandle::Weak(
indirect_handle(accessor_pair, isolate()));
}
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadAccessorFromPrototypeDH);
return MaybeObjectHandle(LoadHandler::LoadFromPrototype(
isolate(), map, holder,
*LoadHandler::LoadAccessorFromPrototype(isolate()),
MaybeObjectHandle::Weak(getter)));
}
if (IsJSGlobalObject(*holder)) {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadGlobalFromPrototypeDH);
smi_handler = LoadHandler::LoadGlobal(isolate());
return MaybeObjectHandle(LoadHandler::LoadFromPrototype(
isolate(), map, holder, *smi_handler,
MaybeObjectHandle::Weak(
indirect_handle(lookup->GetPropertyCell(), isolate()))));
} else {
smi_handler = LoadHandler::LoadNormal(isolate());
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormalDH);
if (holder_is_lookup_start_object)
return MaybeObjectHandle(smi_handler);
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormalFromPrototypeDH);
}
return MaybeObjectHandle(LoadHandler::LoadFromPrototype(
isolate(), map, holder, *smi_handler));
}
DirectHandle<AccessorInfo> info = Cast<AccessorInfo>(accessors);
if (info->replace_on_access()) {
set_slow_stub_reason(
"getter needs to be reconfigured to data property");
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
}
if (!info->has_getter(isolate()) || !holder->HasFastProperties() ||
(info->is_sloppy() && !IsJSReceiver(*receiver))) {
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
}
Handle<Smi> smi_handler = LoadHandler::LoadNativeDataProperty(
isolate(), lookup->GetAccessorIndex());
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNativeDataPropertyDH);
if (holder_is_lookup_start_object) return MaybeObjectHandle(smi_handler);
TRACE_HANDLER_STATS(isolate(),
LoadIC_LoadNativeDataPropertyFromPrototypeDH);
return MaybeObjectHandle(
LoadHandler::LoadFromPrototype(isolate(), map, holder, *smi_handler));
}
case LookupIterator::DATA: {
Handle<JSReceiver> holder =
indirect_handle(lookup->GetHolder<JSReceiver>(), isolate());
DCHECK_EQ(PropertyKind::kData, lookup->property_details().kind());
Handle<Smi> smi_handler;
if (lookup->is_dictionary_holder()) {
if (IsJSGlobalObject(*holder, isolate())) {
// TODO(verwaest): Also supporting the global object as receiver is a
// workaround for code that leaks the global object.
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadGlobalDH);
smi_handler = LoadHandler::LoadGlobal(isolate());
return MaybeObjectHandle(LoadHandler::LoadFromPrototype(
isolate(), map, holder, *smi_handler,
MaybeObjectHandle::Weak(
indirect_handle(lookup->GetPropertyCell(), isolate()))));
}
smi_handler = LoadHandler::LoadNormal(isolate());
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormalDH);
if (holder_is_lookup_start_object)
return MaybeObjectHandle(smi_handler);
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormalFromPrototypeDH);
} else if (lookup->IsElement(*holder)) {
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
} else {
DCHECK_EQ(PropertyLocation::kField,
lookup->property_details().location());
DCHECK(IsJSObject(*holder, isolate()));
FieldIndex field = lookup->GetFieldIndex();
smi_handler = LoadHandler::LoadField(isolate(), field);
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadFieldDH);
if (holder_is_lookup_start_object)
return MaybeObjectHandle(smi_handler);
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadFieldFromPrototypeDH);
}
if (lookup->constness() == PropertyConstness::kConst &&
!holder_is_lookup_start_object) {
DCHECK_IMPLIES(!V8_DICT_PROPERTY_CONST_TRACKING_BOOL,
!lookup->is_dictionary_holder());
DirectHandle<Object> value = lookup->GetDataValue();
if (IsThinString(*value)) {
value = direct_handle(Cast<ThinString>(*value)->actual(), isolate());
}
// Non internalized strings could turn into thin/cons strings
// when internalized. Weak references to thin/cons strings are
// not supported in the GC. If concurrent marking is running
// and the thin/cons string is marked but the actual string is
// not, then the weak reference could be missed.
if (!IsString(*value) ||
(IsString(*value) && IsInternalizedString(*value))) {
MaybeObjectHandle weak_value =
IsSmi(*value) ? MaybeObjectHandle(*value, isolate())
: MaybeObjectHandle::Weak(*value, isolate());
smi_handler = LoadHandler::LoadConstantFromPrototype(isolate());
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadConstantFromPrototypeDH);
return MaybeObjectHandle(LoadHandler::LoadFromPrototype(
isolate(), map, holder, *smi_handler, weak_value));
}
}
return MaybeObjectHandle(
LoadHandler::LoadFromPrototype(isolate(), map, holder, *smi_handler));
}
case LookupIterator::TYPED_ARRAY_INDEX_NOT_FOUND:
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadIntegerIndexedExoticDH);
return MaybeObjectHandle(LoadHandler::LoadNonExistent(isolate()));
case LookupIterator::JSPROXY: {
// Private names on JSProxy is currently not supported.
if (lookup->name()->IsPrivate()) {
return MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
}
Handle<Smi> smi_handler = LoadHandler::LoadProxy(isolate());
if (holder_is_lookup_start_object) return MaybeObjectHandle(smi_handler);
Handle<JSProxy> holder_proxy =
indirect_handle(lookup->GetHolder<JSProxy>(), isolate());
return MaybeObjectHandle(LoadHandler::LoadFromPrototype(
isolate(), map, holder_proxy, *smi_handler));
}
case LookupIterator::WASM_OBJECT:
return MaybeObjectHandle(LoadHandler::LoadSlow(isolate()));
case LookupIterator::ACCESS_CHECK:
case LookupIterator::NOT_FOUND:
case LookupIterator::TRANSITION:
UNREACHABLE();
}
return MaybeObjectHandle(Handle<InstructionStream>::null());
}
KeyedAccessLoadMode KeyedLoadIC::GetKeyedAccessLoadModeFor(
DirectHandle<Map> receiver_map) const {
const MaybeObjectHandle& handler = nexus()->FindHandlerForMap(receiver_map);
if (handler.is_null()) return KeyedAccessLoadMode::kInBounds;
return LoadHandler::GetKeyedAccessLoadMode(*handler);
}
// Returns whether the load mode transition is allowed.
bool AllowedHandlerChange(KeyedAccessLoadMode old_mode,
KeyedAccessLoadMode new_mode) {
// Only allow transitions to allow OOB or allow converting a hole to
// undefined.
using T = std::underlying_type_t<KeyedAccessLoadMode>;
return ((static_cast<T>(old_mode) ^
static_cast<T>(GeneralizeKeyedAccessLoadMode(old_mode, new_mode))) &
0b11) != 0;
}
void KeyedLoadIC::UpdateLoadElement(DirectHandle<HeapObject> receiver,
const KeyedAccessLoadMode new_load_mode) {
Handle<Map> receiver_map(receiver->map(), isolate());
DCHECK(receiver_map->instance_type() !=
JS_PRIMITIVE_WRAPPER_TYPE); // Checked by caller.
MapHandles target_receiver_maps;
TargetMaps(&target_receiver_maps);
if (target_receiver_maps.empty()) {
Handle<Object> handler = LoadElementHandler(receiver_map, new_load_mode);
return ConfigureVectorState(DirectHandle<Name>(), receiver_map, handler);
}
for (DirectHandle<Map> map : target_receiver_maps) {
if (map.is_null()) continue;
if (map->instance_type() == JS_PRIMITIVE_WRAPPER_TYPE) {
set_slow_stub_reason("JSPrimitiveWrapper");
return;
}
if (map->instance_type() == JS_PROXY_TYPE) {
set_slow_stub_reason("JSProxy");
return;
}
}
// The first time a receiver is seen that is a transitioned version of the
// previous monomorphic receiver type, assume the new ElementsKind is the
// monomorphic type. This benefits global arrays that only transition
// once, and all call sites accessing them are faster if they remain
// monomorphic. If this optimistic assumption is not true, the IC will
// miss again and it will become polymorphic and support both the
// untransitioned and transitioned maps.
if (state() == MONOMORPHIC) {
if ((IsJSObject(*receiver) &&
IsMoreGeneralElementsKindTransition(
target_receiver_maps.at(0)->elements_kind(),
Cast<JSObject>(receiver)->GetElementsKind())) ||
IsWasmObject(*receiver)) {
Handle<Object> handler = LoadElementHandler(receiver_map, new_load_mode);
return ConfigureVectorState(DirectHandle<Name>(), receiver_map, handler);
}
}
DCHECK(state() != GENERIC);
// Determine the list of receiver maps that this call site has seen,
// adding the map that was just encountered.
KeyedAccessLoadMode old_load_mode = KeyedAccessLoadMode::kInBounds;
if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
old_load_mode = GetKeyedAccessLoadModeFor(receiver_map);
if (!AllowedHandlerChange(old_load_mode, new_load_mode)) {
set_slow_stub_reason("same map added twice");
return;
}
}
// If the maximum number of receiver maps has been exceeded, use the generic
// version of the IC.
if (static_cast<int>(target_receiver_maps.size()) >
v8_flags.max_valid_polymorphic_map_count) {
set_slow_stub_reason("max polymorph exceeded");
return;
}
MaybeObjectHandles handlers;
handlers.reserve(target_receiver_maps.size());
KeyedAccessLoadMode load_mode =
GeneralizeKeyedAccessLoadMode(old_load_mode, new_load_mode);
LoadElementPolymorphicHandlers(&target_receiver_maps, &handlers, load_mode);
if (target_receiver_maps.empty()) {
Handle<Object> handler = LoadElementHandler(receiver_map, new_load_mode);
ConfigureVectorState(DirectHandle<Name>(), receiver_map, handler);
} else if (target_receiver_maps.size() == 1) {
ConfigureVectorState(DirectHandle<Name>(), target_receiver_maps[0],
handlers[0]);
} else {
ConfigureVectorState(DirectHandle<Name>(),
MapHandlesSpan(target_receiver_maps.begin(),
target_receiver_maps.end()),
&handlers);
}
}
namespace {
bool AllowConvertHoleElementToUndefined(Isolate* isolate,
DirectHandle<Map> receiver_map) {
if (IsJSTypedArrayMap(*receiver_map)) {
// For JSTypedArray we never lookup elements in the prototype chain.
return true;
}
// For other {receiver}s we need to check the "no elements" protector.
if (Protectors::IsNoElementsIntact(isolate)) {
if (IsStringMap(*receiver_map)) {
return true;
}
if (IsJSObjectMap(*receiver_map)) {
// For other JSObjects (including JSArrays) we can only continue if
// the {receiver}s prototype is either the initial Object.prototype
// or the initial Array.prototype, which are both guarded by the
// "no elements" protector checked above.
DirectHandle<HeapObject> receiver_prototype(receiver_map->prototype(),
isolate);
InstanceType prototype_type = receiver_prototype->map()->instance_type();
if (prototype_type == JS_OBJECT_PROTOTYPE_TYPE ||
(prototype_type == JS_ARRAY_TYPE &&
isolate->IsInCreationContext(
Cast<JSObject>(*receiver_prototype),
Context::INITIAL_ARRAY_PROTOTYPE_INDEX))) {
return true;
}
}
}
return false;
}
bool IsOutOfBoundsAccess(DirectHandle<Object> receiver, size_t index) {
size_t length;
if (IsJSArray(*receiver)) {
length = Object::NumberValue(Cast<JSArray>(*receiver)->length());
} else if (IsJSTypedArray(*receiver)) {
length = Cast<JSTypedArray>(*receiver)->GetLength();
} else if (IsJSObject(*receiver)) {
length = Cast<JSObject>(*receiver)->elements()->length();
} else if (IsString(*receiver)) {
length = Cast<String>(*receiver)->length();
} else {
return false;
}
return index >= length;
}
bool AllowReadingHoleElement(ElementsKind elements_kind) {
return IsHoleyElementsKind(elements_kind);
}
KeyedAccessLoadMode GetNewKeyedLoadMode(Isolate* isolate,
DirectHandle<HeapObject> receiver,
size_t index, bool is_found) {
DirectHandle<Map> receiver_map(Cast<HeapObject>(receiver)->map(), isolate);
if (!AllowConvertHoleElementToUndefined(isolate, receiver_map)) {
return KeyedAccessLoadMode::kInBounds;
}
// Always handle holes when the elements kind is HOLEY_ELEMENTS, since the
// optimizer compilers can not benefit from this information to narrow the
// type. That is, the load type will always just be a generic tagged value.
// This avoid an IC miss if we see a hole.
ElementsKind elements_kind = receiver_map->elements_kind();
bool always_handle_holes = (elements_kind == HOLEY_ELEMENTS);
// In bound access and did not read a hole.
if (is_found) {
return always_handle_holes ? KeyedAccessLoadMode::kHandleHoles
: KeyedAccessLoadMode::kInBounds;
}
// OOB access.
bool is_oob_access = IsOutOfBoundsAccess(receiver, index);
if (is_oob_access) {
return always_handle_holes ? KeyedAccessLoadMode::kHandleOOBAndHoles
: KeyedAccessLoadMode::kHandleOOB;
}
// Read a hole.
DCHECK(!is_found && !is_oob_access);
bool handle_hole = AllowReadingHoleElement(elements_kind);
DCHECK_IMPLIES(always_handle_holes, handle_hole);
return handle_hole ? KeyedAccessLoadMode::kHandleHoles
: KeyedAccessLoadMode::kInBounds;
}
KeyedAccessLoadMode GetUpdatedLoadModeForMap(Isolate* isolate,
DirectHandle<Map> map,
KeyedAccessLoadMode load_mode) {
// If we are not allowed to convert a hole to undefined, then we should not
// handle OOB nor reading holes.
if (!AllowConvertHoleElementToUndefined(isolate, map)) {
return KeyedAccessLoadMode::kInBounds;
}
// Check if the elements kind allow reading a hole.
bool allow_reading_hole_element =
AllowReadingHoleElement(map->elements_kind());
switch (load_mode) {
case KeyedAccessLoadMode::kInBounds:
case KeyedAccessLoadMode::kHandleOOB:
return load_mode;
case KeyedAccessLoadMode::kHandleHoles:
return allow_reading_hole_element ? KeyedAccessLoadMode::kHandleHoles
: KeyedAccessLoadMode::kInBounds;
case KeyedAccessLoadMode::kHandleOOBAndHoles:
return allow_reading_hole_element
? KeyedAccessLoadMode::kHandleOOBAndHoles
: KeyedAccessLoadMode::kHandleOOB;
}
}
} // namespace
Handle<Object> KeyedLoadIC::LoadElementHandler(
DirectHandle<Map> receiver_map, KeyedAccessLoadMode new_load_mode) {
// Has a getter interceptor, or is any has and has a query interceptor.
if (receiver_map->has_indexed_interceptor() &&
(!IsUndefined(receiver_map->GetIndexedInterceptor()->getter(),
isolate()) ||
(IsAnyHas() &&
!IsUndefined(receiver_map->GetIndexedInterceptor()->query(),
isolate()))) &&
!receiver_map->GetIndexedInterceptor()->non_masking()) {
// TODO(jgruber): Update counter name.
TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_LoadIndexedInterceptorStub);
return IsAnyHas() ? BUILTIN_CODE(isolate(), HasIndexedInterceptorIC)
: BUILTIN_CODE(isolate(), LoadIndexedInterceptorIC);
}
InstanceType instance_type = receiver_map->instance_type();
if (instance_type < FIRST_NONSTRING_TYPE) {
TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_LoadIndexedStringDH);
if (IsAnyHas()) return LoadHandler::LoadSlow(isolate());
return LoadHandler::LoadIndexedString(isolate(), new_load_mode);
}
if (instance_type < FIRST_JS_RECEIVER_TYPE) {
TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_SlowStub);
return LoadHandler::LoadSlow(isolate());
}
if (instance_type == JS_PROXY_TYPE) {
return LoadHandler::LoadProxy(isolate());
}
#if V8_ENABLE_WEBASSEMBLY
if (InstanceTypeChecker::IsWasmObject(instance_type)) {
// TODO(jgruber): Update counter name.
TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_SlowStub);
return LoadHandler::LoadSlow(isolate());
}
#endif // V8_ENABLE_WEBASSEMBLY
ElementsKind elements_kind = receiver_map->elements_kind();
if (IsSloppyArgumentsElementsKind(elements_kind)) {
// TODO(jgruber): Update counter name.
TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_KeyedLoadSloppyArgumentsStub);
return IsAnyHas() ? BUILTIN_CODE(isolate(), KeyedHasIC_SloppyArguments)
: BUILTIN_CODE(isolate(), KeyedLoadIC_SloppyArguments);
}
bool is_js_array = instance_type == JS_ARRAY_TYPE;
if (elements_kind == DICTIONARY_ELEMENTS) {
TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_LoadElementDH);
return LoadHandler::LoadElement(isolate(), elements_kind, is_js_array,
new_load_mode);
}
DCHECK(IsFastElementsKind(elements_kind) ||
IsAnyNonextensibleElementsKind(elements_kind) ||
IsTypedArrayOrRabGsabTypedArrayElementsKind(elements_kind));
DCHECK_IMPLIES(
LoadModeHandlesHoles(new_load_mode),
AllowReadingHoleElement(elements_kind) &&
AllowConvertHoleElementToUndefined(isolate(), receiver_map));
TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_LoadElementDH);
return LoadHandler::LoadElement(isolate(), elements_kind, is_js_array,
new_load_mode);
}
void KeyedLoadIC::LoadElementPolymorphicHandlers(
MapHandles* receiver_maps, MaybeObjectHandles* handlers,
KeyedAccessLoadMode new_load_mode) {
// Filter out deprecated maps to ensure their instances get migrated.
receiver_maps->erase(std::remove_if(
receiver_maps->begin(), receiver_maps->end(),
[](const DirectHandle<Map>& map) { return map->is_deprecated(); }));
for (DirectHandle<Map> receiver_map : *receiver_maps) {
// Mark all stable receiver maps that have elements kind transition map
// among receiver_maps as unstable because the optimizing compilers may
// generate an elements kind transition for this kind of receivers.
if (receiver_map->is_stable()) {
Tagged<Map> tmap = receiver_map->FindElementsKindTransitionedMap(
isolate(),
MapHandlesSpan(receiver_maps->begin(), receiver_maps->end()),
ConcurrencyMode::kSynchronous);
if (!tmap.is_null()) {
receiver_map->NotifyLeafMapLayoutChange(isolate());
}
}
handlers->push_back(MaybeObjectHandle(LoadElementHandler(
receiver_map,
GetUpdatedLoadModeForMap(isolate(), receiver_map, new_load_mode))));
}
}
namespace {
enum KeyType { kIntPtr, kName, kBailout };
// The cases where kIntPtr is returned must match what
// CodeStubAssembler::TryToIntptr can handle!
KeyType TryConvertKey(Handle<Object> key, Isolate* isolate, intptr_t* index_out,
Handle<Name>* name_out) {
if (IsSmi(*key)) {
*index_out = Smi::ToInt(*key);
return kIntPtr;
}
if (IsHeapNumber(*key)) {
double num = Cast<HeapNumber>(*key)->value();
if (!(num >= -kMaxSafeInteger)) return kBailout;
if (num > kMaxSafeInteger) return kBailout;
*index_out = static_cast<intptr_t>(num);
if (*index_out != num) return kBailout;
return kIntPtr;
}
if (IsString(*key)) {
key = isolate->factory()->InternalizeString(Cast<String>(key));
uint32_t maybe_array_index;
if (Cast<String>(*key)->AsArrayIndex(&maybe_array_index)) {
if (maybe_array_index <= INT_MAX) {
*index_out = static_cast<intptr_t>(maybe_array_index);
return kIntPtr;
}
// {key} is a string representation of an array index beyond the range
// that the IC could handle. Don't try to take the named-property path.
return kBailout;
}
*name_out = Cast<String>(key);
return kName;
}
if (IsSymbol(*key)) {
*name_out = Cast<Symbol>(key);
return kName;
}
return kBailout;
}
bool IntPtrKeyToSize(intptr_t index, DirectHandle<HeapObject> receiver,
size_t* out) {
if (index < 0) {
if (IsJSTypedArray(*receiver)) {
// For JSTypedArray receivers, we can support negative keys, which we
// just map to a very large value. This is valid because all OOB accesses
// (negative or positive) are handled the same way, and size_t::max is
// guaranteed to be an OOB access.
*out = std::numeric_limits<size_t>::max();
return true;
}
return false;
}
#if V8_HOST_ARCH_64_BIT
if (index > JSObject::kMaxElementIndex && !IsJSTypedArray(*receiver)) {
return false;
}
#else
// On 32-bit platforms, any intptr_t is less than kMaxElementIndex.
static_assert(
static_cast<double>(std::numeric_limits<decltype(index)>::max()) <=
static_cast<double>(JSObject::kMaxElementIndex));
#endif
*out = static_cast<size_t>(index);
return true;
}
bool CanCache(DirectHandle<Object> receiver, InlineCacheState state) {
if (!v8_flags.use_ic || state == NO_FEEDBACK) return false;
if (!IsJSReceiver(*receiver) && !IsString(*receiver)) return false;
return !IsAccessCheckNeeded(*receiver) && !IsJSPrimitiveWrapper(*receiver);
}
} // namespace
MaybeHandle<Object> KeyedLoadIC::RuntimeLoad(DirectHandle<JSAny> object,
DirectHandle<Object> key,
bool* is_found) {
Handle<Object> result;
if (IsKeyedLoadIC()) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
Runtime::GetObjectProperty(isolate(), object, key,
DirectHandle<JSAny>(), is_found));
} else {
DCHECK(IsKeyedHasIC());
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
Runtime::HasProperty(isolate(), object, key));
}
return result;
}
MaybeHandle<Object> KeyedLoadIC::LoadName(Handle<JSAny> object,
DirectHandle<Object> key,
Handle<Name> name) {
Handle<Object> load_handle;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), load_handle,
LoadIC::Load(object, name));
if (vector_needs_update()) {
ConfigureVectorState(MEGAMORPHIC, key);
TraceIC("LoadIC", key);
}
DCHECK(!load_handle.is_null());
return load_handle;
}
MaybeHandle<Object> KeyedLoadIC::Load(Handle<JSAny> object,
Handle<Object> key) {
if (MigrateDeprecated(isolate(), object)) {
return RuntimeLoad(object, key);
}
intptr_t maybe_index;
Handle<Name> maybe_name;
KeyType key_type = TryConvertKey(key, isolate(), &maybe_index, &maybe_name);
if (key_type == kName) return LoadName(object, key, maybe_name);
bool is_found = false;
MaybeHandle<Object> result = RuntimeLoad(object, key, &is_found);
size_t index;
if (key_type == kIntPtr && CanCache(object, state()) &&
IntPtrKeyToSize(maybe_index, Cast<HeapObject>(object), &index)) {
DirectHandle<HeapObject> receiver = Cast<HeapObject>(object);
KeyedAccessLoadMode load_mode =
GetNewKeyedLoadMode(isolate(), receiver, index, is_found);
UpdateLoadElement(receiver, load_mode);
if (is_vector_set()) {
TraceIC("LoadIC", key);
}
}
if (vector_needs_update()) {
ConfigureVectorState(MEGAMORPHIC, key);
TraceIC("LoadIC", key);
}
return result;
}
bool StoreIC::LookupForWrite(LookupIterator* it, DirectHandle<Object> value,
StoreOrigin store_origin) {
// Disable ICs for non-JSObjects for now.
DirectHandle<Object> object = it->GetReceiver();
if (IsJSProxy(*object)) return true;
if (!IsJSObject(*object)) return false;
DirectHandle<JSObject> receiver = Cast<JSObject>(object);
DCHECK(!receiver->map()->is_deprecated());
for (;; it->Next()) {
switch (it->state()) {
case LookupIterator::TRANSITION:
UNREACHABLE();
case LookupIterator::WASM_OBJECT:
return false;
case LookupIterator::JSPROXY:
return true;
case LookupIterator::INTERCEPTOR: {
DirectHandle<JSObject> holder = it->GetHolder<JSObject>();
Tagged<InterceptorInfo> info = holder->GetNamedInterceptor();
if (it->HolderIsReceiverOrHiddenPrototype() ||
!IsUndefined(info->getter(), isolate()) ||
!IsUndefined(info->query(), isolate())) {
return true;
}
continue;
}
case LookupIterator::ACCESS_CHECK:
if (IsAccessCheckNeeded(*it->GetHolder<JSObject>())) return false;
continue;
case LookupIterator::ACCESSOR:
return !it->IsReadOnly();
case LookupIterator::TYPED_ARRAY_INDEX_NOT_FOUND:
return false;
case LookupIterator::DATA: {
if (it->IsReadOnly()) return false;
if (IsAnyDefineOwn() && it->property_attributes() != NONE) {
// IC doesn't support reconfiguration of property attributes,
// so just bail out to the slow handler.
return false;
}
DirectHandle<JSObject> holder = it->GetHolder<JSObject>();
if (receiver.is_identical_to(holder)) {
it->PrepareForDataProperty(value);
// The previous receiver map might just have been deprecated,
// so reload it.
update_lookup_start_object_map(receiver);
return true;
}
// Receiver != holder.
if (IsJSGlobalProxy(*receiver)) {
PrototypeIterator iter(isolate(), receiver);
return it->GetHolder<Object>().is_identical_to(
PrototypeIterator::GetCurrent(iter));
}
if (it->HolderIsReceiverOrHiddenPrototype()) return false;
if (it->ExtendingNonExtensible(receiver)) return false;
it->PrepareTransitionToDataProperty(receiver, value, NONE,
store_origin);
return it->IsCacheableTransition();
}
case LookupIterator::NOT_FOUND:
// If we are in StoreGlobal then check if we should throw on
// non-existent properties.
if (IsStoreGlobalIC() &&
(GetShouldThrow(it->isolate(), Nothing<ShouldThrow>()) ==
ShouldThrow::kThrowOnError)) {
// ICs typically does the store in two steps: prepare receiver for the
// transition followed by the actual store. For global objects we
// create a property cell when preparing for transition and install
// this cell in the handler. In strict mode, we throw and never
// initialize this property cell. The IC handler assumes that the
// property cell it is holding is for a property that is existing.
// This case violates this assumption. If we happen to invalidate this
// property cell later, it leads to incorrect behaviour. For now just
// use a slow stub and don't install the property cell for these
// cases. Hopefully these cases are not frequent enough to impact
// performance.
//
// TODO(mythria): If we find this to be happening often, we could
// install a new kind of handler for non-existent properties. These
// handlers can then miss to runtime if the value is not hole (i.e.
// cell got invalidated) and handle these stores correctly.
return false;
}
receiver = it->GetStoreTarget<JSObject>();
if (it->ExtendingNonExtensible(receiver)) return false;
it->PrepareTransitionToDataProperty(receiver, value, NONE,
store_origin);
return it->IsCacheableTransition();
}
UNREACHABLE();
}
}
MaybeHandle<Object> StoreGlobalIC::Store(Handle<Name> name,
Handle<Object> value) {
DCHECK(IsString(*name));
// Look up in script context table.
DirectHandle<String> str_name = Cast<String>(name);
Handle<JSGlobalObject> global = isolate()->global_object();
DirectHandle<ScriptContextTable> script_contexts(
global->native_context()->script_context_table(), isolate());
VariableLookupResult lookup_result;
if (script_contexts->Lookup(str_name, &lookup_result)) {
DisallowGarbageCollection no_gc;
DisableGCMole no_gcmole;
Tagged<Context> script_context =
script_contexts->get(lookup_result.context_index);
if (IsImmutableLexicalVariableMode(lookup_result.mode)) {
AllowGarbageCollection yes_gc;
return TypeError(MessageTemplate::kConstAssign, global, name);
}
Tagged<Object> previous_value =
script_context->get(lookup_result.slot_index);
if (IsTheHole(previous_value, isolate())) {
// Do not install stubs and stay pre-monomorphic for uninitialized
// accesses.
AllowGarbageCollection yes_gc;
THROW_NEW_ERROR(
isolate(),
NewReferenceError(MessageTemplate::kAccessedUninitializedVariable,
name));
}
bool use_ic = (state() != NO_FEEDBACK) && v8_flags.use_ic;
if (use_ic) {
if (nexus()->ConfigureLexicalVarMode(
lookup_result.context_index, lookup_result.slot_index,
IsImmutableLexicalVariableMode(lookup_result.mode))) {
TRACE_HANDLER_STATS(isolate(), StoreGlobalIC_StoreScriptContextField);
} else {
// Given combination of indices can't be encoded, so use slow stub.
TRACE_HANDLER_STATS(isolate(), StoreGlobalIC_SlowStub);
SetCache(name, StoreHandler::StoreSlow(isolate()));
}
TraceIC("StoreGlobalIC", name);
} else if (state() == NO_FEEDBACK) {
TraceIC("StoreGlobalIC", name);
}
if (v8_flags.script_context_mutable_heap_number ||
v8_flags.const_tracking_let) {
AllowGarbageCollection yes_gc;
Context::StoreScriptContextAndUpdateSlotProperty(
direct_handle(script_context, isolate()), lookup_result.slot_index,
value, isolate());
} else {
script_context->set(lookup_result.slot_index, *value);
}
return value;
}
return StoreIC::Store(global, name, value);
}
namespace {
Maybe<bool> DefineOwnDataProperty(LookupIterator* it,
LookupIterator::State original_state,
DirectHandle<JSAny> value,
Maybe<ShouldThrow> should_throw,
StoreOrigin store_origin) {
// It should not be possible to call DefineOwnDataProperty in a
// contextual store (indicated by IsJSGlobalObject()).
