blob: 3209625617db4685d5193991a746f431d49a5a0a [file] [log] [blame]
/*
* Copyright (c) 2017 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/x86/convolve.h"
#include "vpx_dsp/x86/convolve_avx2.h"
// -----------------------------------------------------------------------------
// Copy and average
void vpx_highbd_convolve_copy_avx2(const uint16_t *src, ptrdiff_t src_stride,
uint16_t *dst, ptrdiff_t dst_stride,
const InterpKernel *filter, int x0_q4,
int x_step_q4, int y0_q4, int y_step_q4,
int w, int h, int bd) {
(void)filter;
(void)x0_q4;
(void)x_step_q4;
(void)y0_q4;
(void)y_step_q4;
(void)bd;
assert(w % 4 == 0);
if (w > 32) { // w = 64
do {
const __m256i p0 = _mm256_loadu_si256((const __m256i *)src);
const __m256i p1 = _mm256_loadu_si256((const __m256i *)(src + 16));
const __m256i p2 = _mm256_loadu_si256((const __m256i *)(src + 32));
const __m256i p3 = _mm256_loadu_si256((const __m256i *)(src + 48));
src += src_stride;
_mm256_storeu_si256((__m256i *)dst, p0);
_mm256_storeu_si256((__m256i *)(dst + 16), p1);
_mm256_storeu_si256((__m256i *)(dst + 32), p2);
_mm256_storeu_si256((__m256i *)(dst + 48), p3);
dst += dst_stride;
h--;
} while (h > 0);
} else if (w > 16) { // w = 32
do {
const __m256i p0 = _mm256_loadu_si256((const __m256i *)src);
const __m256i p1 = _mm256_loadu_si256((const __m256i *)(src + 16));
src += src_stride;
_mm256_storeu_si256((__m256i *)dst, p0);
_mm256_storeu_si256((__m256i *)(dst + 16), p1);
dst += dst_stride;
h--;
} while (h > 0);
} else if (w > 8) { // w = 16
__m256i p0, p1;
do {
p0 = _mm256_loadu_si256((const __m256i *)src);
src += src_stride;
p1 = _mm256_loadu_si256((const __m256i *)src);
src += src_stride;
_mm256_storeu_si256((__m256i *)dst, p0);
dst += dst_stride;
_mm256_storeu_si256((__m256i *)dst, p1);
dst += dst_stride;
h -= 2;
} while (h > 0);
} else if (w > 4) { // w = 8
__m128i p0, p1;
do {
p0 = _mm_loadu_si128((const __m128i *)src);
src += src_stride;
p1 = _mm_loadu_si128((const __m128i *)src);
src += src_stride;
_mm_storeu_si128((__m128i *)dst, p0);
dst += dst_stride;
_mm_storeu_si128((__m128i *)dst, p1);
dst += dst_stride;
h -= 2;
} while (h > 0);
} else { // w = 4
__m128i p0, p1;
do {
p0 = _mm_loadl_epi64((const __m128i *)src);
src += src_stride;
p1 = _mm_loadl_epi64((const __m128i *)src);
src += src_stride;
_mm_storel_epi64((__m128i *)dst, p0);
dst += dst_stride;
_mm_storel_epi64((__m128i *)dst, p1);
dst += dst_stride;
h -= 2;
} while (h > 0);
}
}
void vpx_highbd_convolve_avg_avx2(const uint16_t *src, ptrdiff_t src_stride,
uint16_t *dst, ptrdiff_t dst_stride,
const InterpKernel *filter, int x0_q4,
int x_step_q4, int y0_q4, int y_step_q4,
int w, int h, int bd) {
(void)filter;
(void)x0_q4;
(void)x_step_q4;
(void)y0_q4;
(void)y_step_q4;
(void)bd;
assert(w % 4 == 0);
if (w > 32) { // w = 64
__m256i p0, p1, p2, p3, u0, u1, u2, u3;
do {
p0 = _mm256_loadu_si256((const __m256i *)src);
p1 = _mm256_loadu_si256((const __m256i *)(src + 16));
p2 = _mm256_loadu_si256((const __m256i *)(src + 32));
p3 = _mm256_loadu_si256((const __m256i *)(src + 48));
src += src_stride;
u0 = _mm256_loadu_si256((const __m256i *)dst);
u1 = _mm256_loadu_si256((const __m256i *)(dst + 16));
u2 = _mm256_loadu_si256((const __m256i *)(dst + 32));
u3 = _mm256_loadu_si256((const __m256i *)(dst + 48));
