blob: 00882a5f94af144dff4ef67e253e27cea1fe4191 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include "./vpx_config.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_thread_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_loopfilter.h"
#if CONFIG_MULTITHREAD
static INLINE void mutex_lock(pthread_mutex_t *const mutex) {
const int kMaxTryLocks = 4000;
int locked = 0;
int i;
for (i = 0; i < kMaxTryLocks; ++i) {
if (!pthread_mutex_trylock(mutex)) {
locked = 1;
break;
}
}
if (!locked) pthread_mutex_lock(mutex);
}
#endif // CONFIG_MULTITHREAD
static INLINE void sync_read(VP9LfSync *const lf_sync, int r, int c) {
#if CONFIG_MULTITHREAD
const int nsync = lf_sync->sync_range;
if (r && !(c & (nsync - 1))) {
pthread_mutex_t *const mutex = &lf_sync->mutex[r - 1];
mutex_lock(mutex);
while (c > lf_sync->cur_sb_col[r - 1] - nsync) {
pthread_cond_wait(&lf_sync->cond[r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)lf_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
static INLINE void sync_write(VP9LfSync *const lf_sync, int r, int c,
const int sb_cols) {
#if CONFIG_MULTITHREAD
const int nsync = lf_sync->sync_range;
int cur;
// Only signal when there are enough filtered SB for next row to run.
int sig = 1;
if (c < sb_cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = sb_cols + nsync;
}
if (sig) {
mutex_lock(&lf_sync->mutex[r]);
lf_sync->cur_sb_col[r] = cur;
pthread_cond_signal(&lf_sync->cond[r]);
pthread_mutex_unlock(&lf_sync->mutex[r]);
}
#else
(void)lf_sync;
(void)r;
(void)c;
(void)sb_cols;
#endif // CONFIG_MULTITHREAD
}
// Implement row loopfiltering for each thread.
static INLINE void thread_loop_filter_rows(
const YV12_BUFFER_CONFIG *const frame_buffer, VP9_COMMON *const cm,
struct macroblockd_plane planes[MAX_MB_PLANE], int start, int stop,
int y_only, VP9LfSync *const lf_sync) {
const int num_planes = y_only ? 1 : MAX_MB_PLANE;
const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2;
const int num_active_workers = VPXMIN(lf_sync->num_workers, lf_sync->rows);
int mi_row, mi_col;
enum lf_path path;
if (y_only)
path = LF_PATH_444;
else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
path = LF_PATH_420;
else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
path = LF_PATH_444;
else
path = LF_PATH_SLOW;
for (mi_row = start; mi_row < stop;
mi_row += num_active_workers * MI_BLOCK_SIZE) {
MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0);
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) {
const int r = mi_row >> MI_BLOCK_SIZE_LOG2;
const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
int plane;
sync_read(lf_sync, r, c);
vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
vp9_adjust_mask(cm, mi_row, mi_col, lfm);
vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm);
for (plane = 1; plane < num_planes; ++plane) {
switch (path) {
case LF_PATH_420:
vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_444:
vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_SLOW:
vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
mi_row, mi_col);
break;
}
}
sync_write(lf_sync, r, c, sb_cols);
}
}
}
// Row-based multi-threaded loopfilter hook
static int loop_filter_row_worker(void *arg1, void *arg2) {
VP9LfSync *const lf_sync = (VP9LfSync *)arg1;
LFWorkerData *const lf_data = (LFWorkerData *)arg2;
thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
lf_data->start, lf_data->stop, lf_data->y_only,
lf_sync);
return 1;
}
static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm,
struct macroblockd_plane planes[MAX_MB_PLANE],
int start, int stop, int y_only,
VPxWorker *workers, int nworkers,
VP9LfSync *lf_sync) {
const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
// Number of superblock rows and cols
const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
const int num_tile_cols = 1 << cm->log2_tile_cols;
// Limit the number of workers to prevent changes in frame dimensions from
// causing incorrect sync calculations when sb_rows < threads/tile_cols.
// Further restrict them by the number of tile columns should the user
// request more as this implementation doesn't scale well beyond that.
const int num_workers = VPXMIN(nworkers, VPXMIN(num_tile_cols, sb_rows));
int i;
if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
num_workers > lf_sync->num_workers) {
vp9_loop_filter_dealloc(lf_sync);
vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
}
// Initialize cur_sb_col to -1 for all SB rows.
memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
// Set up loopfilter thread data.