DCHECK(!IsJSGlobalObject(*it->GetReceiver(), it->isolate()));
// Handle special cases that can't be handled by
// DefineOwnPropertyIgnoreAttributes first.
switch (it->state()) {
case LookupIterator::JSPROXY: {
PropertyDescriptor new_desc;
new_desc.set_value(value);
new_desc.set_writable(true);
new_desc.set_enumerable(true);
new_desc.set_configurable(true);
DCHECK_EQ(original_state, LookupIterator::JSPROXY);
// TODO(joyee): this will start the lookup again. Ideally we should
// implement something that reuses the existing LookupIterator.
return JSProxy::DefineOwnProperty(it->isolate(), it->GetHolder<JSProxy>(),
it->GetName(), &new_desc, should_throw);
}
case LookupIterator::WASM_OBJECT:
RETURN_FAILURE(it->isolate(), kThrowOnError,
NewTypeError(MessageTemplate::kWasmObjectsAreOpaque));
// When lazy feedback is disabled, the original state could be different
// while the object is already prepared for TRANSITION.
case LookupIterator::TRANSITION: {
switch (original_state) {
case LookupIterator::JSPROXY:
case LookupIterator::WASM_OBJECT:
case LookupIterator::TRANSITION:
case LookupIterator::DATA:
case LookupIterator::INTERCEPTOR:
case LookupIterator::ACCESSOR:
case LookupIterator::TYPED_ARRAY_INDEX_NOT_FOUND:
UNREACHABLE();
case LookupIterator::ACCESS_CHECK: {
DCHECK(!IsAccessCheckNeeded(*it->GetHolder<JSObject>()));
[[fallthrough]];
}
case LookupIterator::NOT_FOUND:
return Object::AddDataProperty(it, value, NONE,
Nothing<ShouldThrow>(), store_origin,
EnforceDefineSemantics::kDefine);
}
}
case LookupIterator::ACCESS_CHECK:
case LookupIterator::NOT_FOUND:
case LookupIterator::DATA:
case LookupIterator::ACCESSOR:
case LookupIterator::INTERCEPTOR:
case LookupIterator::TYPED_ARRAY_INDEX_NOT_FOUND:
break;
}
// We need to restart to handle interceptors properly.
it->Restart();
return JSObject::DefineOwnPropertyIgnoreAttributes(
it, value, NONE, should_throw, JSObject::DONT_FORCE_FIELD,
EnforceDefineSemantics::kDefine, store_origin);
}
} // namespace
MaybeHandle<Object> StoreIC::Store(Handle<JSAny> object, Handle<Name> name,
Handle<Object> value,
StoreOrigin store_origin) {
// TODO(verwaest): Let SetProperty do the migration, since storing a property
// might deprecate the current map again, if value does not fit.
if (MigrateDeprecated(isolate(), object)) {
// KeyedStoreIC should handle DefineKeyedOwnIC with deprecated maps directly
// instead of reusing this method.
DCHECK(!IsDefineKeyedOwnIC());
DCHECK(!name->IsPrivateName());
PropertyKey key(isolate(), name);
if (IsDefineNamedOwnIC()) {
MAYBE_RETURN_NULL(JSReceiver::CreateDataProperty(
isolate(), object, key, value, Nothing<ShouldThrow>()));
} else {
LookupIterator it(isolate(), object, key, LookupIterator::DEFAULT);
MAYBE_RETURN_NULL(Object::SetProperty(&it, value, StoreOrigin::kNamed));
}
return value;
}
bool use_ic = (state() != NO_FEEDBACK) && v8_flags.use_ic;
// If the object is undefined or null it's illegal to try to set any
// properties on it; throw a TypeError in that case.
if (IsNullOrUndefined(*object, isolate())) {
if (use_ic) {
// Ensure the IC state progresses.
TRACE_HANDLER_STATS(isolate(), StoreIC_NonReceiver);
update_lookup_start_object_map(object);
SetCache(name, StoreHandler::StoreSlow(isolate()));
TraceIC("StoreIC", name);
}
return TypeError(MessageTemplate::kNonObjectPropertyStoreWithProperty, name,
object);
}
JSObject::MakePrototypesFast(object, kStartAtPrototype, isolate());
PropertyKey key(isolate(), name);
LookupIterator it(
isolate(), object, key,
IsAnyDefineOwn() ? LookupIterator::OWN : LookupIterator::DEFAULT);
if (name->IsPrivate()) {
if (name->IsPrivateName()) {
DCHECK(!IsDefineNamedOwnIC());
Maybe<bool> can_store =
JSReceiver::CheckPrivateNameStore(&it, IsDefineKeyedOwnIC());
MAYBE_RETURN_NULL(can_store);
if (!can_store.FromJust()) {
return isolate()->factory()->undefined_value();
}
}
// IC handling of private fields/symbols stores on JSProxy is not
// supported.
if (IsJSProxy(*object)) {
use_ic = false;
}
}
// For IsAnyDefineOwn(), we can't simply do CreateDataProperty below
// because we need to check the attributes before UpdateCaches updates
// the state of the LookupIterator.
LookupIterator::State original_state = it.state();
// We'll defer the check for JSProxy and objects with named interceptors,
// because the defineProperty traps need to be called first if they are
// present. We can also skip this for private names since they are not
// bound by configurability or extensibility checks, and errors would've
// been thrown if the private field already exists in the object.
if (IsAnyDefineOwn() && !name->IsPrivateName() && IsJSObject(*object) &&
!Cast<JSObject>(object)->HasNamedInterceptor()) {
Maybe<bool> can_define = JSObject::CheckIfCanDefineAsConfigurable(
isolate(), &it, value, Nothing<ShouldThrow>());
MAYBE_RETURN_NULL(can_define);
if (!can_define.FromJust()) {
return isolate()->factory()->undefined_value();
}
// Restart the lookup iterator updated by CheckIfCanDefineAsConfigurable()
// for UpdateCaches() to handle access checks.
if (use_ic && IsAccessCheckNeeded(*object)) {
it.Restart();
}
}
if (use_ic) {
UpdateCaches(&it, value, store_origin);
} else if (state() == NO_FEEDBACK) {
// Tracing IC Stats for No Feedback State.
IsStoreGlobalIC() ? TraceIC("StoreGlobalIC", name)
: TraceIC("StoreIC", name);
}
// TODO(v8:12548): refactor DefinedNamedOwnIC and SetNamedIC as subclasses
// of StoreIC so their logic doesn't get mixed here.
// ES #sec-definefield
// ES #sec-runtime-semantics-propertydefinitionevaluation
// IsAnyDefineOwn() can be true when this method is reused by KeyedStoreIC.
if (IsAnyDefineOwn()) {
if (name->IsPrivateName()) {
// We should define private fields without triggering traps or checking
// extensibility.
MAYBE_RETURN_NULL(
JSReceiver::AddPrivateField(&it, value, Nothing<ShouldThrow>()));
} else {
MAYBE_RETURN_NULL(
DefineOwnDataProperty(&it, original_state, Cast<JSAny>(value),
Nothing<ShouldThrow>(), store_origin));
}
} else {
MAYBE_RETURN_NULL(Object::SetProperty(&it, value, store_origin));
}
return value;
}
void StoreIC::UpdateCaches(LookupIterator* lookup, DirectHandle<Object> value,
StoreOrigin store_origin) {
MaybeObjectHandle handler;
if (LookupForWrite(lookup, value, store_origin)) {
if (IsStoreGlobalIC()) {
if (lookup->state() == LookupIterator::DATA &&
lookup->GetReceiver().is_identical_to(lookup->GetHolder<Object>())) {
DCHECK(IsJSGlobalObject(*lookup->GetReceiver()));
// Now update the cell in the feedback vector.
nexus()->ConfigurePropertyCellMode(lookup->GetPropertyCell());
TraceIC("StoreGlobalIC", lookup->GetName());
return;
}
}
handler = ComputeHandler(lookup);
} else {
set_slow_stub_reason("LookupForWrite said 'false'");
handler = MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
// Can't use {lookup->name()} because the LookupIterator might be in
// "elements" mode for keys that are strings representing integers above
// JSArray::kMaxIndex.
SetCache(lookup->GetName(), handler);
TraceIC("StoreIC", lookup->GetName());
}
MaybeObjectHandle StoreIC::ComputeHandler(LookupIterator* lookup) {
switch (lookup->state()) {
case LookupIterator::TRANSITION: {
Handle<JSObject> store_target =
indirect_handle(lookup->GetStoreTarget<JSObject>(), isolate());
if (IsJSGlobalObject(*store_target)) {
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreGlobalTransitionDH);
if (IsJSGlobalObject(*lookup_start_object_map())) {
DCHECK(IsStoreGlobalIC());
#ifdef DEBUG
DirectHandle<JSObject> holder = lookup->GetHolder<JSObject>();
DCHECK_EQ(*lookup->GetReceiver(), *holder);
DCHECK_EQ(*store_target, *holder);
#endif
return StoreHandler::StoreGlobal(
indirect_handle(lookup->transition_cell(), isolate()));
}
if (IsDefineKeyedOwnIC()) {
// Private field can't be deleted from this global object and can't
// be overwritten, so install slow handler in order to make store IC
// throw if a private name already exists.
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
DirectHandle<Smi> smi_handler =
StoreHandler::StoreGlobalProxy(isolate());
Handle<Object> handler = StoreHandler::StoreThroughPrototype(
isolate(), lookup_start_object_map(), store_target, *smi_handler,
MaybeObjectHandle::Weak(
indirect_handle(lookup->transition_cell(), isolate())));
return MaybeObjectHandle(handler);
}
// Dictionary-to-fast transitions are not expected and not supported.
DCHECK_IMPLIES(!lookup->transition_map()->is_dictionary_map(),
!lookup_start_object_map()->is_dictionary_map());
DCHECK(lookup->IsCacheableTransition());
if (IsAnyDefineOwn()) {
return StoreHandler::StoreOwnTransition(
isolate(), indirect_handle(lookup->transition_map(), isolate()));
}
return StoreHandler::StoreTransition(
isolate(), indirect_handle(lookup->transition_map(), isolate()));
}
case LookupIterator::INTERCEPTOR: {
Handle<JSObject> holder =
indirect_handle(lookup->GetHolder<JSObject>(), isolate());
Tagged<InterceptorInfo> info = holder->GetNamedInterceptor();
// If the interceptor is on the receiver...
if (lookup->HolderIsReceiverOrHiddenPrototype() && !info->non_masking()) {
// ...return a store interceptor Smi handler if there is a setter
// interceptor and it's not DefineNamedOwnIC or DefineKeyedOwnIC
// (which should call the definer)...
if (!IsUndefined(info->setter(), isolate()) && !IsAnyDefineOwn()) {
return MaybeObjectHandle(StoreHandler::StoreInterceptor(isolate()));
}
// ...otherwise return a slow-case Smi handler, which invokes the
// definer for DefineNamedOwnIC.
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
// If the interceptor is a getter/query interceptor on the prototype
// chain, return an invalidatable slow handler so it can turn fast if the
// interceptor is masked by a regular property later.
DCHECK(!IsUndefined(info->getter(), isolate()) ||
!IsUndefined(info->query(), isolate()));
Handle<Object> handler = StoreHandler::StoreThroughPrototype(
isolate(), lookup_start_object_map(), holder,
*StoreHandler::StoreSlow(isolate()));
return MaybeObjectHandle(handler);
}
case LookupIterator::ACCESSOR: {
// This is currently guaranteed by checks in StoreIC::Store.
DirectHandle<JSObject> receiver = Cast<JSObject>(lookup->GetReceiver());
Handle<JSObject> holder =
indirect_handle(lookup->GetHolder<JSObject>(), isolate());
DCHECK(!IsAccessCheckNeeded(*receiver) || lookup->name()->IsPrivate());
if (IsAnyDefineOwn()) {
set_slow_stub_reason("define own with existing accessor");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
if (!holder->HasFastProperties()) {
set_slow_stub_reason("accessor on slow map");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
MaybeObjectHandle handler =
MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
return handler;
}
DirectHandle<Object> accessors = lookup->GetAccessors();
if (IsAccessorInfo(*accessors)) {
DirectHandle<AccessorInfo> info = Cast<AccessorInfo>(accessors);
if (!info->has_setter(isolate())) {
set_slow_stub_reason("setter == kNullAddress");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
if (!lookup->HolderIsReceiverOrHiddenPrototype()) {
set_slow_stub_reason("native data property in prototype chain");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
Handle<Smi> smi_handler = StoreHandler::StoreNativeDataProperty(
isolate(), lookup->GetAccessorIndex());
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreNativeDataPropertyDH);
if (receiver.is_identical_to(holder)) {
return MaybeObjectHandle(smi_handler);
}
TRACE_HANDLER_STATS(isolate(),
StoreIC_StoreNativeDataPropertyOnPrototypeDH);
return MaybeObjectHandle(StoreHandler::StoreThroughPrototype(
isolate(), lookup_start_object_map(), holder, *smi_handler));
} else if (IsAccessorPair(*accessors)) {
DirectHandle<AccessorPair> accessor_pair =
Cast<AccessorPair>(accessors);
Handle<Object> setter(accessor_pair->setter(), isolate());
if (!IsCallableJSFunction(*setter) &&
!IsFunctionTemplateInfo(*setter)) {
set_slow_stub_reason("setter not a function");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
if ((IsFunctionTemplateInfo(*setter) &&
Cast<FunctionTemplateInfo>(*setter)->BreakAtEntry(isolate())) ||
(IsJSFunction(*setter) &&
Cast<JSFunction>(*setter)->shared()->BreakAtEntry(isolate()))) {
// Do not install an IC if the api function has a breakpoint.
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
CallOptimization call_optimization(isolate(), setter);
if (call_optimization.is_simple_api_call()) {
CallOptimization::HolderLookup holder_lookup;
DirectHandle<JSObject> api_holder =
call_optimization.LookupHolderOfExpectedType(
isolate(), lookup_start_object_map(), &holder_lookup);
if (call_optimization.IsCompatibleReceiverMap(api_holder, holder,
holder_lookup)) {
DirectHandle<Smi> smi_handler = StoreHandler::StoreApiSetter(
isolate(),
holder_lookup == CallOptimization::kHolderIsReceiver);
Handle<NativeContext> accessor_context =
GetAccessorContext(call_optimization, holder->map(), isolate());
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreApiSetterOnPrototypeDH);
return MaybeObjectHandle(StoreHandler::StoreThroughPrototype(
isolate(), lookup_start_object_map(), holder, *smi_handler,
MaybeObjectHandle::Weak(call_optimization.api_call_info()),
MaybeObjectHandle::Weak(accessor_context)));
}
set_slow_stub_reason("incompatible receiver");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
} else if (IsFunctionTemplateInfo(*setter)) {
set_slow_stub_reason("setter non-simple template");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
DCHECK(IsCallableJSFunction(*setter));
if (receiver.is_identical_to(holder)) {
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreAccessorDH);
return MaybeObjectHandle::Weak(
indirect_handle(accessor_pair, isolate()));
}
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreAccessorOnPrototypeDH);
return MaybeObjectHandle(StoreHandler::StoreThroughPrototype(
isolate(), lookup_start_object_map(), holder,
*StoreHandler::StoreAccessorFromPrototype(isolate()),
MaybeObjectHandle::Weak(setter)));
}
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
case LookupIterator::DATA: {
// This is currently guaranteed by checks in StoreIC::Store.