_mm256_storeu_si256((__m256i *)dst, _mm256_avg_epu16(p0, u0));
_mm256_storeu_si256((__m256i *)(dst + 16), _mm256_avg_epu16(p1, u1));
_mm256_storeu_si256((__m256i *)(dst + 32), _mm256_avg_epu16(p2, u2));
_mm256_storeu_si256((__m256i *)(dst + 48), _mm256_avg_epu16(p3, u3));
dst += dst_stride;
h--;
} while (h > 0);
} else if (w > 16) { // w = 32
__m256i p0, p1, u0, u1;
do {
p0 = _mm256_loadu_si256((const __m256i *)src);
p1 = _mm256_loadu_si256((const __m256i *)(src + 16));
src += src_stride;
u0 = _mm256_loadu_si256((const __m256i *)dst);
u1 = _mm256_loadu_si256((const __m256i *)(dst + 16));
_mm256_storeu_si256((__m256i *)dst, _mm256_avg_epu16(p0, u0));
_mm256_storeu_si256((__m256i *)(dst + 16), _mm256_avg_epu16(p1, u1));
dst += dst_stride;
h--;
} while (h > 0);
} else if (w > 8) { // w = 16
__m256i p0, p1, u0, u1;
do {
p0 = _mm256_loadu_si256((const __m256i *)src);
p1 = _mm256_loadu_si256((const __m256i *)(src + src_stride));
src += src_stride << 1;
u0 = _mm256_loadu_si256((const __m256i *)dst);
u1 = _mm256_loadu_si256((const __m256i *)(dst + dst_stride));
_mm256_storeu_si256((__m256i *)dst, _mm256_avg_epu16(p0, u0));
_mm256_storeu_si256((__m256i *)(dst + dst_stride),
_mm256_avg_epu16(p1, u1));
dst += dst_stride << 1;
h -= 2;
} while (h > 0);
} else if (w > 4) { // w = 8
__m128i p0, p1, u0, u1;
do {
p0 = _mm_loadu_si128((const __m128i *)src);
p1 = _mm_loadu_si128((const __m128i *)(src + src_stride));
src += src_stride << 1;
u0 = _mm_loadu_si128((const __m128i *)dst);
u1 = _mm_loadu_si128((const __m128i *)(dst + dst_stride));
_mm_storeu_si128((__m128i *)dst, _mm_avg_epu16(p0, u0));
_mm_storeu_si128((__m128i *)(dst + dst_stride), _mm_avg_epu16(p1, u1));
dst += dst_stride << 1;
h -= 2;
} while (h > 0);
} else { // w = 4
__m128i p0, p1, u0, u1;
do {
p0 = _mm_loadl_epi64((const __m128i *)src);
p1 = _mm_loadl_epi64((const __m128i *)(src + src_stride));
src += src_stride << 1;
u0 = _mm_loadl_epi64((const __m128i *)dst);
u1 = _mm_loadl_epi64((const __m128i *)(dst + dst_stride));
_mm_storel_epi64((__m128i *)dst, _mm_avg_epu16(u0, p0));
_mm_storel_epi64((__m128i *)(dst + dst_stride), _mm_avg_epu16(u1, p1));
dst += dst_stride << 1;
h -= 2;
} while (h > 0);
}
}
// -----------------------------------------------------------------------------
// Horizontal and vertical filtering
static const uint8_t signal_pattern_0[32] = { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6,
7, 6, 7, 8, 9, 0, 1, 2, 3, 2, 3,
4, 5, 4, 5, 6, 7, 6, 7, 8, 9 };
static const uint8_t signal_pattern_1[32] = { 4, 5, 6, 7, 6, 7, 8, 9,
8, 9, 10, 11, 10, 11, 12, 13,
4, 5, 6, 7, 6, 7, 8, 9,
8, 9, 10, 11, 10, 11, 12, 13 };
static const uint8_t signal_pattern_2[32] = { 6, 7, 8, 9, 8, 9, 10, 11,
10, 11, 12, 13, 12, 13, 14, 15,
6, 7, 8, 9, 8, 9, 10, 11,
10, 11, 12, 13, 12, 13, 14, 15 };
static const uint32_t signal_index[8] = { 2, 3, 4, 5, 2, 3, 4, 5 };
#define CONV8_ROUNDING_BITS (7)
#define CONV8_ROUNDING_NUM (1 << (CONV8_ROUNDING_BITS - 1))
// -----------------------------------------------------------------------------
// Horizontal Filtering
static INLINE void pack_pixels(const __m256i *s, __m256i *p /*p[4]*/) {
const __m256i idx = _mm256_loadu_si256((const __m256i *)signal_index);
const __m256i sf0 = _mm256_loadu_si256((const __m256i *)signal_pattern_0);
