blob: 1d7214ce586f7838fa73a0dbe9e5ddd5e61e7489 [file] [log] [blame]
/*
* Copyright (c) 2019 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <vector>
#include "./ivfenc.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_enums.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/vp9_iface_common.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/simple_encode.h"
#include "vp9/vp9_cx_iface.h"
namespace vp9 {
static int get_plane_height(vpx_img_fmt_t img_fmt, int frame_height,
int plane) {
assert(plane < 3);
if (plane == 0) {
return frame_height;
}
switch (img_fmt) {
case VPX_IMG_FMT_I420:
case VPX_IMG_FMT_I440:
case VPX_IMG_FMT_YV12:
case VPX_IMG_FMT_I42016:
case VPX_IMG_FMT_I44016: return (frame_height + 1) >> 1;
default: return frame_height;
}
}
static int get_plane_width(vpx_img_fmt_t img_fmt, int frame_width, int plane) {
assert(plane < 3);
if (plane == 0) {
return frame_width;
}
switch (img_fmt) {
case VPX_IMG_FMT_I420:
case VPX_IMG_FMT_YV12:
case VPX_IMG_FMT_I422:
case VPX_IMG_FMT_I42016:
case VPX_IMG_FMT_I42216: return (frame_width + 1) >> 1;
default: return frame_width;
}
}
// TODO(angiebird): Merge this function with vpx_img_plane_width()
static int img_plane_width(const vpx_image_t *img, int plane) {
if (plane > 0 && img->x_chroma_shift > 0)
return (img->d_w + 1) >> img->x_chroma_shift;
else
return img->d_w;
}
// TODO(angiebird): Merge this function with vpx_img_plane_height()
static int img_plane_height(const vpx_image_t *img, int plane) {
if (plane > 0 && img->y_chroma_shift > 0)
return (img->d_h + 1) >> img->y_chroma_shift;
else
return img->d_h;
}
// TODO(angiebird): Merge this function with vpx_img_read()
static int img_read(vpx_image_t *img, FILE *file) {
int plane;
for (plane = 0; plane < 3; ++plane) {
unsigned char *buf = img->planes[plane];
const int stride = img->stride[plane];
const int w = img_plane_width(img, plane) *
((img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1);
const int h = img_plane_height(img, plane);
int y;
for (y = 0; y < h; ++y) {
if (fread(buf, 1, w, file) != (size_t)w) return 0;
buf += stride;
}
}
return 1;
}
class SimpleEncode::EncodeImpl {
public:
VP9_COMP *cpi;
vpx_img_fmt_t img_fmt;
vpx_image_t tmp_img;
std::vector<FIRSTPASS_STATS> first_pass_stats;
};
static VP9_COMP *init_encoder(const VP9EncoderConfig *oxcf,
vpx_img_fmt_t img_fmt) {
VP9_COMP *cpi;
BufferPool *buffer_pool = (BufferPool *)vpx_calloc(1, sizeof(*buffer_pool));
vp9_initialize_enc();
cpi = vp9_create_compressor(oxcf, buffer_pool);
vp9_update_compressor_with_img_fmt(cpi, img_fmt);
return cpi;
}
static void free_encoder(VP9_COMP *cpi) {
BufferPool *buffer_pool = cpi->common.buffer_pool;
vp9_remove_compressor(cpi);
// buffer_pool needs to be free after cpi because buffer_pool contains
// allocated buffers that will be free in vp9_remove_compressor()
vpx_free(buffer_pool);
}
static INLINE vpx_rational_t make_vpx_rational(int num, int den) {
vpx_rational_t v;
v.num = num;
v.den = den;
return v;
}
static INLINE FrameType
get_frame_type_from_update_type(FRAME_UPDATE_TYPE update_type) {
switch (update_type) {
case KF_UPDATE: return kFrameTypeKey;
case ARF_UPDATE: return kFrameTypeAltRef;
case GF_UPDATE: return kFrameTypeGolden;
case OVERLAY_UPDATE: return kFrameTypeOverlay;
case LF_UPDATE: return kFrameTypeInter;
default:
fprintf(stderr, "Unsupported update_type %d\n", update_type);
abort();
return kFrameTypeInter;
}
}
static void update_partition_info(const PARTITION_INFO *input_partition_info,
const int num_rows_4x4,
const int num_cols_4x4,
PartitionInfo *output_partition_info) {
const int num_units_4x4 = num_rows_4x4 * num_cols_4x4;
for (int i = 0; i < num_units_4x4; ++i) {
output_partition_info[i].row = input_partition_info[i].row;
output_partition_info[i].column = input_partition_info[i].column;
output_partition_info[i].row_start = input_partition_info[i].row_start;
output_partition_info[i].column_start =
input_partition_info[i].column_start;
output_partition_info[i].width = input_partition_info[i].width;
output_partition_info[i].height = input_partition_info[i].height;
}
}
// translate MV_REFERENCE_FRAME to RefFrameType
static RefFrameType mv_ref_frame_to_ref_frame_type(
MV_REFERENCE_FRAME mv_ref_frame) {
switch (mv_ref_frame) {
case LAST_FRAME: return kRefFrameTypeLast;
case GOLDEN_FRAME: return kRefFrameTypePast;
case ALTREF_FRAME: return kRefFrameTypeFuture;
default: return kRefFrameTypeNone;
}
}
static void update_motion_vector_info(
const MOTION_VECTOR_INFO *input_motion_vector_info, const int num_rows_4x4,
const int num_cols_4x4, MotionVectorInfo *output_motion_vector_info) {
const int num_units_4x4 = num_rows_4x4 * num_cols_4x4;
for (int i = 0; i < num_units_4x4; ++i) {
const MV_REFERENCE_FRAME *in_ref_frame =
input_motion_vector_info[i].ref_frame;
output_motion_vector_info[i].mv_count =
(in_ref_frame[0] == INTRA_FRAME) ? 0
: ((in_ref_frame[1] == NONE) ? 1 : 2);
if (in_ref_frame[0] == NONE) {
fprintf(stderr, "in_ref_frame[0] shouldn't be NONE\n");
abort();
}
output_motion_vector_info[i].ref_frame[0] =
mv_ref_frame_to_ref_frame_type(in_ref_frame[0]);
output_motion_vector_info[i].ref_frame[1] =
mv_ref_frame_to_ref_frame_type(in_ref_frame[1]);
output_motion_vector_info[i].mv_row[0] =
(double)input_motion_vector_info[i].mv[0].as_mv.row /
kMotionVectorPrecision;
output_motion_vector_info[i].mv_column[0] =
(double)input_motion_vector_info[i].mv[0].as_mv.col /
kMotionVectorPrecision;
output_motion_vector_info[i].mv_row[1] =
(double)input_motion_vector_info[i].mv[1].as_mv.row /
kMotionVectorPrecision;
output_motion_vector_info[i].mv_column[1] =
(double)input_motion_vector_info[i].mv[1].as_mv.col /
kMotionVectorPrecision;
}
}
static void update_frame_counts(const FRAME_COUNTS *input_counts,
FrameCounts *output_counts) {
// Init array sizes.