DirectHandle<JSObject> receiver = Cast<JSObject>(lookup->GetReceiver());
USE(receiver);
DirectHandle<JSObject> holder = lookup->GetHolder<JSObject>();
DCHECK(!IsAccessCheckNeeded(*receiver) || lookup->name()->IsPrivate());
DCHECK_EQ(PropertyKind::kData, lookup->property_details().kind());
if (lookup->is_dictionary_holder()) {
if (IsJSGlobalObject(*holder)) {
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreGlobalDH);
return MaybeObjectHandle(StoreHandler::StoreGlobal(
indirect_handle(lookup->GetPropertyCell(), isolate())));
}
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreNormalDH);
DCHECK(holder.is_identical_to(receiver));
DCHECK_IMPLIES(!V8_DICT_PROPERTY_CONST_TRACKING_BOOL,
lookup->constness() == PropertyConstness::kMutable);
Handle<Smi> handler = StoreHandler::StoreNormal(isolate());
return MaybeObjectHandle(handler);
}
// -------------- Elements (for TypedArrays) -------------
if (lookup->IsElement(*holder)) {
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
// -------------- Fields --------------
if (lookup->property_details().location() == PropertyLocation::kField) {
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreFieldDH);
int descriptor = lookup->GetFieldDescriptorIndex();
FieldIndex index = lookup->GetFieldIndex();
if (V8_UNLIKELY(IsJSSharedStruct(*holder))) {
return MaybeObjectHandle(StoreHandler::StoreSharedStructField(
isolate(), descriptor, index, lookup->representation()));
}
PropertyConstness constness = lookup->constness();
if (constness == PropertyConstness::kConst &&
IsDefineNamedOwnICKind(nexus()->kind())) {
// DefineNamedOwnICs are used for initializing object literals
// therefore we must store the value unconditionally even to
// VariableMode::kConst fields.
constness = PropertyConstness::kMutable;
}
return MaybeObjectHandle(StoreHandler::StoreField(
isolate(), descriptor, index, constness, lookup->representation()));
}
// -------------- Constant properties --------------
DCHECK_EQ(PropertyLocation::kDescriptor,
lookup->property_details().location());
set_slow_stub_reason("constant property");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
case LookupIterator::JSPROXY: {
DirectHandle<JSReceiver> receiver =
Cast<JSReceiver>(lookup->GetReceiver());
Handle<JSProxy> holder =
indirect_handle(lookup->GetHolder<JSProxy>(), isolate());
// IsDefineNamedOwnIC() is true when we are defining public fields on a
// Proxy. IsDefineKeyedOwnIC() is true when we are defining computed
// fields in a Proxy. In these cases use the slow stub to invoke the
// define trap.
if (IsDefineNamedOwnIC() || IsDefineKeyedOwnIC()) {
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return MaybeObjectHandle(StoreHandler::StoreSlow(isolate()));
}
return MaybeObjectHandle(StoreHandler::StoreProxy(
isolate(), lookup_start_object_map(), holder, receiver));
}
case LookupIterator::TYPED_ARRAY_INDEX_NOT_FOUND:
case LookupIterator::ACCESS_CHECK:
case LookupIterator::NOT_FOUND:
case LookupIterator::WASM_OBJECT:
UNREACHABLE();
}
return MaybeObjectHandle();
}
void KeyedStoreIC::UpdateStoreElement(Handle<Map> receiver_map,
KeyedAccessStoreMode store_mode,
Handle<Map> new_receiver_map) {
MapsAndHandlers target_maps_and_handlers;
nexus()->ExtractMapsAndHandlers(
&target_maps_and_handlers,
[this](Handle<Map> map) { return Map::TryUpdate(isolate(), map); });
if (target_maps_and_handlers.empty()) {
DirectHandle<Map> monomorphic_map = receiver_map;
// If we transitioned to a map that is a more general map than incoming
// then use the new map.
if (IsTransitionOfMonomorphicTarget(*receiver_map, *new_receiver_map)) {
monomorphic_map = new_receiver_map;
}
Handle<Object> handler = StoreElementHandler(monomorphic_map, store_mode);
return ConfigureVectorState(DirectHandle<Name>(), monomorphic_map, handler);
}
for (const MapAndHandler& map_and_handler : target_maps_and_handlers) {
DirectHandle<Map> map = map_and_handler.first;
if (!map.is_null() && map->instance_type() == JS_PRIMITIVE_WRAPPER_TYPE) {
DCHECK(!IsStoreInArrayLiteralIC());
set_slow_stub_reason("JSPrimitiveWrapper");
return;
}
}
// There are several special cases where an IC that is MONOMORPHIC can still
// transition to a different IC that handles a superset of the original IC.
// Handle those here if the receiver map hasn't changed or it has transitioned
// to a more general kind.
KeyedAccessStoreMode old_store_mode = GetKeyedAccessStoreMode();
Handle<Map> previous_receiver_map = target_maps_and_handlers.at(0).first;
if (state() == MONOMORPHIC) {
DirectHandle<Map> transitioned_receiver_map = new_receiver_map;
if (IsTransitionOfMonomorphicTarget(*previous_receiver_map,
*transitioned_receiver_map)) {
// If the "old" and "new" maps are in the same elements map family, or
// if they at least come from the same origin for a transitioning store,
// stay MONOMORPHIC and use the map for the most generic ElementsKind.
Handle<Object> handler =
StoreElementHandler(transitioned_receiver_map, store_mode);
ConfigureVectorState(DirectHandle<Name>(), transitioned_receiver_map,
handler);
return;
}
// If there is no transition and if we have seen the same map earlier and
// there is only a change in the store_mode we can still stay monomorphic.
if (receiver_map.is_identical_to(previous_receiver_map) &&
new_receiver_map.is_identical_to(receiver_map) &&
StoreModeIsInBounds(old_store_mode) &&
!StoreModeIsInBounds(store_mode)) {
if (IsJSArrayMap(*receiver_map) &&
JSArray::MayHaveReadOnlyLength(*receiver_map)) {
set_slow_stub_reason(
"can't generalize store mode (potentially read-only length)");
return;
}
// A "normal" IC that handles stores can switch to a version that can
// grow at the end of the array, handle OOB accesses or copy COW arrays
// and still stay MONOMORPHIC.
Handle<Object> handler = StoreElementHandler(receiver_map, store_mode);
return ConfigureVectorState(DirectHandle<Name>(), receiver_map, handler);
}
}
DCHECK(state() != GENERIC);
bool map_added =
AddOneReceiverMapIfMissing(&target_maps_and_handlers, receiver_map);
if (IsTransitionOfMonomorphicTarget(*receiver_map, *new_receiver_map)) {
map_added |=
AddOneReceiverMapIfMissing(&target_maps_and_handlers, new_receiver_map);
}
if (!map_added) {
// If the miss wasn't due to an unseen map, a polymorphic stub
// won't help, use the megamorphic stub which can handle everything.
set_slow_stub_reason("same map added twice");
return;
}
// If the maximum number of receiver maps has been exceeded, use the
// megamorphic version of the IC.
if (static_cast<int>(target_maps_and_handlers.size()) >
v8_flags.max_valid_polymorphic_map_count) {
return;
}
// Make sure all polymorphic handlers have the same store mode, otherwise the
// megamorphic stub must be used.
if (!StoreModeIsInBounds(old_store_mode)) {
if (StoreModeIsInBounds(store_mode)) {
store_mode = old_store_mode;
} else if (store_mode != old_store_mode) {
set_slow_stub_reason("store mode mismatch");
return;
}
}
// If the store mode isn't the standard mode, make sure that all polymorphic
// receivers are either external arrays, or all "normal" arrays with writable
// length. Otherwise, use the megamorphic stub.
if (!StoreModeIsInBounds(store_mode)) {
size_t external_arrays = 0;
for (MapAndHandler map_and_handler : target_maps_and_handlers) {
DirectHandle<Map> map = map_and_handler.first;
if (IsJSArrayMap(*map) && JSArray::MayHaveReadOnlyLength(*map)) {
set_slow_stub_reason(
"unsupported combination of arrays (potentially read-only length)");
return;
} else if (map->has_typed_array_or_rab_gsab_typed_array_elements()) {
DCHECK(!IsStoreInArrayLiteralIC());
external_arrays++;
}
}
if (external_arrays != 0 &&
external_arrays != target_maps_and_handlers.size()) {
DCHECK(!IsStoreInArrayLiteralIC());
set_slow_stub_reason(
"unsupported combination of external and normal arrays");
return;
}
}
StoreElementPolymorphicHandlers(&target_maps_and_handlers, store_mode);
if (target_maps_and_handlers.empty()) {
Handle<Object> handler = StoreElementHandler(receiver_map, store_mode);
ConfigureVectorState(DirectHandle<Name>(), receiver_map, handler);
} else if (target_maps_and_handlers.size() == 1) {
ConfigureVectorState(DirectHandle<Name>(),
target_maps_and_handlers[0].first,
target_maps_and_handlers[0].second);
} else {
ConfigureVectorState(DirectHandle<Name>(), target_maps_and_handlers);
}
}
Handle<Object> KeyedStoreIC::StoreElementHandler(
DirectHandle<Map> receiver_map, KeyedAccessStoreMode store_mode,
MaybeDirectHandle<UnionOf<Smi, Cell>> prev_validity_cell) {
// The only case when could keep using non-slow element store handler for
// a fast array with potentially read-only elements is when it's an
// initializing store to array literal.
DCHECK_IMPLIES(
!receiver_map->has_dictionary_elements() &&
receiver_map->ShouldCheckForReadOnlyElementsInPrototypeChain(
isolate()),
IsStoreInArrayLiteralIC());
if (!IsJSObjectMap(*receiver_map)) {
// DefineKeyedOwnIC, which is used to define computed fields in instances,
// should handled by the slow stub below instead of the proxy stub.
if (IsJSProxyMap(*receiver_map) && !IsDefineKeyedOwnIC()) {
return StoreHandler::StoreProxy(isolate());
}
// Wasm objects or other kind of special objects go through the slow stub.
TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_SlowStub);
return StoreHandler::StoreSlow(isolate(), store_mode);
}
// TODO(ishell): move to StoreHandler::StoreElement().
Handle<Code> code;
if (receiver_map->has_sloppy_arguments_elements()) {
// TODO(jgruber): Update counter name.
TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_KeyedStoreSloppyArgumentsStub);
code = StoreHandler::StoreSloppyArgumentsBuiltin(isolate(), store_mode);
} else if (receiver_map->has_fast_elements() ||
receiver_map->has_sealed_elements() ||
receiver_map->has_nonextensible_elements() ||
receiver_map->has_typed_array_or_rab_gsab_typed_array_elements()) {
// TODO(jgruber): Update counter name.
TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_StoreFastElementStub);
if (IsJSArgumentsObjectMap(*receiver_map) &&
receiver_map->has_fast_packed_elements()) {
// Allow fast behaviour for in-bounds stores while making it miss and
// properly handle the out of bounds store case.
code = StoreHandler::StoreFastElementBuiltin(
isolate(), KeyedAccessStoreMode::kInBounds);
} else {
code = StoreHandler::StoreFastElementBuiltin(isolate(), store_mode);
if (receiver_map->has_typed_array_or_rab_gsab_typed_array_elements()) {
return code;
}
}
} else if (IsStoreInArrayLiteralIC()) {
// TODO(jgruber): Update counter name.
TRACE_HANDLER_STATS(isolate(), StoreInArrayLiteralIC_SlowStub);
return StoreHandler::StoreSlow(isolate(), store_mode);
} else {
// TODO(jgruber): Update counter name.
TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_StoreElementStub);
DCHECK(DICTIONARY_ELEMENTS == receiver_map->elements_kind() ||
receiver_map->has_frozen_elements());
return StoreHandler::StoreSlow(isolate(), store_mode);
}
if (IsAnyDefineOwn() || IsStoreInArrayLiteralIC()) return code;
DirectHandle<UnionOf<Smi, Cell>> validity_cell;
if (!prev_validity_cell.ToHandle(&validity_cell)) {
validity_cell =
Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate());
}
if (IsSmi(*validity_cell)) {
// There's no prototype validity cell to check, so we can just use the stub.
return code;
}
Handle<StoreHandler> handler = isolate()->factory()->NewStoreHandler(0);
handler->set_validity_cell(*validity_cell);
handler->set_smi_handler(*code);
return handler;
}
void KeyedStoreIC::StoreElementPolymorphicHandlers(
MapsAndHandlers* receiver_maps_and_handlers,
KeyedAccessStoreMode store_mode) {
std::vector<Handle<Map>> receiver_maps;
receiver_maps.reserve(receiver_maps_and_handlers->size());
for (auto& [map, handler] : *receiver_maps_and_handlers) {
receiver_maps.push_back(map);
USE(handler);
}
for (size_t i = 0; i < receiver_maps_and_handlers->size(); i++) {
Handle<Map> receiver_map = receiver_maps_and_handlers->at(i).first;
DCHECK(!receiver_map->is_deprecated());
MaybeObjectHandle old_handler = receiver_maps_and_handlers->at(i).second;
Handle<Object> handler;
DirectHandle<Map> transition;
if (receiver_map->instance_type() < FIRST_JS_RECEIVER_TYPE ||
receiver_map->ShouldCheckForReadOnlyElementsInPrototypeChain(
isolate())) {
// TODO(mvstanton): Consider embedding store_mode in the state of the slow
// keyed store ic for uniformity.
TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_SlowStub);
handler = StoreHandler::StoreSlow(isolate());
} else {
{
Tagged<Map> tmap = receiver_map->FindElementsKindTransitionedMap(
isolate(),
MapHandlesSpan(receiver_maps.begin(), receiver_maps.end()),
ConcurrencyMode::kSynchronous);
if (!tmap.is_null()) {
if (receiver_map->is_stable()) {
receiver_map->NotifyLeafMapLayoutChange(isolate());
}
transition = direct_handle(tmap, isolate());
}
}
MaybeDirectHandle<UnionOf<Smi, Cell>> validity_cell;
Tagged<HeapObject> old_handler_obj;
if (!old_handler.is_null() &&
(*old_handler).GetHeapObject(&old_handler_obj) &&
IsDataHandler(old_handler_obj)) {
validity_cell = direct_handle(
Cast<DataHandler>(old_handler_obj)->validity_cell(), isolate());
}
// TODO(mythria): Do not recompute the handler if we know there is no
// change in the handler.
// TODO(mvstanton): The code below is doing pessimistic elements
// transitions. I would like to stop doing that and rely on Allocation
// Site Tracking to do a better job of ensuring the data types are what
// they need to be. Not all the elements are in place yet, pessimistic
// elements transitions are still important for performance.
if (!transition.is_null()) {
TRACE_HANDLER_STATS(isolate(),
KeyedStoreIC_ElementsTransitionAndStoreStub);
handler = StoreHandler::StoreElementTransition(
isolate(), receiver_map, transition, store_mode, validity_cell);
} else {
handler = StoreElementHandler(receiver_map, store_mode, validity_cell);
}
}
DCHECK(!handler.is_null());
receiver_maps_and_handlers->at(i) =
MapAndHandler(receiver_map, MaybeObjectHandle(handler));
}
}
namespace {
bool MayHaveTypedArrayInPrototypeChain(Isolate* isolate,
DirectHandle<JSObject> object) {
for (PrototypeIterator iter(isolate, *object); !iter.IsAtEnd();
iter.Advance()) {
// Be conservative, don't walk into proxies.
if (IsJSProxy(iter.GetCurrent())) return true;
if (IsJSTypedArray(iter.GetCurrent())) return true;
}
return false;
}
KeyedAccessStoreMode GetStoreMode(DirectHandle<JSObject> receiver,
size_t index) {
bool oob_access = IsOutOfBoundsAccess(receiver, index);
// Don't consider this a growing store if the store would send the receiver to
// dictionary mode.
bool allow_growth =
IsJSArray(*receiver) && oob_access && index <= JSArray::kMaxArrayIndex &&
!receiver->WouldConvertToSlowElements(static_cast<uint32_t>(index));
if (allow_growth) {
return KeyedAccessStoreMode::kGrowAndHandleCOW;
}
if (receiver->map()->has_typed_array_or_rab_gsab_typed_array_elements() &&
oob_access) {
return KeyedAccessStoreMode::kIgnoreTypedArrayOOB;
}
return receiver->elements()->IsCowArray() ? KeyedAccessStoreMode::kHandleCOW
: KeyedAccessStoreMode::kInBounds;
}
} // namespace
MaybeHandle<Object> KeyedStoreIC::Store(Handle<JSAny> object,
Handle<Object> key,
Handle<Object> value) {
// TODO(verwaest): Let SetProperty do the migration, since storing a property
// might deprecate the current map again, if value does not fit.
if (MigrateDeprecated(isolate(), object)) {
Handle<Object> result;
// TODO(v8:12548): refactor DefineKeyedOwnIC as a subclass of StoreIC
// so the logic doesn't get mixed here.