const __m256i sf1 = _mm256_loadu_si256((const __m256i *)signal_pattern_1);
const __m256i c = _mm256_permutevar8x32_epi32(*s, idx);
p[0] = _mm256_shuffle_epi8(*s, sf0); // x0x6
p[1] = _mm256_shuffle_epi8(*s, sf1); // x1x7
p[2] = _mm256_shuffle_epi8(c, sf0); // x2x4
p[3] = _mm256_shuffle_epi8(c, sf1); // x3x5
}
// Note:
// Shared by 8x2 and 16x1 block
static INLINE void pack_16_pixels(const __m256i *s0, const __m256i *s1,
__m256i *x /*x[8]*/) {
__m256i pp[8];
pack_pixels(s0, pp);
pack_pixels(s1, &pp[4]);
x[0] = _mm256_permute2x128_si256(pp[0], pp[4], 0x20);
x[1] = _mm256_permute2x128_si256(pp[1], pp[5], 0x20);
x[2] = _mm256_permute2x128_si256(pp[2], pp[6], 0x20);
x[3] = _mm256_permute2x128_si256(pp[3], pp[7], 0x20);
x[4] = x[2];
x[5] = x[3];
x[6] = _mm256_permute2x128_si256(pp[0], pp[4], 0x31);
x[7] = _mm256_permute2x128_si256(pp[1], pp[5], 0x31);
}
static INLINE void pack_8x1_pixels(const uint16_t *src, __m256i *x) {
__m256i pp[8];
__m256i s0;
s0 = _mm256_loadu_si256((const __m256i *)src);
pack_pixels(&s0, pp);
x[0] = _mm256_permute2x128_si256(pp[0], pp[2], 0x30);
x[1] = _mm256_permute2x128_si256(pp[1], pp[3], 0x30);
x[2] = _mm256_permute2x128_si256(pp[2], pp[0], 0x30);
x[3] = _mm256_permute2x128_si256(pp[3], pp[1], 0x30);
}
static INLINE void pack_8x2_pixels(const uint16_t *src, ptrdiff_t stride,
__m256i *x) {
__m256i s0, s1;
s0 = _mm256_loadu_si256((const __m256i *)src);
s1 = _mm256_loadu_si256((const __m256i *)(src + stride));
pack_16_pixels(&s0, &s1, x);
}
static INLINE void pack_16x1_pixels(const uint16_t *src, __m256i *x) {
__m256i s0, s1;
s0 = _mm256_loadu_si256((const __m256i *)src);
s1 = _mm256_loadu_si256((const __m256i *)(src + 8));
pack_16_pixels(&s0, &s1, x);
}
// Note:
// Shared by horizontal and vertical filtering
static INLINE void pack_filters(const int16_t *filter, __m256i *f /*f[4]*/) {
const __m128i h = _mm_loadu_si128((const __m128i *)filter);
const __m256i hh = _mm256_insertf128_si256(_mm256_castsi128_si256(h), h, 1);
const __m256i p0 = _mm256_set1_epi32(0x03020100);
const __m256i p1 = _mm256_set1_epi32(0x07060504);
const __m256i p2 = _mm256_set1_epi32(0x0b0a0908);
const __m256i p3 = _mm256_set1_epi32(0x0f0e0d0c);
f[0] = _mm256_shuffle_epi8(hh, p0);
f[1] = _mm256_shuffle_epi8(hh, p1);
f[2] = _mm256_shuffle_epi8(hh, p2);
f[3] = _mm256_shuffle_epi8(hh, p3);
}
static INLINE void filter_8x1_pixels(const __m256i *sig /*sig[4]*/,
const __m256i *fil /*fil[4]*/,
__m256i *y) {
__m256i a, a0, a1;
a0 = _mm256_madd_epi16(fil[0], sig[0]);
a1 = _mm256_madd_epi16(fil[3], sig[3]);
a = _mm256_add_epi32(a0, a1);
a0 = _mm256_madd_epi16(fil[1], sig[1]);
a1 = _mm256_madd_epi16(fil[2], sig[2]);
{
const __m256i min = _mm256_min_epi32(a0, a1);
a = _mm256_add_epi32(a, min);
}
{
const __m256i max = _mm256_max_epi32(a0, a1);
a = _mm256_add_epi32(a, max);
}
{
const __m256i rounding = _mm256_set1_epi32(1 << (CONV8_ROUNDING_BITS - 1));
a = _mm256_add_epi32(a, rounding);
*y = _mm256_srai_epi32(a, CONV8_ROUNDING_BITS);
}
}
static INLINE void store_8x1_pixels(const __m256i *y, const __m256i *mask,
uint16_t *dst) {
const __m128i a0 = _mm256_castsi256_si128(*y);
const __m128i a1 = _mm256_extractf128_si256(*y, 1);
__m128i res = _mm_packus_epi32(a0, a1);
res = _mm_min_epi16(res, _mm256_castsi256_si128(*mask));