output_counts->y_mode.resize(BLOCK_SIZE_GROUPS);
for (int i = 0; i < BLOCK_SIZE_GROUPS; ++i) {
output_counts->y_mode[i].resize(INTRA_MODES);
}
output_counts->uv_mode.resize(INTRA_MODES);
for (int i = 0; i < INTRA_MODES; ++i) {
output_counts->uv_mode[i].resize(INTRA_MODES);
}
output_counts->partition.resize(PARTITION_CONTEXTS);
for (int i = 0; i < PARTITION_CONTEXTS; ++i) {
output_counts->partition[i].resize(PARTITION_TYPES);
}
output_counts->coef.resize(TX_SIZES);
output_counts->eob_branch.resize(TX_SIZES);
for (int i = 0; i < TX_SIZES; ++i) {
output_counts->coef[i].resize(PLANE_TYPES);
output_counts->eob_branch[i].resize(PLANE_TYPES);
for (int j = 0; j < PLANE_TYPES; ++j) {
output_counts->coef[i][j].resize(REF_TYPES);
output_counts->eob_branch[i][j].resize(REF_TYPES);
for (int k = 0; k < REF_TYPES; ++k) {
output_counts->coef[i][j][k].resize(COEF_BANDS);
output_counts->eob_branch[i][j][k].resize(COEF_BANDS);
for (int l = 0; l < COEF_BANDS; ++l) {
output_counts->coef[i][j][k][l].resize(COEFF_CONTEXTS);
output_counts->eob_branch[i][j][k][l].resize(COEFF_CONTEXTS);
for (int m = 0; m < COEFF_CONTEXTS; ++m) {
output_counts->coef[i][j][k][l][m].resize(UNCONSTRAINED_NODES + 1);
}
}
}
}
}
output_counts->switchable_interp.resize(SWITCHABLE_FILTER_CONTEXTS);
for (int i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) {
output_counts->switchable_interp[i].resize(SWITCHABLE_FILTERS);
}
output_counts->inter_mode.resize(INTER_MODE_CONTEXTS);
for (int i = 0; i < INTER_MODE_CONTEXTS; ++i) {
output_counts->inter_mode[i].resize(INTER_MODES);
}
output_counts->intra_inter.resize(INTRA_INTER_CONTEXTS);
for (int i = 0; i < INTRA_INTER_CONTEXTS; ++i) {
output_counts->intra_inter[i].resize(2);
}
output_counts->comp_inter.resize(COMP_INTER_CONTEXTS);
for (int i = 0; i < COMP_INTER_CONTEXTS; ++i) {
output_counts->comp_inter[i].resize(2);
}
output_counts->single_ref.resize(REF_CONTEXTS);
for (int i = 0; i < REF_CONTEXTS; ++i) {
output_counts->single_ref[i].resize(2);
for (int j = 0; j < 2; ++j) {
output_counts->single_ref[i][j].resize(2);
}
}
output_counts->comp_ref.resize(REF_CONTEXTS);
for (int i = 0; i < REF_CONTEXTS; ++i) {
output_counts->comp_ref[i].resize(2);
}
output_counts->skip.resize(SKIP_CONTEXTS);
for (int i = 0; i < SKIP_CONTEXTS; ++i) {
output_counts->skip[i].resize(2);
}
output_counts->tx.p32x32.resize(TX_SIZE_CONTEXTS);
output_counts->tx.p16x16.resize(TX_SIZE_CONTEXTS);
output_counts->tx.p8x8.resize(TX_SIZE_CONTEXTS);
for (int i = 0; i < TX_SIZE_CONTEXTS; i++) {
output_counts->tx.p32x32[i].resize(TX_SIZES);
output_counts->tx.p16x16[i].resize(TX_SIZES - 1);
output_counts->tx.p8x8[i].resize(TX_SIZES - 2);
}
output_counts->tx.tx_totals.resize(TX_SIZES);
output_counts->mv.joints.resize(MV_JOINTS);
output_counts->mv.comps.resize(2);
for (int i = 0; i < 2; ++i) {
output_counts->mv.comps[i].sign.resize(2);
output_counts->mv.comps[i].classes.resize(MV_CLASSES);
output_counts->mv.comps[i].class0.resize(CLASS0_SIZE);
output_counts->mv.comps[i].bits.resize(MV_OFFSET_BITS);
for (int j = 0; j < MV_OFFSET_BITS; ++j) {
output_counts->mv.comps[i].bits[j].resize(2);
}
output_counts->mv.comps[i].class0_fp.resize(CLASS0_SIZE);
for (int j = 0; j < CLASS0_SIZE; ++j) {
output_counts->mv.comps[i].class0_fp[j].resize(MV_FP_SIZE);
}
output_counts->mv.comps[i].fp.resize(MV_FP_SIZE);
output_counts->mv.comps[i].class0_hp.resize(2);
output_counts->mv.comps[i].hp.resize(2);
}
// Populate counts.