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
IsDefineKeyedOwnIC()
? Runtime::DefineObjectOwnProperty(isolate(), object, key, value,
StoreOrigin::kNamed)
: Runtime::SetObjectProperty(isolate(), object, key, value,
StoreOrigin::kMaybeKeyed));
return result;
}
Handle<Object> store_handle;
intptr_t maybe_index;
Handle<Name> maybe_name;
KeyType key_type = TryConvertKey(key, isolate(), &maybe_index, &maybe_name);
if (key_type == kName) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), store_handle,
StoreIC::Store(object, maybe_name, value, StoreOrigin::kMaybeKeyed));
if (vector_needs_update()) {
if (ConfigureVectorState(MEGAMORPHIC, key)) {
set_slow_stub_reason("unhandled internalized string key");
TraceIC("StoreIC", key);
}
}
return store_handle;
}
JSObject::MakePrototypesFast(object, kStartAtPrototype, isolate());
// TODO(jkummerow): Refactor the condition logic here and below.
bool use_ic = (state() != NO_FEEDBACK) && v8_flags.use_ic &&
!IsStringWrapper(*object) && !IsAccessCheckNeeded(*object) &&
!IsJSGlobalProxy(*object);
if (use_ic && !IsSmi(*object)) {
// Don't use ICs for maps of the objects in Array's prototype chain. We
// expect to be able to trap element sets to objects with those maps in
// the runtime to enable optimization of element hole access.
DirectHandle<HeapObject> heap_object = Cast<HeapObject>(object);
if (heap_object->map()->IsMapInArrayPrototypeChain(isolate())) {
set_slow_stub_reason("map in array prototype");
use_ic = false;
}
#if V8_ENABLE_WEBASSEMBLY
if (IsWasmObjectMap(heap_object->map())) {
set_slow_stub_reason("wasm object");
use_ic = false;
}
#endif
}
Handle<Map> old_receiver_map;
bool is_arguments = false;
bool key_is_valid_index = (key_type == kIntPtr);
KeyedAccessStoreMode store_mode = KeyedAccessStoreMode::kInBounds;
if (use_ic && IsJSReceiver(*object) && key_is_valid_index) {
DirectHandle<JSReceiver> receiver = Cast<JSReceiver>(object);
old_receiver_map = handle(receiver->map(), isolate());
is_arguments = IsJSArgumentsObject(*receiver);
bool is_jsobject = IsJSObject(*receiver);
size_t index;
key_is_valid_index = IntPtrKeyToSize(maybe_index, receiver, &index);
if (is_jsobject && !is_arguments && key_is_valid_index) {
DirectHandle<JSObject> receiver_object = Cast<JSObject>(object);
store_mode = GetStoreMode(receiver_object, index);
}
}
DCHECK(store_handle.is_null());
// TODO(v8:12548): refactor DefineKeyedOwnIC as a subclass of StoreIC
// so the logic doesn't get mixed here.
MaybeHandle<Object> result =
IsDefineKeyedOwnIC()
? Runtime::DefineObjectOwnProperty(isolate(), object, key, value,
StoreOrigin::kNamed)
: Runtime::SetObjectProperty(isolate(), object, key, value,
StoreOrigin::kMaybeKeyed);
if (result.is_null()) {
DCHECK(isolate()->has_exception());
set_slow_stub_reason("failed to set property");
use_ic = false;
}
if (use_ic) {
if (!old_receiver_map.is_null()) {
if (is_arguments) {
set_slow_stub_reason("arguments receiver");
} else if (IsJSArray(*object) && StoreModeCanGrow(store_mode) &&
JSArray::HasReadOnlyLength(Cast<JSArray>(object))) {
set_slow_stub_reason("array has read only length");
} else if (IsJSObject(*object) &&
MayHaveTypedArrayInPrototypeChain(isolate(),
Cast<JSObject>(object))) {
// Make sure we don't handle this in IC if there's any JSTypedArray in
// the {receiver}'s prototype chain, since that prototype is going to
// swallow all stores that are out-of-bounds for said prototype, and we
// just let the runtime deal with the complexity of this.
set_slow_stub_reason("typed array in the prototype chain");
} else if (key_is_valid_index) {
if (old_receiver_map->is_abandoned_prototype_map()) {
set_slow_stub_reason("receiver with prototype map");
} else if (old_receiver_map->has_dictionary_elements() ||
!old_receiver_map
->ShouldCheckForReadOnlyElementsInPrototypeChain(
isolate())) {
// We should go generic if receiver isn't a dictionary, but our
// prototype chain does have dictionary elements. This ensures that
// other non-dictionary receivers in the polymorphic case benefit
// from fast path keyed stores.
DirectHandle<HeapObject> receiver = Cast<HeapObject>(object);
UpdateStoreElement(old_receiver_map, store_mode,
handle(receiver->map(), isolate()));
} else {
set_slow_stub_reason("prototype with potentially read-only elements");
}
} else {
set_slow_stub_reason("non-smi-like key");
}
} else {
set_slow_stub_reason("non-JSObject receiver");
}
}
if (vector_needs_update()) {
ConfigureVectorState(MEGAMORPHIC, key);
}
TraceIC("StoreIC", key);
return result;
}
namespace {
Maybe<bool> StoreOwnElement(Isolate* isolate, DirectHandle<JSArray> array,
Handle<Object> index, DirectHandle<Object> value) {
DCHECK(IsNumber(*index));
PropertyKey key(isolate, index);
LookupIterator it(isolate, array, key, LookupIterator::OWN);
MAYBE_RETURN(JSObject::DefineOwnPropertyIgnoreAttributes(
&it, value, NONE, Just(ShouldThrow::kThrowOnError)),
Nothing<bool>());
return Just(true);
}
} // namespace
MaybeHandle<Object> StoreInArrayLiteralIC::Store(DirectHandle<JSArray> array,
Handle<Object> index,
Handle<Object> value) {
DCHECK(!array->map()->IsMapInArrayPrototypeChain(isolate()));
DCHECK(IsNumber(*index));
if (!v8_flags.use_ic || state() == NO_FEEDBACK ||
MigrateDeprecated(isolate(), array)) {
MAYBE_RETURN_NULL(StoreOwnElement(isolate(), array, index, value));
TraceIC("StoreInArrayLiteralIC", index);
return value;
}
// TODO(neis): Convert HeapNumber to Smi if possible?
KeyedAccessStoreMode store_mode = KeyedAccessStoreMode::kInBounds;
if (IsSmi(*index)) {
DCHECK_GE(Smi::ToInt(*index), 0);
uint32_t index32 = static_cast<uint32_t>(Smi::ToInt(*index));
store_mode = GetStoreMode(array, index32);
}
Handle<Map> old_array_map(array->map(), isolate());
MAYBE_RETURN_NULL(StoreOwnElement(isolate(), array, index, value));
if (IsSmi(*index)) {
DCHECK(!old_array_map->is_abandoned_prototype_map());
UpdateStoreElement(old_array_map, store_mode,
handle(array->map(), isolate()));
} else {
set_slow_stub_reason("index out of Smi range");
}
if (vector_needs_update()) {
ConfigureVectorState(MEGAMORPHIC, index);
}
TraceIC("StoreInArrayLiteralIC", index);
return value;
}
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
//
RUNTIME_FUNCTION(Runtime_LoadIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<JSAny> receiver = args.at<JSAny>(0);
Handle<Name> key = args.at<Name>(1);
int slot = args.tagged_index_value_at(2);
Handle<FeedbackVector> vector = args.at<FeedbackVector>(3);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
// A monomorphic or polymorphic KeyedLoadIC with a string key can call the
// LoadIC miss handler if the handler misses. Since the vector Nexus is
// set up outside the IC, handle that here.
FeedbackSlotKind kind = vector->GetKind(vector_slot);
if (IsLoadICKind(kind)) {
LoadIC ic(isolate, vector, vector_slot, kind);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key));
} else if (IsLoadGlobalICKind(kind)) {
DCHECK_EQ(isolate->native_context()->global_proxy(), *receiver);
receiver = isolate->global_object();
LoadGlobalIC ic(isolate, vector, vector_slot, kind);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(key));
} else {
DCHECK(IsKeyedLoadICKind(kind));
KeyedLoadIC ic(isolate, vector, vector_slot, kind);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key));
}
}
RUNTIME_FUNCTION(Runtime_LoadNoFeedbackIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<JSAny> receiver = args.at<JSAny>(0);
Handle<Name> key = args.at<Name>(1);
int slot_kind = args.smi_value_at(2);
FeedbackSlotKind kind = static_cast<FeedbackSlotKind>(slot_kind);
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
FeedbackSlot vector_slot = FeedbackSlot::Invalid();
// This function is only called after looking up in the ScriptContextTable so
// it is safe to call LoadIC::Load for global loads as well.
LoadIC ic(isolate, vector, vector_slot, kind);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key));
}
RUNTIME_FUNCTION(Runtime_LoadWithReceiverNoFeedbackIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
// Runtime functions don't follow the IC's calling convention.
DirectHandle<JSAny> receiver = args.at<JSAny>(0);
Handle<JSAny> object = args.at<JSAny>(1);
Handle<Name> key = args.at<Name>(2);
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
FeedbackSlot vector_slot = FeedbackSlot::Invalid();
LoadIC ic(isolate, vector, vector_slot, FeedbackSlotKind::kLoadProperty);
ic.UpdateState(object, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(object, key, true, receiver));
}
RUNTIME_FUNCTION(Runtime_LoadGlobalIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
// Runtime functions don't follow the IC's calling convention.
DirectHandle<JSGlobalObject> global = isolate->global_object();
Handle<String> name = args.at<String>(0);
int slot = args.tagged_index_value_at(1);
Handle<HeapObject> maybe_vector = args.at<HeapObject>(2);
int typeof_value = args.smi_value_at(3);
TypeofMode typeof_mode = static_cast<TypeofMode>(typeof_value);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
if (!IsUndefined(*maybe_vector, isolate)) {
DCHECK(IsFeedbackVector(*maybe_vector));
vector = Cast<FeedbackVector>(maybe_vector);
}
FeedbackSlotKind kind = (typeof_mode == TypeofMode::kInside)
? FeedbackSlotKind::kLoadGlobalInsideTypeof
: FeedbackSlotKind::kLoadGlobalNotInsideTypeof;
LoadGlobalIC ic(isolate, vector, vector_slot, kind);
ic.UpdateState(global, name);
DirectHandle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(name));
return *result;
}
RUNTIME_FUNCTION(Runtime_LoadGlobalIC_Slow) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<String> name = args.at<String>(0);
int slot = args.tagged_index_value_at(1);
Handle<FeedbackVector> vector = args.at<FeedbackVector>(2);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
FeedbackSlotKind kind = vector->GetKind(vector_slot);
LoadGlobalIC ic(isolate, vector, vector_slot, kind);
DirectHandle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(name, false));
return *result;
}
RUNTIME_FUNCTION(Runtime_LoadWithReceiverIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
DirectHandle<JSAny> receiver = args.at<JSAny>(0);
Handle<JSAny> object = args.at<JSAny>(1);
Handle<Name> key = args.at<Name>(2);
int slot = args.tagged_index_value_at(3);
Handle<FeedbackVector> vector = args.at<FeedbackVector>(4);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
DCHECK(IsLoadICKind(vector->GetKind(vector_slot)));
LoadIC ic(isolate, vector, vector_slot, FeedbackSlotKind::kLoadProperty);
ic.UpdateState(object, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(object, key, true, receiver));
}
RUNTIME_FUNCTION(Runtime_KeyedLoadIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<JSAny> receiver = args.at<JSAny>(0);
Handle<Object> key = args.at(1);
int slot = args.tagged_index_value_at(2);
Handle<HeapObject> maybe_vector = args.at<HeapObject>(3);
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
if (!IsUndefined(*maybe_vector, isolate)) {
DCHECK(IsFeedbackVector(*maybe_vector));
vector = Cast<FeedbackVector>(maybe_vector);
}
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
KeyedLoadIC ic(isolate, vector, vector_slot, FeedbackSlotKind::kLoadKeyed);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key));
}
RUNTIME_FUNCTION(Runtime_StoreIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
int slot = args.tagged_index_value_at(1);
Handle<HeapObject> maybe_vector = args.at<HeapObject>(2);
Handle<JSAny> receiver = args.at<JSAny>(3);
Handle<Name> key = args.at<Name>(4);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
// When there is no feedback vector it is OK to use the SetNamedStrict as
// the feedback slot kind. We only reuse this for DefineNamedOwnIC when
// installing the handler for storing const properties. This will happen only
// when feedback vector is available.
FeedbackSlotKind kind = FeedbackSlotKind::kSetNamedStrict;
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
if (!IsUndefined(*maybe_vector, isolate)) {
DCHECK(IsFeedbackVector(*maybe_vector));
DCHECK(!vector_slot.IsInvalid());
vector = Cast<FeedbackVector>(maybe_vector);
kind = vector->GetKind(vector_slot);
}
DCHECK(IsSetNamedICKind(kind) || IsDefineNamedOwnICKind(kind));
StoreIC ic(isolate, vector, vector_slot, kind);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value));
}
RUNTIME_FUNCTION(Runtime_DefineNamedOwnIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
int slot = args.tagged_index_value_at(1);
Handle<HeapObject> maybe_vector = args.at<HeapObject>(2);
Handle<JSAny> receiver = args.at<JSAny>(3);
Handle<Name> key = args.at<Name>(4);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
// When there is no feedback vector it is OK to use the DefineNamedOwn
// feedback kind. There _should_ be a vector, though.
FeedbackSlotKind kind = FeedbackSlotKind::kDefineNamedOwn;
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
if (!IsUndefined(*maybe_vector, isolate)) {
DCHECK(IsFeedbackVector(*maybe_vector));
DCHECK(!vector_slot.IsInvalid());
vector = Cast<FeedbackVector>(maybe_vector);
kind = vector->GetKind(vector_slot);
}
DCHECK(IsDefineNamedOwnICKind(kind));
// TODO(v8:12548): refactor DefineNamedOwnIC as a subclass of StoreIC, which
// can be called here.
