blob: 5e00d13ddde0a7b52f687e118695c93a62d9ed18 [file] [log] [blame]
/* libSoX statistics "effect" file.
*
* Compute various statistics on file and print them.
*
* Output is unmodified from input.
*
* July 5, 1991
* Copyright 1991 Lance Norskog And Sundry Contributors
* This source code is freely redistributable and may be used for
* any purpose. This copyright notice must be maintained.
* Lance Norskog And Sundry Contributors are not responsible for
* the consequences of using this software.
*/
#include "third_party/sox/src/src/sox_i.h"
#include <string.h>
/* Private data for stat effect */
typedef struct {
double min, max, mid;
double asum;
double sum1, sum2; /* amplitudes */
double dmin, dmax;
double dsum1, dsum2; /* deltas */
double scale; /* scale-factor */
double last; /* previous sample */
uint64_t read; /* samples processed */
int volume;
int srms;
int fft;
unsigned long bin[4];
float *re_in;
float *re_out;
unsigned long fft_size;
unsigned long fft_offset;
} priv_t;
/*
* Process options
*/
static int sox_stat_getopts(sox_effect_t * effp, int argc, char **argv)
{
priv_t * stat = (priv_t *) effp->priv;
stat->scale = SOX_SAMPLE_MAX;
stat->volume = 0;
stat->srms = 0;
stat->fft = 0;
--argc, ++argv;
for (; argc > 0; argc--, argv++) {
if (!(strcmp(*argv, "-v")))
stat->volume = 1;
else if (!(strcmp(*argv, "-s"))) {
if (argc <= 1) {
lsx_fail("-s option: invalid argument");
return SOX_EOF;
}
argc--, argv++; /* Move to next argument. */
if (!sscanf(*argv, "%lf", &stat->scale)) {
lsx_fail("-s option: invalid argument");
return SOX_EOF;
}
} else if (!(strcmp(*argv, "-rms")))
stat->srms = 1;
else if (!(strcmp(*argv, "-freq")))
stat->fft = 1;
else if (!(strcmp(*argv, "-d")))
stat->volume = 2;
else {
lsx_fail("Summary effect: unknown option");
return SOX_EOF;
}
}
return SOX_SUCCESS;
}
/*
* Prepare processing.
*/
static int sox_stat_start(sox_effect_t * effp)
{
priv_t * stat = (priv_t *) effp->priv;
int i;
stat->min = stat->max = stat->mid = 0;
stat->asum = 0;
stat->sum1 = stat->sum2 = 0;
stat->dmin = stat->dmax = 0;
stat->dsum1 = stat->dsum2 = 0;
stat->last = 0;
stat->read = 0;
for (i = 0; i < 4; i++)
stat->bin[i] = 0;
stat->fft_size = 4096;
stat->re_in = stat->re_out = NULL;
if (stat->fft) {
stat->fft_offset = 0;
stat->re_in = lsx_malloc(sizeof(float) * stat->fft_size);
stat->re_out = lsx_malloc(sizeof(float) * (stat->fft_size / 2 + 1));
}
return SOX_SUCCESS;
}
/*
* Print power spectrum to given stream
*/
static void print_power_spectrum(unsigned samples, double rate, float *re_in, float *re_out)
{
float ffa = rate / samples;
unsigned i;
lsx_power_spectrum_f((int)samples, re_in, re_out);
for (i = 0; i < samples / 2; i++) /* FIXME: should be <= samples / 2 */
fprintf(stderr, "%f %f\n", ffa * i, re_out[i]);
}
/*
* Processed signed long samples from ibuf to obuf.
* Return number of samples processed.
*/
static int sox_stat_flow(sox_effect_t * effp, const sox_sample_t *ibuf, sox_sample_t *obuf,
size_t *isamp, size_t *osamp)
{
priv_t * stat = (priv_t *) effp->priv;
int done, x, len = min(*isamp, *osamp);
short count = 0;
if (len) {
if (stat->read == 0) /* 1st sample */
stat->min = stat->max = stat->mid = stat->last = (*ibuf)/stat->scale;
if (stat->fft) {
for (x = 0; x < len; x++) {
SOX_SAMPLE_LOCALS;
stat->re_in[stat->fft_offset++] = SOX_SAMPLE_TO_FLOAT_32BIT(ibuf[x], effp->clips);
if (stat->fft_offset >= stat->fft_size) {
stat->fft_offset = 0;
print_power_spectrum((unsigned) stat->fft_size, effp->in_signal.rate, stat->re_in, stat->re_out);
}
}
}
for (done = 0; done < len; done++) {
long lsamp = *ibuf++;
double delta, samp = (double)lsamp / stat->scale;
/* work in scaled levels for both sample and delta */
stat->bin[(lsamp >> 30) + 2]++;
*obuf++ = lsamp;
if (stat->volume == 2) {
fprintf(stderr,"%08lx ",lsamp);
if (count++ == 5) {
fprintf(stderr,"\n");
count = 0;
}
}
/* update min/max */
if (stat->min > samp)
stat->min = samp;
else if (stat->max < samp)
stat->max = samp;
stat->mid = stat->min / 2 + stat->max / 2;
stat->sum1 += samp;
stat->sum2 += samp*samp;
stat->asum += fabs(samp);
delta = fabs(samp - stat->last);
if (delta < stat->dmin)
stat->dmin = delta;
else if (delta > stat->dmax)
stat->dmax = delta;
stat->dsum1 += delta;
stat->dsum2 += delta*delta;
stat->last = samp;
}
stat->read += len;
}
*isamp = *osamp = len;
/* Process all samples */
return SOX_SUCCESS;
}
/*
* Process tail of input samples.