for (int i = 0; i < BLOCK_SIZE_GROUPS; ++i) {
for (int j = 0; j < INTRA_MODES; ++j) {
output_counts->y_mode[i][j] = input_counts->y_mode[i][j];
}
}
for (int i = 0; i < INTRA_MODES; ++i) {
for (int j = 0; j < INTRA_MODES; ++j) {
output_counts->uv_mode[i][j] = input_counts->uv_mode[i][j];
}
}
for (int i = 0; i < PARTITION_CONTEXTS; ++i) {
for (int j = 0; j < PARTITION_TYPES; ++j) {
output_counts->partition[i][j] = input_counts->partition[i][j];
}
}
for (int i = 0; i < TX_SIZES; ++i) {
for (int j = 0; j < PLANE_TYPES; ++j) {
for (int k = 0; k < REF_TYPES; ++k) {
for (int l = 0; l < COEF_BANDS; ++l) {
for (int m = 0; m < COEFF_CONTEXTS; ++m) {
output_counts->eob_branch[i][j][k][l][m] =
input_counts->eob_branch[i][j][k][l][m];
for (int n = 0; n < UNCONSTRAINED_NODES + 1; n++) {
output_counts->coef[i][j][k][l][m][n] =
input_counts->coef[i][j][k][l][m][n];
}
}
}
}
}
}
for (int i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) {
for (int j = 0; j < SWITCHABLE_FILTERS; ++j) {
output_counts->switchable_interp[i][j] =
input_counts->switchable_interp[i][j];
}
}
for (int i = 0; i < INTER_MODE_CONTEXTS; ++i) {
for (int j = 0; j < INTER_MODES; ++j) {
output_counts->inter_mode[i][j] = input_counts->inter_mode[i][j];
}
}
for (int i = 0; i < INTRA_INTER_CONTEXTS; ++i) {
for (int j = 0; j < 2; ++j) {
output_counts->intra_inter[i][j] = input_counts->intra_inter[i][j];
}
}
for (int i = 0; i < COMP_INTER_CONTEXTS; ++i) {
for (int j = 0; j < 2; ++j) {
output_counts->comp_inter[i][j] = input_counts->comp_inter[i][j];
}
}
for (int i = 0; i < REF_CONTEXTS; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 2; ++k) {
output_counts->single_ref[i][j][k] = input_counts->single_ref[i][j][k];
}
}
}
for (int i = 0; i < REF_CONTEXTS; ++i) {
for (int j = 0; j < 2; ++j) {
output_counts->comp_ref[i][j] = input_counts->comp_ref[i][j];
}
}
for (int i = 0; i < SKIP_CONTEXTS; ++i) {
for (int j = 0; j < 2; ++j) {
output_counts->skip[i][j] = input_counts->skip[i][j];
}
}
for (int i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (int j = 0; j < TX_SIZES; j++) {
output_counts->tx.p32x32[i][j] = input_counts->tx.p32x32[i][j];
}
for (int j = 0; j < TX_SIZES - 1; j++) {
output_counts->tx.p16x16[i][j] = input_counts->tx.p16x16[i][j];
}
for (int j = 0; j < TX_SIZES - 2; j++) {
output_counts->tx.p8x8[i][j] = input_counts->tx.p8x8[i][j];
}
}
for (int i = 0; i < TX_SIZES; i++) {
output_counts->tx.tx_totals[i] = input_counts->tx.tx_totals[i];
}
for (int i = 0; i < MV_JOINTS; i++) {
output_counts->mv.joints[i] = input_counts->mv.joints[i];
}
for (int k = 0; k < 2; k++) {
const nmv_component_counts *const comps_t = &input_counts->mv.comps[k];
for (int i = 0; i < 2; i++) {
output_counts->mv.comps[k].sign[i] = comps_t->sign[i];
output_counts->mv.comps[k].class0_hp[i] = comps_t->class0_hp[i];
output_counts->mv.comps[k].hp[i] = comps_t->hp[i];
}
for (int i = 0; i < MV_CLASSES; i++) {
output_counts->mv.comps[k].classes[i] = comps_t->classes[i];
}
for (int i = 0; i < CLASS0_SIZE; i++) {
output_counts->mv.comps[k].class0[i] = comps_t->class0[i];
for (int j = 0; j < MV_FP_SIZE; j++) {
output_counts->mv.comps[k].class0_fp[i][j] = comps_t->class0_fp[i][j];
}
}
for (int i = 0; i < MV_OFFSET_BITS; i++) {
for (int j = 0; j < 2; j++) {
output_counts->mv.comps[k].bits[i][j] = comps_t->bits[i][j];
}
}
for (int i = 0; i < MV_FP_SIZE; i++) {
output_counts->mv.comps[k].fp[i] = comps_t->fp[i];
}
}
}
void output_image_buffer(const ImageBuffer &image_buffer, std::FILE *out_file) {
for (int plane = 0; plane < 3; ++plane) {
const int w = image_buffer.plane_width[plane];
const int h = image_buffer.plane_height[plane];
const uint8_t *buf = image_buffer.plane_buffer[plane].get();
fprintf(out_file, "%d %d\n", h, w);
for (int i = 0; i < w * h; ++i) {
fprintf(out_file, "%d ", (int)buf[i]);
}
fprintf(out_file, "\n");
}
}
static bool init_image_buffer(ImageBuffer *image_buffer, int frame_width,
int frame_height, vpx_img_fmt_t img_fmt) {
for (int plane = 0; plane < 3; ++plane) {
const int w = get_plane_width(img_fmt, frame_width, plane);
const int h = get_plane_height(img_fmt, frame_height, plane);
image_buffer->plane_width[plane] = w;
image_buffer->plane_height[plane] = h;
image_buffer->plane_buffer[plane].reset(new (std::nothrow) uint8_t[w * h]);
if (image_buffer->plane_buffer[plane].get() == nullptr) {
return false;
}
}
return true;
}
static void ImageBuffer_to_IMAGE_BUFFER(const ImageBuffer &image_buffer,
IMAGE_BUFFER *image_buffer_c) {
image_buffer_c->allocated = 1;
for (int plane = 0; plane < 3; ++plane) {
image_buffer_c->plane_width[plane] = image_buffer.plane_width[plane];
image_buffer_c->plane_height[plane] = image_buffer.plane_height[plane];
image_buffer_c->plane_buffer[plane] =
image_buffer.plane_buffer[plane].get();
}
}