StoreIC ic(isolate, vector, vector_slot, kind);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value));
}
RUNTIME_FUNCTION(Runtime_DefineNamedOwnIC_Slow) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
DirectHandle<Object> value = args.at(0);
DirectHandle<JSAny> object = args.at<JSAny>(1);
Handle<Object> key = args.at(2);
// Unlike DefineKeyedOwnIC, DefineNamedOwnIC doesn't handle private
// fields and is used for defining data properties in object literals
// and defining named public class fields.
DCHECK(!IsSymbol(*key) || !Cast<Symbol>(*key)->is_private_name());
PropertyKey lookup_key(isolate, key);
MAYBE_RETURN(JSReceiver::CreateDataProperty(isolate, object, lookup_key,
value, Nothing<ShouldThrow>()),
ReadOnlyRoots(isolate).exception());
return *value;
}
RUNTIME_FUNCTION(Runtime_StoreGlobalIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
int slot = args.tagged_index_value_at(1);
Handle<FeedbackVector> vector = args.at<FeedbackVector>(2);
Handle<Name> key = args.at<Name>(3);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
FeedbackSlotKind kind = vector->GetKind(vector_slot);
StoreGlobalIC ic(isolate, vector, vector_slot, kind);
DirectHandle<JSGlobalObject> global = isolate->global_object();
ic.UpdateState(global, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Store(key, value));
}
RUNTIME_FUNCTION(Runtime_StoreGlobalICNoFeedback_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
Handle<Name> key = args.at<Name>(1);
// TODO(mythria): Replace StoreGlobalStrict/Sloppy with SetNamedProperty.
StoreGlobalIC ic(isolate, Handle<FeedbackVector>(), FeedbackSlot(),
FeedbackSlotKind::kStoreGlobalStrict);
RETURN_RESULT_OR_FAILURE(isolate, ic.Store(key, value));
}
// TODO(mythria): Remove Feedback vector and slot. Since they are not used apart
// from the DCHECK.
RUNTIME_FUNCTION(Runtime_StoreGlobalIC_Slow) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
DirectHandle<Object> value = args.at(0);
Handle<String> name = args.at<String>(4);
#ifdef DEBUG
{
int slot = args.tagged_index_value_at(1);
DirectHandle<FeedbackVector> vector = args.at<FeedbackVector>(2);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
FeedbackSlotKind slot_kind = vector->GetKind(vector_slot);
DCHECK(IsStoreGlobalICKind(slot_kind));
DirectHandle<JSAny> receiver = args.at<JSAny>(3);
DCHECK(IsJSGlobalProxy(*receiver));
}
#endif
Handle<JSGlobalObject> global = isolate->global_object();
DirectHandle<Context> native_context = isolate->native_context();
DirectHandle<ScriptContextTable> script_contexts(
native_context->script_context_table(), isolate);
VariableLookupResult lookup_result;
if (script_contexts->Lookup(name, &lookup_result)) {
DirectHandle<Context> script_context(
script_contexts->get(lookup_result.context_index), isolate);
if (IsImmutableLexicalVariableMode(lookup_result.mode)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kConstAssign, global, name));
}
{
DisallowGarbageCollection no_gc;
Tagged<Object> previous_value =
script_context->get(lookup_result.slot_index);
if (IsTheHole(previous_value, isolate)) {
AllowGarbageCollection yes_gc;
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewReferenceError(MessageTemplate::kAccessedUninitializedVariable,
name));
}
}
if (v8_flags.const_tracking_let) {
Context::StoreScriptContextAndUpdateSlotProperty(
script_context, lookup_result.slot_index, value, isolate);
} else {
script_context->set(lookup_result.slot_index, *value);
}
return *value;
}
RETURN_RESULT_OR_FAILURE(
isolate, Runtime::SetObjectProperty(isolate, global, name, value,
StoreOrigin::kMaybeKeyed));
}
RUNTIME_FUNCTION(Runtime_KeyedStoreIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
Handle<HeapObject> maybe_vector = args.at<HeapObject>(2);
Handle<JSAny> receiver = args.at<JSAny>(3);
Handle<Object> key = args.at(4);
FeedbackSlot vector_slot;
// When the feedback vector is not valid the slot can only be of type
// StoreKeyed. Storing in array literals falls back to
// StoreInArrayLiterIC_Miss. This function is also used from store handlers
// installed in feedback vectors. In such cases, we need to get the kind from
// feedback vector slot since the handlers are used for both for StoreKeyed
// and StoreInArrayLiteral kinds.
FeedbackSlotKind kind = FeedbackSlotKind::kSetKeyedStrict;
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
if (!IsUndefined(*maybe_vector, isolate)) {
DCHECK(IsFeedbackVector(*maybe_vector));
vector = Cast<FeedbackVector>(maybe_vector);
int slot = args.tagged_index_value_at(1);
vector_slot = FeedbackVector::ToSlot(slot);
kind = vector->GetKind(vector_slot);
}
// The elements store stubs miss into this function, but they are shared by
// different ICs.
// TODO(v8:12548): refactor DefineKeyedOwnIC as a subclass of KeyedStoreIC,
// which can be called here.
if (IsKeyedStoreICKind(kind) || IsDefineKeyedOwnICKind(kind)) {
KeyedStoreIC ic(isolate, vector, vector_slot, kind);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value));
} else {
DCHECK(IsStoreInArrayLiteralICKind(kind));
DCHECK(IsJSArray(*receiver));
DCHECK(IsNumber(*key));
StoreInArrayLiteralIC ic(isolate, vector, vector_slot);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate,
ic.Store(Cast<JSArray>(receiver), key, value));
}
}
RUNTIME_FUNCTION(Runtime_DefineKeyedOwnIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
int slot = args.tagged_index_value_at(1);
Handle<HeapObject> maybe_vector = args.at<HeapObject>(2);
Handle<JSAny> receiver = args.at<JSAny>(3);
Handle<Object> key = args.at(4);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
FeedbackSlotKind kind = FeedbackSlotKind::kDefineKeyedOwn;
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
if (!IsUndefined(*maybe_vector, isolate)) {
DCHECK(IsFeedbackVector(*maybe_vector));
vector = Cast<FeedbackVector>(maybe_vector);
kind = vector->GetKind(vector_slot);
DCHECK(IsDefineKeyedOwnICKind(kind));
}
// TODO(v8:12548): refactor DefineKeyedOwnIC as a subclass of KeyedStoreIC,
// which can be called here.
KeyedStoreIC ic(isolate, vector, vector_slot, kind);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value));
}
RUNTIME_FUNCTION(Runtime_StoreInArrayLiteralIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
int slot = args.tagged_index_value_at(1);
Handle<HeapObject> maybe_vector = args.at<HeapObject>(2);
DirectHandle<JSAny> receiver = args.at<JSAny>(3);
Handle<Object> key = args.at(4);
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
if (!IsUndefined(*maybe_vector, isolate)) {
DCHECK(IsFeedbackVector(*maybe_vector));
vector = Cast<FeedbackVector>(maybe_vector);
}
DCHECK(IsJSArray(*receiver));
DCHECK(IsNumber(*key));
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
StoreInArrayLiteralIC ic(isolate, vector, vector_slot);
RETURN_RESULT_OR_FAILURE(isolate,
ic.Store(Cast<JSArray>(receiver), key, value));
}
RUNTIME_FUNCTION(Runtime_KeyedStoreIC_Slow) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
// Runtime functions don't follow the IC's calling convention.
DirectHandle<Object> value = args.at(0);
DirectHandle<JSAny> object = args.at<JSAny>(1);
DirectHandle<Object> key = args.at(2);
RETURN_RESULT_OR_FAILURE(
isolate, Runtime::SetObjectProperty(isolate, object, key, value,
StoreOrigin::kMaybeKeyed));
}
RUNTIME_FUNCTION(Runtime_DefineKeyedOwnIC_Slow) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
DirectHandle<JSAny> object = args.at<JSAny>(1);
DirectHandle<Object> key = args.at(2);
RETURN_RESULT_OR_FAILURE(
isolate, Runtime::DefineObjectOwnProperty(isolate, object, key, value,
StoreOrigin::kNamed));
}
RUNTIME_FUNCTION(Runtime_StoreInArrayLiteralIC_Slow) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
// Runtime functions don't follow the IC's calling convention.
DirectHandle<Object> value = args.at(0);
DirectHandle<Object> array = args.at(1);
Handle<Object> index = args.at(2);
StoreOwnElement(isolate, Cast<JSArray>(array), index, value);
return *value;
}
RUNTIME_FUNCTION(Runtime_ElementsTransitionAndStoreIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(6, args.length());
// Runtime functions don't follow the IC's calling convention.
DirectHandle<JSAny> object = args.at<JSAny>(0);
Handle<Object> key = args.at(1);
Handle<Object> value = args.at(2);
DirectHandle<Map> map = args.at<Map>(3);
int slot = args.tagged_index_value_at(4);
DirectHandle<FeedbackVector> vector = args.at<FeedbackVector>(5);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
FeedbackSlotKind kind = vector->GetKind(vector_slot);
if (IsJSObject(*object)) {
JSObject::TransitionElementsKind(Cast<JSObject>(object),
map->elements_kind());
}
if (IsStoreInArrayLiteralICKind(kind)) {
StoreOwnElement(isolate, Cast<JSArray>(object), key, value);
return *value;
} else {
DCHECK(IsKeyedStoreICKind(kind) || IsSetNamedICKind(kind) ||
IsDefineKeyedOwnICKind(kind));
RETURN_RESULT_OR_FAILURE(
isolate, IsDefineKeyedOwnICKind(kind)
? Runtime::DefineObjectOwnProperty(
isolate, object, key, value, StoreOrigin::kNamed)
: Runtime::SetObjectProperty(isolate, object, key, value,
StoreOrigin::kMaybeKeyed));
}
}
namespace {
enum class FastCloneObjectMode {
// The clone has the same map as the input.
kIdenticalMap,
// The clone is the empty object literal.
kEmptyObject,
// The clone has an empty object literal map.
kDifferentMap,
// The source map is to complicated to handle.
kNotSupported,
// Returned by PreCheck
kMaybeSupported
};
FastCloneObjectMode GetCloneModeForMapPreCheck(DirectHandle<Map> map,
bool null_proto_literal,
Isolate* isolate) {
DisallowGarbageCollection no_gc;
if (!IsJSObjectMap(*map)) {
// Everything that produces the empty object literal can be supported since
// we have a special case for that.
if (null_proto_literal) return FastCloneObjectMode::kNotSupported;
return IsNullOrUndefinedMap(*map) || IsBooleanMap(*map) ||
IsHeapNumberMap(*map)
? FastCloneObjectMode::kEmptyObject
: FastCloneObjectMode::kNotSupported;
}
ElementsKind elements_kind = map->elements_kind();
if (!IsSmiOrObjectElementsKind(elements_kind) &&
!IsAnyNonextensibleElementsKind(elements_kind)) {
return FastCloneObjectMode::kNotSupported;
}
if (!map->OnlyHasSimpleProperties()) {
return FastCloneObjectMode::kNotSupported;
}
// TODO(olivf): Think about cases where cross-context copies are safe.
if (!map->BelongsToSameNativeContextAs(isolate->context())) {
return FastCloneObjectMode::kNotSupported;
}
return FastCloneObjectMode::kMaybeSupported;
}
FastCloneObjectMode GetCloneModeForMap(DirectHandle<Map> map,
bool null_proto_literal,
Isolate* isolate) {
FastCloneObjectMode pre_check =
GetCloneModeForMapPreCheck(map, null_proto_literal, isolate);
if (pre_check != FastCloneObjectMode::kMaybeSupported) {
return pre_check;
}
// The clone must always start from an object literal map, it must be an
// instance of the object function, have the default prototype and not be a
// prototype itself. Only if the source map fits that criterion we can
// directly use it as the target map.
FastCloneObjectMode mode =
map->instance_type() == JS_OBJECT_TYPE &&
!IsAnyNonextensibleElementsKind(map->elements_kind()) &&
map->GetConstructor() == *isolate->object_function() &&
map->prototype() == *isolate->object_function_prototype() &&
!map->is_prototype_map()
? FastCloneObjectMode::kIdenticalMap
: FastCloneObjectMode::kDifferentMap;
if (null_proto_literal || IsNull(map->prototype())) {
mode = FastCloneObjectMode::kDifferentMap;
}
Tagged<DescriptorArray> descriptors = map->instance_descriptors();
for (InternalIndex i : map->IterateOwnDescriptors()) {
PropertyDetails details = descriptors->GetDetails(i);
Tagged<Name> key = descriptors->GetKey(i);
if (details.kind() != PropertyKind::kData || !details.IsEnumerable() ||
key->IsPrivateName()) {
return FastCloneObjectMode::kNotSupported;
}
if (!details.IsConfigurable() || details.IsReadOnly()) {
mode = FastCloneObjectMode::kDifferentMap;
}
}
DCHECK_IMPLIES(mode == FastCloneObjectMode::kIdenticalMap,
!map->is_prototype_map());
return mode;
}
bool CanCacheCloneTargetMapTransition(
DirectHandle<Map> source_map, std::optional<DirectHandle<Map>> target_map,
bool null_proto_literal, Isolate* isolate) {
if (!v8_flags.clone_object_sidestep_transitions || null_proto_literal) {
return false;
}
// As of now any R/O source object should end up in the kEmptyObject case, but
// there is not really a way of ensuring it. Thus, we also check it below.
// This is a performance dcheck. If it fails, the clone IC does not handle a
// case it probably could.
// TODO(olivf): Either remove that dcheck or move it to GetCloneModeForMap.
DCHECK(!HeapLayout::InReadOnlySpace(*source_map));
if (HeapLayout::InReadOnlySpace(*source_map) || source_map->is_deprecated() ||
source_map->is_prototype_map()) {
return false;
}
if (!target_map) {
return true;
}
CHECK(!HeapLayout::InReadOnlySpace(**target_map));
return !(*target_map)->is_deprecated();
}
// Check if an object with `source_map` can be cloned by `FastCloneJSObject`
// when the result shall have `target_map`. Optionally `override_map` is the map
// of an already existing object that will be written into. If no `override_map`
// is given, we assume that a fresh target object can be allocated with
// already the correct `target_map`.
bool CanFastCloneObjectToObjectLiteral(DirectHandle<Map> source_map,
DirectHandle<Map> target_map,
DirectHandle<Map> override_map,
bool null_proto_literal,
Isolate* isolate) {
DisallowGarbageCollection no_gc;
DCHECK(!target_map->is_deprecated());
DCHECK(source_map->OnlyHasSimpleProperties());
DCHECK(!source_map->IsInobjectSlackTrackingInProgress());
DCHECK(!target_map->IsInobjectSlackTrackingInProgress());
DCHECK_EQ(*target_map->map(), *source_map->map());
DCHECK_EQ(target_map->GetConstructor(), *isolate->object_function());
DCHECK_IMPLIES(
!null_proto_literal,
*target_map->prototype() == *isolate->object_function_prototype());
// Ensure source and target have identical binary represenation of properties
// and elements as the IC relies on copying the raw bytes. This also excludes
// cases with non-enumerable properties or accessors on the source object.
if (source_map->instance_type() != JS_OBJECT_TYPE ||
target_map->instance_type() != JS_OBJECT_TYPE ||
!target_map->OnlyHasSimpleProperties() ||
!target_map->has_fast_elements()) {
return false;
}
if (!override_map.is_null()) {
// No cross-context object reuse.
if (target_map->map() != override_map->map()) {
return false;
}
// In case we want to clone into an existing target object, we must ensure
// that this existing object has a compatible size. In particular we cannot
// shrink or grow the already given object. We also exclude a different
// start offset, since this doesn't allow us to change the object in-place
// in a GC safe way.