// The decoder is capping num_workers because it has been observed that using
// more threads on the loopfilter than there are cores will hurt performance
// on Android. This is because the system will only schedule the tile decode
// workers on cores equal to the number of tile columns. Then if the decoder
// tries to use more threads for the loopfilter, it will hurt performance
// because of contention. If the multithreading code changes in the future
// then the number of workers used by the loopfilter should be revisited.
for (i = 0; i < num_workers; ++i) {
VPxWorker *const worker = &workers[i];
LFWorkerData *const lf_data = &lf_sync->lfdata[i];
worker->hook = loop_filter_row_worker;
worker->data1 = lf_sync;
worker->data2 = lf_data;
// Loopfilter data
vp9_loop_filter_data_reset(lf_data, frame, cm, planes);
lf_data->start = start + i * MI_BLOCK_SIZE;
lf_data->stop = stop;
lf_data->y_only = y_only;
// Start loopfiltering
if (i == num_workers - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait till all rows are finished
for (i = 0; i < num_workers; ++i) {
winterface->sync(&workers[i]);
}
}
void vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm,
struct macroblockd_plane planes[MAX_MB_PLANE],
int frame_filter_level, int y_only,
int partial_frame, VPxWorker *workers,
int num_workers, VP9LfSync *lf_sync) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
if (!frame_filter_level) return;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
vp9_loop_filter_frame_init(cm, frame_filter_level);
loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only,
workers, num_workers, lf_sync);
}
void vp9_lpf_mt_init(VP9LfSync *lf_sync, VP9_COMMON *cm, int frame_filter_level,
int num_workers) {
const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
if (!frame_filter_level) return;
if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
num_workers > lf_sync->num_workers) {
vp9_loop_filter_dealloc(lf_sync);
vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
}
// Initialize cur_sb_col to -1 for all SB rows.
memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
lf_sync->corrupted = 0;
memset(lf_sync->num_tiles_done, 0,
sizeof(*lf_sync->num_tiles_done) * sb_rows);
cm->lf_row = 0;
}
// Set up nsync by width.
static INLINE int get_sync_range(int width) {
// nsync numbers are picked by testing. For example, for 4k
// video, using 4 gives best performance.
if (width < 640)
return 1;
else if (width <= 1280)
return 2;
else if (width <= 4096)
return 4;
else
return 8;
}
// Allocate memory for lf row synchronization
void vp9_loop_filter_alloc(VP9LfSync *lf_sync, VP9_COMMON *cm, int rows,
int width, int num_workers) {
lf_sync->rows = rows;
#if CONFIG_MULTITHREAD
{
int i;
CHECK_MEM_ERROR(cm, lf_sync->mutex,
vpx_malloc(sizeof(*lf_sync->mutex) * rows));
if (lf_sync->mutex) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&lf_sync->mutex[i], NULL);
}
}
CHECK_MEM_ERROR(cm, lf_sync->cond,
vpx_malloc(sizeof(*lf_sync->cond) * rows));
if (lf_sync->cond) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&lf_sync->cond[i], NULL);
}
}
pthread_mutex_init(&lf_sync->lf_mutex, NULL);
CHECK_MEM_ERROR(cm, lf_sync->recon_done_mutex,
vpx_malloc(sizeof(*lf_sync->recon_done_mutex) * rows));
if (lf_sync->recon_done_mutex) {
int i;
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&lf_sync->recon_done_mutex[i], NULL);
}
}
CHECK_MEM_ERROR(cm, lf_sync->recon_done_cond,
vpx_malloc(sizeof(*lf_sync->recon_done_cond) * rows));
if (lf_sync->recon_done_cond) {
int i;
for (i = 0; i < rows; ++i) {
pthread_cond_init(&lf_sync->recon_done_cond[i], NULL);
}
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, lf_sync->lfdata,
vpx_malloc(num_workers * sizeof(*lf_sync->lfdata)));
lf_sync->num_workers = num_workers;
CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col,
vpx_malloc(sizeof(*lf_sync->cur_sb_col) * rows));
CHECK_MEM_ERROR(cm, lf_sync->num_tiles_done,
vpx_malloc(sizeof(*lf_sync->num_tiles_done) *
mi_cols_aligned_to_sb(cm->mi_rows) >>
MI_BLOCK_SIZE_LOG2));
// Set up nsync.
lf_sync->sync_range = get_sync_range(width);
}
// Deallocate lf synchronization related mutex and data
void vp9_loop_filter_dealloc(VP9LfSync *lf_sync) {
if (lf_sync != NULL) {
#if CONFIG_MULTITHREAD
int i;
if (lf_sync->mutex != NULL) {
for (i = 0; i < lf_sync->rows; ++i) {
pthread_mutex_destroy(&lf_sync->mutex[i]);
}
vpx_free(lf_sync->mutex);
}
if (lf_sync->cond != NULL) {
for (i = 0; i < lf_sync->rows; ++i) {
pthread_cond_destroy(&lf_sync->cond[i]);
}
vpx_free(lf_sync->cond);
}
if (lf_sync->recon_done_mutex != NULL) {
int i;
for (i = 0; i < lf_sync->rows; ++i) {
pthread_mutex_destroy(&lf_sync->recon_done_mutex[i]);
}
vpx_free(lf_sync->recon_done_mutex);
}
pthread_mutex_destroy(&lf_sync->lf_mutex);
if (lf_sync->recon_done_cond != NULL) {
int i;
for (i = 0; i < lf_sync->rows; ++i) {
pthread_cond_destroy(&lf_sync->recon_done_cond[i]);
}
vpx_free(lf_sync->recon_done_cond);
}
#endif // CONFIG_MULTITHREAD
vpx_free(lf_sync->lfdata);
vpx_free(lf_sync->cur_sb_col);
vpx_free(lf_sync->num_tiles_done);
// clear the structure as the source of this call may be a resize in which
// case this call will be followed by an _alloc() which may fail.