static size_t get_max_coding_data_byte_size(int frame_width, int frame_height) {
return frame_width * frame_height * 3;
}
static bool init_encode_frame_result(EncodeFrameResult *encode_frame_result,
int frame_width, int frame_height,
vpx_img_fmt_t img_fmt) {
const size_t max_coding_data_byte_size =
get_max_coding_data_byte_size(frame_width, frame_height);
encode_frame_result->coding_data.reset(
new (std::nothrow) uint8_t[max_coding_data_byte_size]);
encode_frame_result->num_rows_4x4 = get_num_unit_4x4(frame_width);
encode_frame_result->num_cols_4x4 = get_num_unit_4x4(frame_height);
encode_frame_result->partition_info.resize(encode_frame_result->num_rows_4x4 *
encode_frame_result->num_cols_4x4);
encode_frame_result->motion_vector_info.resize(
encode_frame_result->num_rows_4x4 * encode_frame_result->num_cols_4x4);
if (encode_frame_result->coding_data.get() == nullptr) {
return false;
}
return init_image_buffer(&encode_frame_result->coded_frame, frame_width,
frame_height, img_fmt);
}
static void update_encode_frame_result(
EncodeFrameResult *encode_frame_result,
const ENCODE_FRAME_RESULT *encode_frame_info) {
encode_frame_result->coding_data_bit_size =
encode_frame_result->coding_data_byte_size * 8;
encode_frame_result->show_idx = encode_frame_info->show_idx;
encode_frame_result->coding_idx = encode_frame_info->frame_coding_index;
assert(kRefFrameTypeMax == MAX_INTER_REF_FRAMES);
for (int i = 0; i < kRefFrameTypeMax; ++i) {
encode_frame_result->ref_frame_info.coding_indexes[i] =
encode_frame_info->ref_frame_coding_indexes[i];
encode_frame_result->ref_frame_info.valid_list[i] =
encode_frame_info->ref_frame_valid_list[i];
}
encode_frame_result->frame_type =
get_frame_type_from_update_type(encode_frame_info->update_type);
encode_frame_result->psnr = encode_frame_info->psnr;
encode_frame_result->sse = encode_frame_info->sse;
encode_frame_result->quantize_index = encode_frame_info->quantize_index;
update_partition_info(encode_frame_info->partition_info,
encode_frame_result->num_rows_4x4,
encode_frame_result->num_cols_4x4,
&encode_frame_result->partition_info[0]);
update_motion_vector_info(encode_frame_info->motion_vector_info,
encode_frame_result->num_rows_4x4,
encode_frame_result->num_cols_4x4,
&encode_frame_result->motion_vector_info[0]);
update_frame_counts(&encode_frame_info->frame_counts,
&encode_frame_result->frame_counts);
}
static void IncreaseGroupOfPictureIndex(GroupOfPicture *group_of_picture) {
++group_of_picture->next_encode_frame_index;
}
static int IsGroupOfPictureFinished(const GroupOfPicture &group_of_picture) {
return static_cast<size_t>(group_of_picture.next_encode_frame_index) ==
group_of_picture.encode_frame_list.size();
}
bool operator==(const RefFrameInfo &a, const RefFrameInfo &b) {
bool match = true;
for (int i = 0; i < kRefFrameTypeMax; ++i) {
match &= a.coding_indexes[i] == b.coding_indexes[i];
match &= a.valid_list[i] == b.valid_list[i];
}
return match;
}
static void InitRefFrameInfo(RefFrameInfo *ref_frame_info) {
for (int i = 0; i < kRefFrameTypeMax; ++i) {
ref_frame_info->coding_indexes[i] = -1;
ref_frame_info->valid_list[i] = 0;
}
}
// After finishing coding a frame, this function will update the coded frame
// into the ref_frame_info based on the frame_type and the coding_index.
static void PostUpdateRefFrameInfo(FrameType frame_type, int frame_coding_index,
RefFrameInfo *ref_frame_info) {
// This part is written based on the logics in vp9_configure_buffer_updates()
// and update_ref_frames()
int *ref_frame_coding_indexes = ref_frame_info->coding_indexes;
switch (frame_type) {
case kFrameTypeKey:
ref_frame_coding_indexes[kRefFrameTypeLast] = frame_coding_index;
ref_frame_coding_indexes[kRefFrameTypePast] = frame_coding_index;
ref_frame_coding_indexes[kRefFrameTypeFuture] = frame_coding_index;
break;
case kFrameTypeInter:
ref_frame_coding_indexes[kRefFrameTypeLast] = frame_coding_index;
break;
case kFrameTypeAltRef:
ref_frame_coding_indexes[kRefFrameTypeFuture] = frame_coding_index;
break;
case kFrameTypeOverlay:
// Reserve the past coding_index in the future slot. This logic is from
// update_ref_frames() with condition vp9_preserve_existing_gf() == 1
// TODO(angiebird): Invetegate why we need this.
ref_frame_coding_indexes[kRefFrameTypeFuture] =
ref_frame_coding_indexes[kRefFrameTypePast];
ref_frame_coding_indexes[kRefFrameTypePast] = frame_coding_index;
break;
case kFrameTypeGolden:
ref_frame_coding_indexes[kRefFrameTypePast] = frame_coding_index;
ref_frame_coding_indexes[kRefFrameTypeLast] = frame_coding_index;
break;
}
// This part is written based on the logics in get_ref_frame_flags() but we
// rename the flags alt, golden to future, past respectively. Mark
// non-duplicated reference frames as valid. The priorities are
// kRefFrameTypeLast > kRefFrameTypePast > kRefFrameTypeFuture.