*/
static int sox_stat_drain(sox_effect_t * effp, sox_sample_t *obuf UNUSED, size_t *osamp)
{
priv_t * stat = (priv_t *) effp->priv;
/* When we run out of samples, then we need to pad buffer with
* zeros and then run FFT one last time to process any unprocessed
* samples.
*/
if (stat->fft && stat->fft_offset) {
unsigned int x;
for (x = stat->fft_offset; x < stat->fft_size; x++)
stat->re_in[x] = 0;
print_power_spectrum((unsigned) stat->fft_size, effp->in_signal.rate, stat->re_in, stat->re_out);
}
*osamp = 0;
return SOX_EOF;
}
/*
* Do anything required when you stop reading samples.
* Don't close input file!
*/
static int sox_stat_stop(sox_effect_t * effp)
{
priv_t * stat = (priv_t *) effp->priv;
double amp, scale, rms = 0, freq;
double x, ct;
ct = stat->read;
if (stat->srms) { /* adjust results to units of rms */
double f;
rms = sqrt(stat->sum2/ct);
f = 1.0/rms;
stat->max *= f;
stat->min *= f;
stat->mid *= f;
stat->asum *= f;
stat->sum1 *= f;
stat->sum2 *= f*f;
stat->dmax *= f;
stat->dmin *= f;
stat->dsum1 *= f;
stat->dsum2 *= f*f;
stat->scale *= rms;
}
scale = stat->scale;
amp = -stat->min;
if (amp < stat->max)
amp = stat->max;
/* Just print the volume adjustment */
if (stat->volume == 1 && amp > 0) {
fprintf(stderr, "%.3f\n", SOX_SAMPLE_MAX/(amp*scale));
return SOX_SUCCESS;
}
if (stat->volume == 2)
fprintf(stderr, "\n\n");
/* print out the info */
fprintf(stderr, "Samples read: %12" PRIu64 "\n", stat->read);
fprintf(stderr, "Length (seconds): %12.6f\n", (double)stat->read/effp->in_signal.rate/effp->in_signal.channels);
if (stat->srms)
fprintf(stderr, "Scaled by rms: %12.6f\n", rms);
else
fprintf(stderr, "Scaled by: %12.1f\n", scale);
fprintf(stderr, "Maximum amplitude: %12.6f\n", stat->max);
fprintf(stderr, "Minimum amplitude: %12.6f\n", stat->min);
fprintf(stderr, "Midline amplitude: %12.6f\n", stat->mid);
fprintf(stderr, "Mean norm: %12.6f\n", stat->asum/ct);
fprintf(stderr, "Mean amplitude: %12.6f\n", stat->sum1/ct);
fprintf(stderr, "RMS amplitude: %12.6f\n", sqrt(stat->sum2/ct));
fprintf(stderr, "Maximum delta: %12.6f\n", stat->dmax);
fprintf(stderr, "Minimum delta: %12.6f\n", stat->dmin);
fprintf(stderr, "Mean delta: %12.6f\n", stat->dsum1/(ct-1));
fprintf(stderr, "RMS delta: %12.6f\n", sqrt(stat->dsum2/(ct-1)));
freq = sqrt(stat->dsum2/stat->sum2)*effp->in_signal.rate/(M_PI*2);
fprintf(stderr, "Rough frequency: %12d\n", (int)freq);
if (amp>0)
fprintf(stderr, "Volume adjustment: %12.3f\n", SOX_SAMPLE_MAX/(amp*scale));
if (stat->bin[2] == 0 && stat->bin[3] == 0)
fprintf(stderr, "\nProbably text, not sound\n");
else {
x = (float)(stat->bin[0] + stat->bin[3]) / (float)(stat->bin[1] + stat->bin[2]);
if (x >= 3.0) { /* use opposite encoding */
if (effp->in_encoding->encoding == SOX_ENCODING_UNSIGNED)
fprintf(stderr,"\nTry: -t raw -e signed-integer -b 8 \n");
else
fprintf(stderr,"\nTry: -t raw -e unsigned-integer -b 8 \n");
} else if (x <= 1.0 / 3.0)
; /* correctly decoded */
else if (x >= 0.5 && x <= 2.0) { /* use ULAW */
if (effp->in_encoding->encoding == SOX_ENCODING_ULAW)
fprintf(stderr,"\nTry: -t raw -e unsigned-integer -b 8 \n");
else
fprintf(stderr,"\nTry: -t raw -e mu-law -b 8 \n");
} else
fprintf(stderr, "\nCan't guess the type\n");
}
/* Release FFT memory */
free(stat->re_in);
free(stat->re_out);
return SOX_SUCCESS;
}
static sox_effect_handler_t sox_stat_effect = {
"stat",
"[ -s N ] [ -rms ] [-freq] [ -v ] [ -d ]",
SOX_EFF_MCHAN | SOX_EFF_MODIFY,
sox_stat_getopts,
sox_stat_start,
sox_stat_flow,
sox_stat_drain,
sox_stat_stop,
NULL, sizeof(priv_t)
};
const sox_effect_handler_t *lsx_stat_effect_fn(void)
{
return &sox_stat_effect;
}