DCHECK_EQ(*override_map, isolate->object_function()->initial_map());
DCHECK(override_map->instance_type() == JS_OBJECT_TYPE);
DCHECK_EQ(override_map->NumberOfOwnDescriptors(), 0);
DCHECK(!override_map->IsInobjectSlackTrackingInProgress());
if (override_map->instance_size() != target_map->instance_size() ||
override_map->GetInObjectPropertiesStartInWords() !=
target_map->GetInObjectPropertiesStartInWords()) {
return false;
}
}
#ifdef DEBUG
ElementsKind source_elements_kind = source_map->elements_kind();
ElementsKind target_elements_kind = target_map->elements_kind();
DCHECK(IsSmiOrObjectElementsKind(source_elements_kind) ||
IsAnyNonextensibleElementsKind(source_elements_kind));
DCHECK(IsSmiOrObjectElementsKind(target_elements_kind));
DCHECK_IMPLIES(IsHoleyElementsKindForRead(source_elements_kind),
IsHoleyElementsKind(target_elements_kind));
#endif // DEBUG
// There are no transitions between prototype maps.
if (source_map->is_prototype_map() || target_map->is_prototype_map()) {
return false;
}
// Exclude edge-cases like not copying a __proto__ property.
if (source_map->NumberOfOwnDescriptors() !=
target_map->NumberOfOwnDescriptors()) {
return false;
}
// Check that the source inobject properties fit into the target.
int source_used_inobj_properties = source_map->GetInObjectProperties() -
source_map->UnusedInObjectProperties();
int target_used_inobj_properties = target_map->GetInObjectProperties() -
target_map->UnusedInObjectProperties();
if (source_used_inobj_properties != target_used_inobj_properties) {
return false;
}
// The properties backing store must be of the same size as the clone ic again
// blindly copies it.
if (source_map->HasOutOfObjectProperties() !=
target_map->HasOutOfObjectProperties() ||
(target_map->HasOutOfObjectProperties() &&
source_map->UnusedPropertyFields() !=
target_map->UnusedPropertyFields())) {
return false;
}
Tagged<DescriptorArray> descriptors = source_map->instance_descriptors();
Tagged<DescriptorArray> target_descriptors =
target_map->instance_descriptors();
for (InternalIndex i : target_map->IterateOwnDescriptors()) {
if (descriptors->GetKey(i) != target_descriptors->GetKey(i)) {
return false;
}
PropertyDetails details = descriptors->GetDetails(i);
PropertyDetails target_details = target_descriptors->GetDetails(i);
DCHECK_EQ(details.kind(), PropertyKind::kData);
DCHECK_EQ(target_details.kind(), PropertyKind::kData);
Tagged<FieldType> type = descriptors->GetFieldType(i);
Tagged<FieldType> target_type = target_descriptors->GetFieldType(i);
// This DCHECK rests on the fact that we only clear field types when there
// are no instances of the host map left. Thus, to enter the clone IC at
// least one object of the source map needs to be created, which in turn
// will re-initialize the source maps field type. This is guaranteed to also
// update the target map through the sidestep transition, unless the target
// map is deprecated.
DCHECK(!IsNone(type));
DCHECK(!IsNone(target_type));
// With move_prototype_transitions_first enabled field updates don't
// generalize across prototype transitions, because the transitions happen
// on root maps (i.e., before any field is added). In other words we cannot
// rely on changes in the source map propagating to the target map when
// there is a SetPrototype involved. NB, technically without
// move_prototype_transitions_first we also don't update field types across
// prototype transitions, however we preemptively generalize all fields of
// prototype transition target maps.
bool prototype_transition_is_shortcutted =
v8_flags.move_prototype_transitions_first &&
source_map->prototype() != target_map->prototype();
if (!prototype_transition_is_shortcutted &&
CanCacheCloneTargetMapTransition(source_map, target_map,
null_proto_literal, isolate)) {
if (!details.representation().fits_into(
target_details.representation()) ||
(target_details.representation().IsDouble() &&
details.representation().IsSmi())) {
return false;
}
if (!FieldType::NowIs(type, target_type)) {
return false;
}
} else {
// In the case we cannot connect the maps in the transition tree (e.g.,
// the clone also involves a proto transition) we cannot keep track of
// representation dependencies. We can only allow the most generic target
// representation. The same goes for field types.
if (!details.representation().MostGenericInPlaceChange().Equals(
target_details.representation()) ||
!IsAny(target_type)) {
return false;
}
}
}
return true;
}
} // namespace
static MaybeHandle<JSObject> CloneObjectSlowPath(Isolate* isolate,
DirectHandle<Object> source,
int flags) {
Handle<JSObject> new_object;
if (flags & ObjectLiteral::kHasNullPrototype) {
new_object = isolate->factory()->NewJSObjectWithNullProto();
} else if (IsJSObject(*source) &&
Cast<JSObject>(*source)->map()->OnlyHasSimpleProperties()) {
Tagged<Map> source_map = Cast<JSObject>(*source)->map();
// TODO(olivf, chrome:1204540) It might be interesting to pick a map with
// more properties, depending how many properties are added by the
// surrounding literal.
int properties = source_map->GetInObjectProperties() -
source_map->UnusedInObjectProperties();
DirectHandle<Map> map = isolate->factory()->ObjectLiteralMapFromCache(
isolate->native_context(), properties);
new_object = isolate->factory()->NewFastOrSlowJSObjectFromMap(map);
} else {
DirectHandle<JSFunction> constructor(
isolate->native_context()->object_function(), isolate);
new_object = isolate->factory()->NewJSObject(constructor);
}
if (IsNullOrUndefined(*source)) {
return new_object;
}
MAYBE_RETURN(
JSReceiver::SetOrCopyDataProperties(
isolate, new_object, source,
PropertiesEnumerationMode::kPropertyAdditionOrder, {}, false),
MaybeHandle<JSObject>());
return new_object;
}
RUNTIME_FUNCTION(Runtime_CloneObjectIC_Slow) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
DirectHandle<Object> source = args.at(0);
int flags = args.smi_value_at(1);
RETURN_RESULT_OR_FAILURE(isolate,
CloneObjectSlowPath(isolate, source, flags));
}
namespace {
template <SideStepTransition::Kind kind>
Tagged<Object> GetCloneTargetMap(Isolate* isolate, DirectHandle<Map> source_map,
DirectHandle<Map> override_map) {
static_assert(kind == SideStepTransition::Kind::kObjectAssign ||
kind == SideStepTransition::Kind::kCloneObject);
if (!v8_flags.clone_object_sidestep_transitions) {
return SideStepTransition::Empty;
}
// Ensure we can follow the sidestep transition NativeContext-wise.
if (!source_map->BelongsToSameNativeContextAs(isolate->context())) {
return SideStepTransition::Empty;
}
Tagged<Object> result = SideStepTransition::Empty;
TransitionsAccessor transitions(isolate, *source_map);
if (transitions.HasSideStepTransitions()) {
result = transitions.GetSideStepTransition(kind);
if (result.IsHeapObject()) {
// Exclude deprecated maps.
auto map = Cast<Map>(result.GetHeapObject());
bool is_valid = !map->is_deprecated();
// In the case of object assign we need to check the prototype validity
// cell on the override map. If the override map changed we cannot assume
// that it is correct to set all properties without any getter/setter in
// the prototype chain interfering.
if constexpr (kind == SideStepTransition::Kind::kObjectAssign) {
if (is_valid) {
DCHECK_EQ(*override_map, isolate->object_function()->initial_map());
Tagged<Object> validity_cell = transitions.GetSideStepTransition(
SideStepTransition::Kind::kObjectAssignValidityCell);
is_valid = validity_cell.IsHeapObject() &&
Cast<Cell>(validity_cell)->value().ToSmi().value() ==
Map::kPrototypeChainValid;
}
}
if (V8_LIKELY(is_valid)) {
if (result.IsHeapObject()) {
CHECK_EQ(GetCloneModeForMapPreCheck(source_map, false, isolate),
FastCloneObjectMode::kMaybeSupported);
}
} else {
result = SideStepTransition::Empty;
}
}
}
#ifdef DEBUG
FastCloneObjectMode clone_mode =
GetCloneModeForMap(source_map, false, isolate);
if (result == SideStepTransition::Unreachable) {
switch (clone_mode) {
case FastCloneObjectMode::kNotSupported:
case FastCloneObjectMode::kDifferentMap:
break;
case FastCloneObjectMode::kEmptyObject:
case FastCloneObjectMode::kIdenticalMap:
DCHECK_EQ(kind, SideStepTransition::Kind::kObjectAssign);
break;
case FastCloneObjectMode::kMaybeSupported:
UNREACHABLE();
}
} else if (result != SideStepTransition::Empty) {
Tagged<Map> target = Cast<Map>(result.GetHeapObject());
switch (clone_mode) {
case FastCloneObjectMode::kIdenticalMap:
if (kind == SideStepTransition::Kind::kCloneObject) {
DCHECK_EQ(*source_map, target);
break;
}
DCHECK_EQ(kind, SideStepTransition::Kind::kObjectAssign);
[[fallthrough]];
case FastCloneObjectMode::kDifferentMap:
DCHECK(CanFastCloneObjectToObjectLiteral(source_map,
direct_handle(target, isolate),
override_map, false, isolate));
break;
default:
UNREACHABLE();
}
} else {
DCHECK_EQ(result, SideStepTransition::Empty);
}
#endif // DEBUG
return result;
}
template <SideStepTransition::Kind kind>
void SetCloneTargetMap(Isolate* isolate, Handle<Map> source_map,
DirectHandle<Map> new_target_map,
DirectHandle<Map> override_map) {
if (!v8_flags.clone_object_sidestep_transitions) return;
DCHECK(CanCacheCloneTargetMapTransition(source_map, new_target_map, false,
isolate));
DCHECK_EQ(GetCloneTargetMap<kind>(isolate, source_map, override_map),
SideStepTransition::Empty);
DCHECK(!new_target_map->is_deprecated());
// Adding this transition also ensures that when the source map field
// generalizes, we also generalize the target map.
DCHECK(IsSmiOrObjectElementsKind(new_target_map->elements_kind()));
constexpr bool need_validity_cell =
kind == SideStepTransition::Kind::kObjectAssign;
DirectHandle<Cell> validity_cell;
if constexpr (need_validity_cell) {
// Since we only clone into empty object literals we only need one validity
// cell on that prototype chain.
DCHECK_EQ(*override_map, isolate->object_function()->initial_map());
validity_cell = Cast<Cell>(
Map::GetOrCreatePrototypeChainValidityCell(override_map, isolate));
}
TransitionsAccessor::EnsureHasSideStepTransitions(isolate, source_map);
TransitionsAccessor transitions(isolate, *source_map);
transitions.SetSideStepTransition(kind, *new_target_map);
if constexpr (need_validity_cell) {
transitions.SetSideStepTransition(
SideStepTransition::Kind::kObjectAssignValidityCell, *validity_cell);
}
DCHECK_EQ(GetCloneTargetMap<kind>(isolate, source_map, override_map),
*new_target_map);
}
template <SideStepTransition::Kind kind>
void SetCloneTargetMapUnsupported(Isolate* isolate, Handle<Map> source_map,
DirectHandle<Map> override_map) {
if (!v8_flags.clone_object_sidestep_transitions) return;
DCHECK_EQ(GetCloneTargetMap<kind>(isolate, source_map, override_map),
SideStepTransition::Empty);
DCHECK(CanCacheCloneTargetMapTransition(source_map, {}, false, isolate));
// Adding this transition also ensures that when the source map field
// generalizes, we also generalize the target map.
TransitionsAccessor::EnsureHasSideStepTransitions(isolate, source_map);
TransitionsAccessor(isolate, *source_map)
.SetSideStepTransition(kind, SideStepTransition::Unreachable);
DCHECK_EQ(GetCloneTargetMap<kind>(isolate, source_map, override_map),
SideStepTransition::Unreachable);
}
} // namespace
RUNTIME_FUNCTION(Runtime_CloneObjectIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
DirectHandle<Object> source = args.at(0);
int flags = args.smi_value_at(1);
if (!MigrateDeprecated(isolate, source)) {
Handle<HeapObject> maybe_vector = args.at<HeapObject>(3);
std::optional<FeedbackNexus> nexus;
if (IsFeedbackVector(*maybe_vector)) {
int index = args.tagged_index_value_at(2);
FeedbackSlot slot = FeedbackVector::ToSlot(index);
nexus.emplace(isolate, Cast<FeedbackVector>(maybe_vector), slot);
}
if (!IsSmi(*source) && (!nexus || !nexus->IsMegamorphic())) {
bool null_proto_literal = flags & ObjectLiteral::kHasNullPrototype;
Handle<Map> source_map(Cast<HeapObject>(source)->map(), isolate);
// In case we are still slack tracking let's defer a decision. The fast
// case does not support it.
if (!source_map->IsInobjectSlackTrackingInProgress()) {
auto UpdateNexus = [&](Handle<Object> target_map) {
if (!nexus) return;
nexus->ConfigureCloneObject(source_map,
MaybeObjectHandle(target_map));
};
ReadOnlyRoots roots(isolate);
bool unsupported = false;
if (!null_proto_literal) {
auto maybe_target =
GetCloneTargetMap<SideStepTransition::Kind::kCloneObject>(
isolate, source_map, {});
if (maybe_target == SideStepTransition::Unreachable) {
unsupported = true;
} else if (maybe_target != SideStepTransition::Empty) {
Handle<Map> target =
handle(Cast<Map>(maybe_target.GetHeapObject()), isolate);
UpdateNexus(target);
return *target;
}
}
FastCloneObjectMode clone_mode =
unsupported
? FastCloneObjectMode::kNotSupported
: GetCloneModeForMap(source_map, null_proto_literal, isolate);
auto UpdateState = [&](Handle<Map> target_map) {
UpdateNexus(target_map);
if (CanCacheCloneTargetMapTransition(source_map, target_map,
null_proto_literal, isolate)) {
SetCloneTargetMap<SideStepTransition::Kind::kCloneObject>(
isolate, source_map, target_map, {});
}
};
switch (clone_mode) {
case FastCloneObjectMode::kIdenticalMap: {
UpdateState(source_map);
// When returning a map the IC miss handler re-starts from the top.