const int last_index = ref_frame_coding_indexes[kRefFrameTypeLast];
const int past_index = ref_frame_coding_indexes[kRefFrameTypePast];
const int future_index = ref_frame_coding_indexes[kRefFrameTypeFuture];
int *ref_frame_valid_list = ref_frame_info->valid_list;
for (int ref_frame_idx = 0; ref_frame_idx < kRefFrameTypeMax;
++ref_frame_idx) {
ref_frame_valid_list[ref_frame_idx] = 1;
}
if (past_index == last_index) {
ref_frame_valid_list[kRefFrameTypePast] = 0;
}
if (future_index == last_index) {
ref_frame_valid_list[kRefFrameTypeFuture] = 0;
}
if (future_index == past_index) {
ref_frame_valid_list[kRefFrameTypeFuture] = 0;
}
}
static void SetGroupOfPicture(int first_is_key_frame, int use_alt_ref,
int coding_frame_count, int first_show_idx,
int last_gop_use_alt_ref, int start_coding_index,
const RefFrameInfo &start_ref_frame_info,
GroupOfPicture *group_of_picture) {
// Clean up the state of previous group of picture.
group_of_picture->encode_frame_list.clear();
group_of_picture->next_encode_frame_index = 0;
group_of_picture->show_frame_count = coding_frame_count - use_alt_ref;
group_of_picture->start_show_index = first_show_idx;
group_of_picture->start_coding_index = start_coding_index;
group_of_picture->first_is_key_frame = first_is_key_frame;
group_of_picture->use_alt_ref = use_alt_ref;
group_of_picture->last_gop_use_alt_ref = last_gop_use_alt_ref;
// We need to make a copy of start reference frame info because we
// use it to simulate the ref frame update.
RefFrameInfo ref_frame_info = start_ref_frame_info;
{
// First frame in the group of pictures. It's either key frame or show inter
// frame.
EncodeFrameInfo encode_frame_info;
// Set frame_type
if (first_is_key_frame) {
encode_frame_info.frame_type = kFrameTypeKey;
} else {
if (last_gop_use_alt_ref) {
encode_frame_info.frame_type = kFrameTypeOverlay;
} else {
encode_frame_info.frame_type = kFrameTypeGolden;
}
}
encode_frame_info.show_idx = first_show_idx;
encode_frame_info.coding_index = start_coding_index;
encode_frame_info.ref_frame_info = ref_frame_info;
PostUpdateRefFrameInfo(encode_frame_info.frame_type,
encode_frame_info.coding_index, &ref_frame_info);
group_of_picture->encode_frame_list.push_back(encode_frame_info);
}
const int show_frame_count = coding_frame_count - use_alt_ref;
if (use_alt_ref) {
// If there is alternate reference, it is always coded at the second place.
// Its show index (or timestamp) is at the last of this group
EncodeFrameInfo encode_frame_info;
encode_frame_info.frame_type = kFrameTypeAltRef;
encode_frame_info.show_idx = first_show_idx + show_frame_count;
encode_frame_info.coding_index = start_coding_index + 1;
encode_frame_info.ref_frame_info = ref_frame_info;
PostUpdateRefFrameInfo(encode_frame_info.frame_type,
encode_frame_info.coding_index, &ref_frame_info);
group_of_picture->encode_frame_list.push_back(encode_frame_info);
}
// Encode the rest show inter frames.
for (int i = 1; i < show_frame_count; ++i) {
EncodeFrameInfo encode_frame_info;
encode_frame_info.frame_type = kFrameTypeInter;
encode_frame_info.show_idx = first_show_idx + i;
encode_frame_info.coding_index = start_coding_index + use_alt_ref + i;
encode_frame_info.ref_frame_info = ref_frame_info;
PostUpdateRefFrameInfo(encode_frame_info.frame_type,
encode_frame_info.coding_index, &ref_frame_info);
group_of_picture->encode_frame_list.push_back(encode_frame_info);
}
}
// Gets group of picture information from VP9's decision, and update
// |group_of_picture| accordingly.
// This is called at the starting of encoding of each group of picture.
static void UpdateGroupOfPicture(const VP9_COMP *cpi, int start_coding_index,
const RefFrameInfo &start_ref_frame_info,
GroupOfPicture *group_of_picture) {
int first_is_key_frame;
int use_alt_ref;
int coding_frame_count;
int first_show_idx;
int last_gop_use_alt_ref;
vp9_get_next_group_of_picture(cpi, &first_is_key_frame, &use_alt_ref,
&coding_frame_count, &first_show_idx,
&last_gop_use_alt_ref);
SetGroupOfPicture(first_is_key_frame, use_alt_ref, coding_frame_count,
first_show_idx, last_gop_use_alt_ref, start_coding_index,
start_ref_frame_info, group_of_picture);
}
SimpleEncode::SimpleEncode(int frame_width, int frame_height,
int frame_rate_num, int frame_rate_den,
int target_bitrate, int num_frames,
const char *infile_path, const char *outfile_path) {
impl_ptr_ = std::unique_ptr<EncodeImpl>(new EncodeImpl());
frame_width_ = frame_width;
frame_height_ = frame_height;
frame_rate_num_ = frame_rate_num;
frame_rate_den_ = frame_rate_den;
target_bitrate_ = target_bitrate;
num_frames_ = num_frames;
encode_speed_ = 0;
frame_coding_index_ = 0;
show_frame_count_ = 0;
key_frame_group_index_ = 0;
key_frame_group_size_ = 0;
// TODO(angirbid): Should we keep a file pointer here or keep the file_path?