vp9_zero(*lf_sync);
}
}
static int get_next_row(VP9_COMMON *cm, VP9LfSync *lf_sync) {
int return_val = -1;
int cur_row;
const int max_rows = cm->mi_rows;
#if CONFIG_MULTITHREAD
const int tile_cols = 1 << cm->log2_tile_cols;
pthread_mutex_lock(&lf_sync->lf_mutex);
if (cm->lf_row < max_rows) {
cur_row = cm->lf_row >> MI_BLOCK_SIZE_LOG2;
return_val = cm->lf_row;
cm->lf_row += MI_BLOCK_SIZE;
if (cm->lf_row < max_rows) {
/* If this is not the last row, make sure the next row is also decoded.
* This is because the intra predict has to happen before loop filter */
cur_row += 1;
}
}
pthread_mutex_unlock(&lf_sync->lf_mutex);
if (return_val == -1) return return_val;
pthread_mutex_lock(&lf_sync->recon_done_mutex[cur_row]);
if (lf_sync->num_tiles_done[cur_row] < tile_cols) {
pthread_cond_wait(&lf_sync->recon_done_cond[cur_row],
&lf_sync->recon_done_mutex[cur_row]);
}
pthread_mutex_unlock(&lf_sync->recon_done_mutex[cur_row]);
pthread_mutex_lock(&lf_sync->lf_mutex);
if (lf_sync->corrupted) {
int row = return_val >> MI_BLOCK_SIZE_LOG2;
pthread_mutex_lock(&lf_sync->mutex[row]);
lf_sync->cur_sb_col[row] = INT_MAX;
pthread_cond_signal(&lf_sync->cond[row]);
pthread_mutex_unlock(&lf_sync->mutex[row]);
return_val = -1;
}
pthread_mutex_unlock(&lf_sync->lf_mutex);
#else
(void)lf_sync;
if (cm->lf_row < max_rows) {
cur_row = cm->lf_row >> MI_BLOCK_SIZE_LOG2;
return_val = cm->lf_row;
cm->lf_row += MI_BLOCK_SIZE;
if (cm->lf_row < max_rows) {
/* If this is not the last row, make sure the next row is also decoded.
* This is because the intra predict has to happen before loop filter */
cur_row += 1;
}
}
#endif // CONFIG_MULTITHREAD
return return_val;
}
void vp9_loopfilter_rows(LFWorkerData *lf_data, VP9LfSync *lf_sync) {
int mi_row;
VP9_COMMON *cm = lf_data->cm;
while ((mi_row = get_next_row(cm, lf_sync)) != -1 && mi_row < cm->mi_rows) {
lf_data->start = mi_row;
lf_data->stop = mi_row + MI_BLOCK_SIZE;
thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
lf_data->start, lf_data->stop, lf_data->y_only,
lf_sync);
}
}
void vp9_set_row(VP9LfSync *lf_sync, int num_tiles, int row, int is_last_row,
int corrupted) {
#if CONFIG_MULTITHREAD
pthread_mutex_lock(&lf_sync->lf_mutex);
lf_sync->corrupted |= corrupted;
pthread_mutex_unlock(&lf_sync->lf_mutex);
pthread_mutex_lock(&lf_sync->recon_done_mutex[row]);
lf_sync->num_tiles_done[row] += 1;
if (num_tiles == lf_sync->num_tiles_done[row]) {
if (is_last_row) {
/* The last 2 rows wait on the last row to be done.
* So, we have to broadcast the signal in this case.