return *source_map;
}
case FastCloneObjectMode::kEmptyObject: {
UpdateNexus(handle(Smi::zero(), isolate));
RETURN_RESULT_OR_FAILURE(
isolate, CloneObjectSlowPath(isolate, source, flags));
}
case FastCloneObjectMode::kDifferentMap: {
DirectHandle<Object> res;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, res, CloneObjectSlowPath(isolate, source, flags));
Handle<Map> result_map(Cast<HeapObject>(res)->map(), isolate);
if (result_map->IsInobjectSlackTrackingInProgress()) {
return *res;
}
if (CanFastCloneObjectToObjectLiteral(
source_map, result_map, {}, null_proto_literal, isolate)) {
DCHECK(result_map->OnlyHasSimpleProperties());
DCHECK_EQ(source_map->GetInObjectProperties() -
source_map->UnusedInObjectProperties(),
result_map->GetInObjectProperties() -
result_map->UnusedInObjectProperties());
UpdateState(result_map);
} else {
if (CanCacheCloneTargetMapTransition(
source_map, {}, null_proto_literal, isolate)) {
SetCloneTargetMapUnsupported<
SideStepTransition::Kind::kCloneObject>(isolate, source_map,
{});
}
if (nexus) {
nexus->ConfigureMegamorphic();
}
}
return *res;
}
case FastCloneObjectMode::kNotSupported: {
break;
}
case FastCloneObjectMode::kMaybeSupported:
UNREACHABLE();
}
DCHECK(clone_mode == FastCloneObjectMode::kNotSupported);
if (nexus) {
nexus->ConfigureMegamorphic();
}
}
}
}
RETURN_RESULT_OR_FAILURE(isolate,
CloneObjectSlowPath(isolate, source, flags));
}
RUNTIME_FUNCTION(Runtime_StoreCallbackProperty) {
DirectHandle<JSObject> receiver = args.at<JSObject>(0);
DirectHandle<JSObject> holder = args.at<JSObject>(1);
DirectHandle<AccessorInfo> info = args.at<AccessorInfo>(2);
DirectHandle<Name> name = args.at<Name>(3);
DirectHandle<Object> value = args.at(4);
HandleScope scope(isolate);
#ifdef V8_RUNTIME_CALL_STATS
if (V8_UNLIKELY(TracingFlags::is_runtime_stats_enabled())) {
RETURN_RESULT_OR_FAILURE(
isolate, Runtime::SetObjectProperty(isolate, receiver, name, value,
StoreOrigin::kMaybeKeyed));
}
#endif
PropertyCallbackArguments arguments(isolate, info->data(), *receiver, *holder,
Nothing<ShouldThrow>());
std::ignore = arguments.CallAccessorSetter(info, name, value);
RETURN_FAILURE_IF_EXCEPTION(isolate);
return *value;
}
namespace {
bool MaybeCanCloneObjectForObjectAssign(DirectHandle<JSReceiver> source,
DirectHandle<Map> source_map,
DirectHandle<JSReceiver> target,
Isolate* isolate) {
FastCloneObjectMode clone_mode =
GetCloneModeForMap(source_map, false, isolate);
switch (clone_mode) {
case FastCloneObjectMode::kIdenticalMap:
case FastCloneObjectMode::kDifferentMap:
break;
case FastCloneObjectMode::kNotSupported:
return false;
case FastCloneObjectMode::kEmptyObject:
case FastCloneObjectMode::kMaybeSupported:
// Cannot happen since we should only be called with JSObjects.
UNREACHABLE();
}
// We need to be sure that there are no setters or other nastiness installed
// on the Object.prototype which clash with the properties we intende to copy.
DirectHandle<FixedArray> keys;
auto res =
KeyAccumulator::GetKeys(isolate, source, KeyCollectionMode::kOwnOnly,
ONLY_ENUMERABLE, GetKeysConversion::kKeepNumbers);
CHECK(res.ToHandle(&keys));
for (int i = 0; i < keys->length(); ++i) {
Handle<Object> next_key(keys->get(i), isolate);
PropertyKey key(isolate, next_key);
LookupIterator it(isolate, target, key);
switch (it.state()) {
case LookupIterator::NOT_FOUND:
break;
case LookupIterator::DATA:
if (it.property_attributes() & PropertyAttributes::READ_ONLY) {
return false;
}
break;
default:
return false;
}
}
return true;
}
} // namespace
// Returns one of:
// * A map to be used with FastCloneJSObject
// * Undefined if fast cloning is not possible
// * True if assignment must be skipped (i.e., the runtime already did it)
RUNTIME_FUNCTION(Runtime_ObjectAssignTryFastcase) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
auto source = Cast<JSReceiver>(args.at(0));
auto target = Cast<JSReceiver>(args.at(1));
DCHECK(IsJSObject(*source));
DCHECK(IsJSObject(*target));
Handle<Map> source_map = handle(source->map(), isolate);
Handle<Map> target_map = handle(target->map(), isolate);
DCHECK_EQ(target_map->NumberOfOwnDescriptors(), 0);
DCHECK(!source_map->is_dictionary_map());
DCHECK(!target_map->is_dictionary_map());
DCHECK(!source_map->is_deprecated());
DCHECK(!target_map->is_deprecated());
DCHECK(target_map->is_extensible());
DCHECK(!IsUndefined(*source, isolate) && !IsNull(*source, isolate));
DCHECK(source_map->BelongsToSameNativeContextAs(isolate->context()));
ReadOnlyRoots roots(isolate);
{
Tagged<Object> maybe_clone_target =
GetCloneTargetMap<SideStepTransition::Kind::kObjectAssign>(
isolate, source_map, target_map);
if (maybe_clone_target == SideStepTransition::Unreachable) {
return roots.undefined_value();
} else if (maybe_clone_target != SideStepTransition::Empty) {
return Cast<Map>(maybe_clone_target.GetHeapObject());
}
}
auto UpdateCache = [&](Handle<Map> clone_target_map) {
if (CanCacheCloneTargetMapTransition(source_map, clone_target_map, false,
isolate)) {
SetCloneTargetMap<SideStepTransition::Kind::kObjectAssign>(
isolate, source_map, clone_target_map, target_map);
}
};
auto UpdateCacheNotClonable = [&]() {
if (CanCacheCloneTargetMapTransition(source_map, {}, false, isolate)) {
SetCloneTargetMapUnsupported<SideStepTransition::Kind::kObjectAssign>(
isolate, source_map, target_map);
}
};
// In case we are still slack tracking let's defer a decision. The fast case
// does not support it.
if (source_map->IsInobjectSlackTrackingInProgress() ||
target_map->IsInobjectSlackTrackingInProgress()) {
return roots.undefined_value();
}
if (MaybeCanCloneObjectForObjectAssign(source, source_map, target, isolate)) {
CHECK(target->map()->OnlyHasSimpleProperties());
Maybe<bool> res = JSReceiver::SetOrCopyDataProperties(
isolate, target, source, PropertiesEnumerationMode::kEnumerationOrder);
DCHECK(res.FromJust());
USE(res);
Handle<Map> clone_target_map = handle(target->map(), isolate);
if (clone_target_map->IsInobjectSlackTrackingInProgress()) {
return roots.true_value();
}
if (CanFastCloneObjectToObjectLiteral(source_map, clone_target_map,
target_map, false, isolate)) {
CHECK(target->map()->OnlyHasSimpleProperties());
UpdateCache(clone_target_map);
} else {
UpdateCacheNotClonable();
}
// We already did the copying here. Thus, returning true to cause the
// CSA builtin to skip assigning anything.
return roots.true_value();
}
UpdateCacheNotClonable();
return roots.undefined_value();
}
/**
* Loads a property with an interceptor performing post interceptor
* lookup if interceptor failed.
*/
RUNTIME_FUNCTION(Runtime_LoadPropertyWithInterceptor) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
DirectHandle<Name> name = args.at<Name>(0);
DirectHandle<Object> receiver_arg = args.at(1);
Handle<JSObject> holder = args.at<JSObject>(2);
DirectHandle<JSReceiver> receiver;
if (!TryCast<JSReceiver>(receiver_arg, &receiver)) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, receiver, Object::ConvertReceiver(isolate, receiver_arg));
}
{
DirectHandle<InterceptorInfo> interceptor(holder->GetNamedInterceptor(),
isolate);
PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver,
*holder, Just(kDontThrow));
DirectHandle<Object> result = arguments.CallNamedGetter(interceptor, name);
// An exception was thrown in the interceptor. Propagate.
RETURN_FAILURE_IF_EXCEPTION_DETECTOR(isolate, arguments);
if (!result.is_null()) {
arguments.AcceptSideEffects();
return *result;
}
// If the interceptor didn't handle the request, then there must be no
// side effects.
}
LookupIterator it(isolate, receiver, name, holder);
// Skip any lookup work until we hit the (possibly non-masking) interceptor.
while (it.state() != LookupIterator::INTERCEPTOR ||
!it.GetHolder<JSObject>().is_identical_to(holder)) {
DCHECK(it.state() != LookupIterator::ACCESS_CHECK || it.HasAccess());
it.Next();
}
// Skip past the interceptor.
it.Next();
DirectHandle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it));
if (it.IsFound()) return *result;
int slot = args.tagged_index_value_at(3);
DirectHandle<FeedbackVector> vector = args.at<FeedbackVector>(4);
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
FeedbackSlotKind slot_kind = vector->GetKind(vector_slot);
// It could actually be any kind of load IC slot here but the predicate
// handles all the cases properly.
if (!LoadIC::ShouldThrowReferenceError(slot_kind)) {
return ReadOnlyRoots(isolate).undefined_value();
}
// Throw a reference error.
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewReferenceError(MessageTemplate::kNotDefined, it.name()));
}
RUNTIME_FUNCTION(Runtime_StorePropertyWithInterceptor) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
// Runtime functions don't follow the IC's calling convention.
DirectHandle<Object> value = args.at(0);
DirectHandle<JSObject> receiver = args.at<JSObject>(1);
DirectHandle<Name> name = args.at<Name>(2);
// TODO(ishell): Cache interceptor_holder in the store handler like we do
// for LoadHandler::kInterceptor case.
DirectHandle<JSObject> interceptor_holder = receiver;
if (IsJSGlobalProxy(*receiver) &&
(!receiver->HasNamedInterceptor() ||
receiver->GetNamedInterceptor()->non_masking())) {
interceptor_holder =
direct_handle(Cast<JSObject>(receiver->map()->prototype()), isolate);
}
DCHECK(interceptor_holder->HasNamedInterceptor());
{
DirectHandle<InterceptorInfo> interceptor(
interceptor_holder->GetNamedInterceptor(), isolate);
DCHECK(!interceptor->non_masking());
// TODO(ishell, 348688196): why is it known that it shouldn't throw?
Maybe<ShouldThrow> should_throw = Just(kDontThrow);
PropertyCallbackArguments callback_args(isolate, interceptor->data(),
*receiver, *receiver, should_throw);
v8::Intercepted intercepted =
callback_args.CallNamedSetter(interceptor, name, value);
// Stores initiated by StoreICs don't care about the exact result of
// the store operation returned by the callback as long as it doesn't
// throw an exception.
constexpr bool ignore_return_value = true;
InterceptorResult result;
MAYBE_ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
callback_args.GetBooleanReturnValue(intercepted, "Setter",
ignore_return_value));
switch (result) {
case InterceptorResult::kFalse:
case InterceptorResult::kTrue:
return *value;
case InterceptorResult::kNotIntercepted:
// Proceed storing past the interceptor.
break;
}
}
LookupIterator it(isolate, receiver, name, receiver);
// Skip past any access check on the receiver.
while (it.state() == LookupIterator::ACCESS_CHECK) {
DCHECK(it.HasAccess());
it.Next();
}
// Skip past the interceptor on the receiver.
DCHECK_EQ(LookupIterator::INTERCEPTOR, it.state());
it.Next();
MAYBE_RETURN(Object::SetProperty(&it, value, StoreOrigin::kNamed),
ReadOnlyRoots(isolate).exception());
return *value;
}
RUNTIME_FUNCTION(Runtime_LoadElementWithInterceptor) {
// TODO(verwaest): This should probably get the holder and receiver as input.
HandleScope scope(isolate);
DirectHandle<JSObject> receiver = args.at<JSObject>(0);
DCHECK_GE(args.smi_value_at(1), 0);
uint32_t index = args.smi_value_at(1);
DirectHandle<InterceptorInfo> interceptor(receiver->GetIndexedInterceptor(),
isolate);
PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver,
*receiver, Just(kDontThrow));
DirectHandle<Object> result = arguments.CallIndexedGetter(interceptor, index);
// An exception was thrown in the interceptor. Propagate.
RETURN_FAILURE_IF_EXCEPTION_DETECTOR(isolate, arguments);
if (result.is_null()) {
LookupIterator it(isolate, receiver, index, receiver);
DCHECK_EQ(LookupIterator::INTERCEPTOR, it.state());
it.Next();
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
Object::GetProperty(&it));
}
return *result;
}
RUNTIME_FUNCTION(Runtime_KeyedHasIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<JSAny> receiver = args.at<JSAny>(0);
Handle<Object> key = args.at(1);
int slot = args.tagged_index_value_at(2);
Handle<HeapObject> maybe_vector = args.at<HeapObject>(3);
Handle<FeedbackVector> vector = Handle<FeedbackVector>();
if (!IsUndefined(*maybe_vector, isolate)) {
DCHECK(IsFeedbackVector(*maybe_vector));
vector = Cast<FeedbackVector>(maybe_vector);
}
FeedbackSlot vector_slot = FeedbackVector::ToSlot(slot);
KeyedLoadIC ic(isolate, vector, vector_slot, FeedbackSlotKind::kHasKeyed);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key));
}
RUNTIME_FUNCTION(Runtime_HasElementWithInterceptor) {
HandleScope scope(isolate);
DirectHandle<JSObject> receiver = args.at<JSObject>(0);
DCHECK_GE(args.smi_value_at(1), 0);
uint32_t index = args.smi_value_at(1);
{
DirectHandle<InterceptorInfo> interceptor(receiver->GetIndexedInterceptor(),
isolate);
PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver,
*receiver, Just(kDontThrow));
if (!IsUndefined(interceptor->query(), isolate)) {
DirectHandle<Object> result =
arguments.CallIndexedQuery(interceptor, index);
// An exception was thrown in the interceptor. Propagate.
RETURN_FAILURE_IF_EXCEPTION_DETECTOR(isolate, arguments);
if (!result.is_null()) {
int32_t value;
CHECK(Object::ToInt32(*result, &value));
// TODO(ishell): PropertyAttributes::ABSENT is not exposed in the Api,
// so it can't be officially returned. We should fix the tests instead.
if (value == ABSENT) return ReadOnlyRoots(isolate).false_value();
arguments.AcceptSideEffects();
return ReadOnlyRoots(isolate).true_value();
}
} else if (!IsUndefined(interceptor->getter(), isolate)) {
DirectHandle<Object> result =
arguments.CallIndexedGetter(interceptor, index);
// An exception was thrown in the interceptor. Propagate.
RETURN_FAILURE_IF_EXCEPTION_DETECTOR(isolate, arguments);
if (!result.is_null()) {
arguments.AcceptSideEffects();
return ReadOnlyRoots(isolate).true_value();
}
}
// If the interceptor didn't handle the request, then there must be no
// side effects.
}
LookupIterator it(isolate, receiver, index, receiver);
DCHECK_EQ(LookupIterator::INTERCEPTOR, it.state());
it.Next();
Maybe<bool> maybe = JSReceiver::HasProperty(&it);
if (maybe.IsNothing()) return ReadOnlyRoots(isolate).exception();
return ReadOnlyRoots(isolate).boolean_value(maybe.FromJust());
}
} // namespace internal
} // namespace v8