assert(infile_path != nullptr);
in_file_ = fopen(infile_path, "r");
if (outfile_path != nullptr) {
out_file_ = fopen(outfile_path, "w");
} else {
out_file_ = nullptr;
}
impl_ptr_->cpi = nullptr;
impl_ptr_->img_fmt = VPX_IMG_FMT_I420;
InitRefFrameInfo(&ref_frame_info_);
}
void SimpleEncode::SetEncodeSpeed(int encode_speed) {
encode_speed_ = encode_speed;
}
void SimpleEncode::ComputeFirstPassStats() {
vpx_rational_t frame_rate =
make_vpx_rational(frame_rate_num_, frame_rate_den_);
const VP9EncoderConfig oxcf =
vp9_get_encoder_config(frame_width_, frame_height_, frame_rate,
target_bitrate_, encode_speed_, VPX_RC_FIRST_PASS);
VP9_COMP *cpi = init_encoder(&oxcf, impl_ptr_->img_fmt);
struct lookahead_ctx *lookahead = cpi->lookahead;
int i;
int use_highbitdepth = 0;
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth = cpi->common.use_highbitdepth;
#endif
vpx_image_t img;
vpx_img_alloc(&img, impl_ptr_->img_fmt, frame_width_, frame_height_, 1);
rewind(in_file_);
impl_ptr_->first_pass_stats.clear();
for (i = 0; i < num_frames_; ++i) {
assert(!vp9_lookahead_full(lookahead));
if (img_read(&img, in_file_)) {
int next_show_idx = vp9_lookahead_next_show_idx(lookahead);
int64_t ts_start =
timebase_units_to_ticks(&oxcf.g_timebase_in_ts, next_show_idx);
int64_t ts_end =
timebase_units_to_ticks(&oxcf.g_timebase_in_ts, next_show_idx + 1);
YV12_BUFFER_CONFIG sd;
image2yuvconfig(&img, &sd);
vp9_lookahead_push(lookahead, &sd, ts_start, ts_end, use_highbitdepth, 0);
{
int64_t time_stamp;
int64_t time_end;
int flush = 1; // Makes vp9_get_compressed_data process a frame
size_t size;
unsigned int frame_flags = 0;
ENCODE_FRAME_RESULT encode_frame_info;
vp9_init_encode_frame_result(&encode_frame_info);
// TODO(angiebird): Call vp9_first_pass directly
vp9_get_compressed_data(cpi, &frame_flags, &size, nullptr, &time_stamp,
&time_end, flush, &encode_frame_info);
// vp9_get_compressed_data only generates first pass stats not
// compresses data
assert(size == 0);
}
impl_ptr_->first_pass_stats.push_back(vp9_get_frame_stats(&cpi->twopass));
}
}
vp9_end_first_pass(cpi);
// TODO(angiebird): Store the total_stats apart form first_pass_stats
impl_ptr_->first_pass_stats.push_back(vp9_get_total_stats(&cpi->twopass));
free_encoder(cpi);
rewind(in_file_);
vpx_img_free(&img);
// Generate key_frame_map based on impl_ptr_->first_pass_stats.
key_frame_map_ = ComputeKeyFrameMap();
}
std::vector<std::vector<double>> SimpleEncode::ObserveFirstPassStats() {
std::vector<std::vector<double>> output_stats;
// TODO(angiebird): This function make several assumptions of
// FIRSTPASS_STATS. 1) All elements in FIRSTPASS_STATS are double except the
// last one. 2) The last entry of first_pass_stats is the total_stats.
// Change the code structure, so that we don't have to make these assumptions
// Note the last entry of first_pass_stats is the total_stats, we don't need
// it.
for (size_t i = 0; i < impl_ptr_->first_pass_stats.size() - 1; ++i) {
double *buf_start =
reinterpret_cast<double *>(&impl_ptr_->first_pass_stats[i]);
// We use - 1 here because the last member in FIRSTPASS_STATS is not double
double *buf_end =
buf_start + sizeof(impl_ptr_->first_pass_stats[i]) / sizeof(*buf_end) -
1;
std::vector<double> this_stats(buf_start, buf_end);
output_stats.push_back(this_stats);
}
return output_stats;
}
void SimpleEncode::SetExternalGroupOfPicturesMap(int *gop_map,
int gop_map_size) {
for (int i = 0; i < gop_map_size; ++i) {
gop_map_.push_back(gop_map[i]);
}
// The following will check and modify gop_map_ to make sure the
// gop_map_ satisfies the constraints.
// 1) Each key frame position should be at the start of a gop.
// 2) The last gop should not use an alt ref.
assert(gop_map_.size() == key_frame_map_.size());
int last_gop_start = 0;
for (int i = 0; static_cast<size_t>(i) < gop_map_.size(); ++i) {
if (key_frame_map_[i] == 1 && gop_map_[i] == 0) {
fprintf(stderr, "Add an extra gop start at show_idx %d\n", i);
// Insert a gop start at key frame location.
gop_map_[i] |= kGopMapFlagStart;
gop_map_[i] |= kGopMapFlagUseAltRef;
}
if (gop_map_[i] & kGopMapFlagStart) {
last_gop_start = i;
}
}
if (gop_map_[last_gop_start] & kGopMapFlagUseAltRef) {
fprintf(stderr,
"Last group of pictures starting at show_idx %d shouldn't use alt "
"ref\n",
last_gop_start);
gop_map_[last_gop_start] &= ~kGopMapFlagUseAltRef;
}
}
std::vector<int> SimpleEncode::ObserveExternalGroupOfPicturesMap() {
return gop_map_;
}
template <typename T>
T *GetVectorData(const std::vector<T> &v) {
if (v.empty()) {
return nullptr;
}
return const_cast<T *>(v.data());
}
static GOP_COMMAND GetGopCommand(const std::vector<int> &gop_map,
int start_show_index) {
GOP_COMMAND gop_command;
if (gop_map.size() > 0) {
assert(static_cast<size_t>(start_show_index) < gop_map.size());
assert((gop_map[start_show_index] & kGopMapFlagStart) != 0);
int end_show_index = start_show_index + 1;
// gop_map[end_show_index] & kGopMapFlagStart == 0 means this is
// the start of a gop.
while (static_cast<size_t>(end_show_index) < gop_map.size() &&
(gop_map[end_show_index] & kGopMapFlagStart) == 0) {
++end_show_index;
}
const int show_frame_count = end_show_index - start_show_index;
int use_alt_ref = (gop_map[start_show_index] & kGopMapFlagUseAltRef) != 0;
if (static_cast<size_t>(end_show_index) == gop_map.size()) {
// This is the last gop group, there must be no altref.