*/
pthread_cond_broadcast(&lf_sync->recon_done_cond[row]);
} else {
pthread_cond_signal(&lf_sync->recon_done_cond[row]);
}
}
pthread_mutex_unlock(&lf_sync->recon_done_mutex[row]);
#else
(void)lf_sync;
(void)num_tiles;
(void)row;
(void)is_last_row;
(void)corrupted;
#endif // CONFIG_MULTITHREAD
}
void vp9_loopfilter_job(LFWorkerData *lf_data, VP9LfSync *lf_sync) {
thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
lf_data->start, lf_data->stop, lf_data->y_only,
lf_sync);
}
// Accumulate frame counts.
void vp9_accumulate_frame_counts(FRAME_COUNTS *accum,
const FRAME_COUNTS *counts, int is_dec) {
int i, j, k, l, m;
for (i = 0; i < BLOCK_SIZE_GROUPS; i++)
for (j = 0; j < INTRA_MODES; j++)
accum->y_mode[i][j] += counts->y_mode[i][j];
for (i = 0; i < INTRA_MODES; i++)
for (j = 0; j < INTRA_MODES; j++)
accum->uv_mode[i][j] += counts->uv_mode[i][j];
for (i = 0; i < PARTITION_CONTEXTS; i++)
for (j = 0; j < PARTITION_TYPES; j++)
accum->partition[i][j] += counts->partition[i][j];
if (is_dec) {
int n;
for (i = 0; i < TX_SIZES; i++)
for (j = 0; j < PLANE_TYPES; j++)
for (k = 0; k < REF_TYPES; k++)
for (l = 0; l < COEF_BANDS; l++)
for (m = 0; m < COEFF_CONTEXTS; m++) {
accum->eob_branch[i][j][k][l][m] +=
counts->eob_branch[i][j][k][l][m];
for (n = 0; n < UNCONSTRAINED_NODES + 1; n++)
accum->coef[i][j][k][l][m][n] += counts->coef[i][j][k][l][m][n];
}
} else {
for (i = 0; i < TX_SIZES; i++)
for (j = 0; j < PLANE_TYPES; j++)
for (k = 0; k < REF_TYPES; k++)
for (l = 0; l < COEF_BANDS; l++)
for (m = 0; m < COEFF_CONTEXTS; m++)
accum->eob_branch[i][j][k][l][m] +=
counts->eob_branch[i][j][k][l][m];
// In the encoder, coef is only updated at frame
// level, so not need to accumulate it here.
// for (n = 0; n < UNCONSTRAINED_NODES + 1; n++)
// accum->coef[i][j][k][l][m][n] +=
// counts->coef[i][j][k][l][m][n];
}
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
for (j = 0; j < SWITCHABLE_FILTERS; j++)
accum->switchable_interp[i][j] += counts->switchable_interp[i][j];
for (i = 0; i < INTER_MODE_CONTEXTS; i++)
for (j = 0; j < INTER_MODES; j++)
accum->inter_mode[i][j] += counts->inter_mode[i][j];
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
for (j = 0; j < 2; j++)
accum->intra_inter[i][j] += counts->intra_inter[i][j];
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
for (j = 0; j < 2; j++) accum->comp_inter[i][j] += counts->comp_inter[i][j];
for (i = 0; i < REF_CONTEXTS; i++)
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
accum->single_ref[i][j][k] += counts->single_ref[i][j][k];
for (i = 0; i < REF_CONTEXTS; i++)
for (j = 0; j < 2; j++) accum->comp_ref[i][j] += counts->comp_ref[i][j];
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (j = 0; j < TX_SIZES; j++)
accum->tx.p32x32[i][j] += counts->tx.p32x32[i][j];
for (j = 0; j < TX_SIZES - 1; j++)
accum->tx.p16x16[i][j] += counts->tx.p16x16[i][j];
for (j = 0; j < TX_SIZES - 2; j++)
accum->tx.p8x8[i][j] += counts->tx.p8x8[i][j];
}
for (i = 0; i < TX_SIZES; i++)
accum->tx.tx_totals[i] += counts->tx.tx_totals[i];
for (i = 0; i < SKIP_CONTEXTS; i++)
for (j = 0; j < 2; j++) accum->skip[i][j] += counts->skip[i][j];
for (i = 0; i < MV_JOINTS; i++) accum->mv.joints[i] += counts->mv.joints[i];
for (k = 0; k < 2; k++) {
nmv_component_counts *const comps = &accum->mv.comps[k];
const nmv_component_counts *const comps_t = &counts->mv.comps[k];
for (i = 0; i < 2; i++) {
comps->sign[i] += comps_t->sign[i];
comps->class0_hp[i] += comps_t->class0_hp[i];
comps->hp[i] += comps_t->hp[i];
}
for (i = 0; i < MV_CLASSES; i++) comps->classes[i] += comps_t->classes[i];
for (i = 0; i < CLASS0_SIZE; i++) {
comps->class0[i] += comps_t->class0[i];
for (j = 0; j < MV_FP_SIZE; j++)
comps->class0_fp[i][j] += comps_t->class0_fp[i][j];
}
for (i = 0; i < MV_OFFSET_BITS; i++)
for (j = 0; j < 2; j++) comps->bits[i][j] += comps_t->bits[i][j];
for (i = 0; i < MV_FP_SIZE; i++) comps->fp[i] += comps_t->fp[i];
}
}