use_alt_ref = 0;
}
gop_command_on(&gop_command, show_frame_count, use_alt_ref);
} else {
gop_command_off(&gop_command);
}
return gop_command;
}
void SimpleEncode::StartEncode() {
assert(impl_ptr_->first_pass_stats.size() > 0);
vpx_rational_t frame_rate =
make_vpx_rational(frame_rate_num_, frame_rate_den_);
VP9EncoderConfig oxcf =
vp9_get_encoder_config(frame_width_, frame_height_, frame_rate,
target_bitrate_, encode_speed_, VPX_RC_LAST_PASS);
vpx_fixed_buf_t stats;
stats.buf = GetVectorData(impl_ptr_->first_pass_stats);
stats.sz = sizeof(impl_ptr_->first_pass_stats[0]) *
impl_ptr_->first_pass_stats.size();
vp9_set_first_pass_stats(&oxcf, &stats);
assert(impl_ptr_->cpi == nullptr);
impl_ptr_->cpi = init_encoder(&oxcf, impl_ptr_->img_fmt);
vpx_img_alloc(&impl_ptr_->tmp_img, impl_ptr_->img_fmt, frame_width_,
frame_height_, 1);
frame_coding_index_ = 0;
show_frame_count_ = 0;
UpdateKeyFrameGroup(show_frame_count_);
const GOP_COMMAND gop_command = GetGopCommand(gop_map_, show_frame_count_);
encode_command_set_gop_command(&impl_ptr_->cpi->encode_command, gop_command);
UpdateGroupOfPicture(impl_ptr_->cpi, frame_coding_index_, ref_frame_info_,
&group_of_picture_);
rewind(in_file_);
if (out_file_ != nullptr) {
const char *fourcc = "VP90";
// In SimpleEncode, we use time_base = 1 / TICKS_PER_SEC.
// Based on that, the ivf_timestamp for each image is set to
// show_idx * TICKS_PER_SEC / frame_rate
// such that each image's actual timestamp in seconds can be computed as
// ivf_timestamp * time_base == show_idx / frame_rate
// TODO(angiebird): 1) Add unit test for ivf timestamp.
// 2) Simplify the frame_rate setting process.
vpx_rational_t time_base = make_vpx_rational(1, TICKS_PER_SEC);
ivf_write_file_header_with_video_info(out_file_, *(const uint32_t *)fourcc,
num_frames_, frame_width_,
frame_height_, time_base);
}
}
void SimpleEncode::EndEncode() {
free_encoder(impl_ptr_->cpi);
impl_ptr_->cpi = nullptr;
vpx_img_free(&impl_ptr_->tmp_img);
rewind(in_file_);
}
void SimpleEncode::UpdateKeyFrameGroup(int key_frame_show_index) {
const VP9_COMP *cpi = impl_ptr_->cpi;
key_frame_group_index_ = 0;
key_frame_group_size_ = vp9_get_frames_to_next_key(
&cpi->oxcf, &cpi->frame_info, &cpi->twopass.first_pass_info,
key_frame_show_index, cpi->rc.min_gf_interval);
assert(key_frame_group_size_ > 0);
// Init the reference frame info when a new key frame group appears.
InitRefFrameInfo(&ref_frame_info_);
}
void SimpleEncode::PostUpdateKeyFrameGroupIndex(FrameType frame_type) {
if (frame_type != kFrameTypeAltRef) {
// key_frame_group_index_ only counts show frames
++key_frame_group_index_;
}
}
int SimpleEncode::GetKeyFrameGroupSize() const { return key_frame_group_size_; }
GroupOfPicture SimpleEncode::ObserveGroupOfPicture() const {
return group_of_picture_;
}
EncodeFrameInfo SimpleEncode::GetNextEncodeFrameInfo() const {
return group_of_picture_
.encode_frame_list[group_of_picture_.next_encode_frame_index];
}
void SimpleEncode::PostUpdateState(
const EncodeFrameResult &encode_frame_result) {
// This function needs to be called before the increament of
// frame_coding_index_
PostUpdateRefFrameInfo(encode_frame_result.frame_type, frame_coding_index_,
&ref_frame_info_);
++frame_coding_index_;
if (encode_frame_result.frame_type != kFrameTypeAltRef) {
// Only kFrameTypeAltRef is not a show frame
++show_frame_count_;
}
PostUpdateKeyFrameGroupIndex(encode_frame_result.frame_type);
if (key_frame_group_index_ == key_frame_group_size_) {
UpdateKeyFrameGroup(show_frame_count_);
}
IncreaseGroupOfPictureIndex(&group_of_picture_);
if (IsGroupOfPictureFinished(group_of_picture_)) {
const GOP_COMMAND gop_command = GetGopCommand(gop_map_, show_frame_count_);
encode_command_set_gop_command(&impl_ptr_->cpi->encode_command,
gop_command);
// This function needs to be called after ref_frame_info_ is updated
// properly in PostUpdateRefFrameInfo() and UpdateKeyFrameGroup().
UpdateGroupOfPicture(impl_ptr_->cpi, frame_coding_index_, ref_frame_info_,
&group_of_picture_);
}
}
void SimpleEncode::EncodeFrame(EncodeFrameResult *encode_frame_result) {
VP9_COMP *cpi = impl_ptr_->cpi;
struct lookahead_ctx *lookahead = cpi->lookahead;
int use_highbitdepth = 0;
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth = cpi->common.use_highbitdepth;
#endif
// The lookahead's size is set to oxcf->lag_in_frames.
// We want to fill lookahead to it's max capacity if possible so that the
// encoder can construct alt ref frame in time.
// In the other words, we hope vp9_get_compressed_data to encode a frame
// every time in the function
while (!vp9_lookahead_full(lookahead)) {
// TODO(angiebird): Check whether we can move this file read logics to
// lookahead
if (img_read(&impl_ptr_->tmp_img, in_file_)) {
int next_show_idx = vp9_lookahead_next_show_idx(lookahead);
int64_t ts_start =
timebase_units_to_ticks(&cpi->oxcf.g_timebase_in_ts, next_show_idx);
int64_t ts_end = timebase_units_to_ticks(&cpi->oxcf.g_timebase_in_ts,
next_show_idx + 1);
YV12_BUFFER_CONFIG sd;
image2yuvconfig(&impl_ptr_->tmp_img, &sd);
vp9_lookahead_push(lookahead, &sd, ts_start, ts_end, use_highbitdepth, 0);
} else {
break;
}
}
if (init_encode_frame_result(encode_frame_result, frame_width_, frame_height_,
impl_ptr_->img_fmt)) {
int64_t time_stamp;
int64_t time_end;
int flush = 1; // Make vp9_get_compressed_data encode a frame
unsigned int frame_flags = 0;
ENCODE_FRAME_RESULT encode_frame_info;
vp9_init_encode_frame_result(&encode_frame_info);
ImageBuffer_to_IMAGE_BUFFER(encode_frame_result->coded_frame,
&encode_frame_info.coded_frame);
vp9_get_compressed_data(cpi, &frame_flags,
&encode_frame_result->coding_data_byte_size,
encode_frame_result->coding_data.get(), &time_stamp,
&time_end, flush, &encode_frame_info);
if (out_file_ != nullptr) {
ivf_write_frame_header(out_file_, time_stamp,
encode_frame_result->coding_data_byte_size);
fwrite(encode_frame_result->coding_data.get(), 1,
encode_frame_result->coding_data_byte_size, out_file_);
}
// vp9_get_compressed_data is expected to encode a frame every time, so the
// data size should be greater than zero.
if (encode_frame_result->coding_data_byte_size <= 0) {
fprintf(stderr, "Coding data size <= 0\n");
abort();
}
const size_t max_coding_data_byte_size =
get_max_coding_data_byte_size(frame_width_, frame_height_);
if (encode_frame_result->coding_data_byte_size >
max_coding_data_byte_size) {
fprintf(stderr, "Coding data size exceeds the maximum.\n");
abort();
}
update_encode_frame_result(encode_frame_result, &encode_frame_info);
PostUpdateState(*encode_frame_result);
} else {
// TODO(angiebird): Clean up encode_frame_result.
fprintf(stderr, "init_encode_frame_result() failed.\n");
this->EndEncode();
}
}
void SimpleEncode::EncodeFrameWithQuantizeIndex(
EncodeFrameResult *encode_frame_result, int quantize_index) {
encode_command_set_external_quantize_index(&impl_ptr_->cpi->encode_command,
quantize_index);
EncodeFrame(encode_frame_result);
encode_command_reset_external_quantize_index(&impl_ptr_->cpi->encode_command);
}
static int GetCodingFrameNumFromGopMap(const std::vector<int> &gop_map) {
int start_show_index = 0;
int coding_frame_count = 0;
while (static_cast<size_t>(start_show_index) < gop_map.size()) {
const GOP_COMMAND gop_command = GetGopCommand(gop_map, start_show_index);
start_show_index += gop_command.show_frame_count;
coding_frame_count += gop_command_coding_frame_count(&gop_command);
}
assert(start_show_index == gop_map.size());
return coding_frame_count;
}
int SimpleEncode::GetCodingFrameNum() const {
assert(impl_ptr_->first_pass_stats.size() > 0);
if (gop_map_.size() > 0) {
return GetCodingFrameNumFromGopMap(gop_map_);
}
// These are the default settings for now.
const int multi_layer_arf = 0;
const int allow_alt_ref = 1;
vpx_rational_t frame_rate =
make_vpx_rational(frame_rate_num_, frame_rate_den_);
const VP9EncoderConfig oxcf =
vp9_get_encoder_config(frame_width_, frame_height_, frame_rate,
target_bitrate_, encode_speed_, VPX_RC_LAST_PASS);
FRAME_INFO frame_info = vp9_get_frame_info(&oxcf);
FIRST_PASS_INFO first_pass_info;
fps_init_first_pass_info(&first_pass_info,
GetVectorData(impl_ptr_->first_pass_stats),
num_frames_);
return vp9_get_coding_frame_num(&oxcf, &frame_info, &first_pass_info,
multi_layer_arf, allow_alt_ref);
}
std::vector<int> SimpleEncode::ComputeKeyFrameMap() const {
// The last entry of first_pass_stats is the overall stats.
assert(impl_ptr_->first_pass_stats.size() == num_frames_ + 1);
vpx_rational_t frame_rate =
make_vpx_rational(frame_rate_num_, frame_rate_den_);
const VP9EncoderConfig oxcf =
vp9_get_encoder_config(frame_width_, frame_height_, frame_rate,
target_bitrate_, encode_speed_, VPX_RC_LAST_PASS);
FRAME_INFO frame_info = vp9_get_frame_info(&oxcf);
FIRST_PASS_INFO first_pass_info;
fps_init_first_pass_info(&first_pass_info,
GetVectorData(impl_ptr_->first_pass_stats),
num_frames_);
std::vector<int> key_frame_map(num_frames_, 0);
vp9_get_key_frame_map(&oxcf, &frame_info, &first_pass_info,
GetVectorData(key_frame_map));
return key_frame_map;
}
std::vector<int> SimpleEncode::ObserveKeyFrameMap() const {
return key_frame_map_;
}
uint64_t SimpleEncode::GetFramePixelCount() const {
assert(frame_width_ % 2 == 0);
assert(frame_height_ % 2 == 0);
switch (impl_ptr_->img_fmt) {
case VPX_IMG_FMT_I420: return frame_width_ * frame_height_ * 3 / 2;
case VPX_IMG_FMT_I422: return frame_width_ * frame_height_ * 2;
case VPX_IMG_FMT_I444: return frame_width_ * frame_height_ * 3;
case VPX_IMG_FMT_I440: return frame_width_ * frame_height_ * 2;
case VPX_IMG_FMT_I42016: return frame_width_ * frame_height_ * 3 / 2;
case VPX_IMG_FMT_I42216: return frame_width_ * frame_height_ * 2;
case VPX_IMG_FMT_I44416: return frame_width_ * frame_height_ * 3;
case VPX_IMG_FMT_I44016: return frame_width_ * frame_height_ * 2;
default: return 0;
}
}
SimpleEncode::~SimpleEncode() {
if (in_file_ != nullptr) {
fclose(in_file_);
}
if (out_file_ != nullptr) {
fclose(out_file_);
}
}
} // namespace vp9