_mm_storeu_si128((__m128i *)dst, res);
}
static INLINE void store_8x2_pixels(const __m256i *y0, const __m256i *y1,
const __m256i *mask, uint16_t *dst,
ptrdiff_t pitch) {
__m256i a = _mm256_packus_epi32(*y0, *y1);
a = _mm256_min_epi16(a, *mask);
_mm_storeu_si128((__m128i *)dst, _mm256_castsi256_si128(a));
_mm_storeu_si128((__m128i *)(dst + pitch), _mm256_extractf128_si256(a, 1));
}
static INLINE void store_16x1_pixels(const __m256i *y0, const __m256i *y1,
const __m256i *mask, uint16_t *dst) {
__m256i a = _mm256_packus_epi32(*y0, *y1);
a = _mm256_min_epi16(a, *mask);
_mm256_storeu_si256((__m256i *)dst, a);
}
static void vpx_highbd_filter_block1d8_h8_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[8], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff[4];
pack_filters(filter, ff);
src_ptr -= 3;
do {
pack_8x2_pixels(src_ptr, src_pitch, signal);
filter_8x1_pixels(signal, ff, &res0);
filter_8x1_pixels(&signal[4], ff, &res1);
store_8x2_pixels(&res0, &res1, &max, dst_ptr, dst_pitch);
height -= 2;
src_ptr += src_pitch << 1;
dst_ptr += dst_pitch << 1;
} while (height > 1);
if (height > 0) {
pack_8x1_pixels(src_ptr, signal);
filter_8x1_pixels(signal, ff, &res0);
store_8x1_pixels(&res0, &max, dst_ptr);
}
}
static void vpx_highbd_filter_block1d16_h8_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[8], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff[4];
pack_filters(filter, ff);
src_ptr -= 3;
do {
pack_16x1_pixels(src_ptr, signal);
filter_8x1_pixels(signal, ff, &res0);
filter_8x1_pixels(&signal[4], ff, &res1);
store_16x1_pixels(&res0, &res1, &max, dst_ptr);
height -= 1;
src_ptr += src_pitch;
dst_ptr += dst_pitch;
} while (height > 0);
}
// -----------------------------------------------------------------------------
// 2-tap horizontal filtering
static INLINE void pack_2t_filter(const int16_t *filter, __m256i *f) {
const __m128i h = _mm_loadu_si128((const __m128i *)filter);
const __m256i hh = _mm256_insertf128_si256(_mm256_castsi128_si256(h), h, 1);
const __m256i p = _mm256_set1_epi32(0x09080706);
f[0] = _mm256_shuffle_epi8(hh, p);
}
// can be used by pack_8x2_2t_pixels() and pack_16x1_2t_pixels()
// the difference is s0/s1 specifies first and second rows or,
// first 16 samples and 8-sample shifted 16 samples
static INLINE void pack_16_2t_pixels(const __m256i *s0, const __m256i *s1,
__m256i *sig) {
const __m256i idx = _mm256_loadu_si256((const __m256i *)signal_index);
const __m256i sf2 = _mm256_loadu_si256((const __m256i *)signal_pattern_2);
__m256i x0 = _mm256_shuffle_epi8(*s0, sf2);
__m256i x1 = _mm256_shuffle_epi8(*s1, sf2);
__m256i r0 = _mm256_permutevar8x32_epi32(*s0, idx);
__m256i r1 = _mm256_permutevar8x32_epi32(*s1, idx);
r0 = _mm256_shuffle_epi8(r0, sf2);
r1 = _mm256_shuffle_epi8(r1, sf2);
sig[0] = _mm256_permute2x128_si256(x0, x1, 0x20);
sig[1] = _mm256_permute2x128_si256(r0, r1, 0x20);
}
static INLINE void pack_8x2_2t_pixels(const uint16_t *src,
const ptrdiff_t pitch, __m256i *sig) {
const __m256i r0 = _mm256_loadu_si256((const __m256i *)src);
const __m256i r1 = _mm256_loadu_si256((const __m256i *)(src + pitch));
pack_16_2t_pixels(&r0, &r1, sig);
}
static INLINE void pack_16x1_2t_pixels(const uint16_t *src,
__m256i *sig /*sig[2]*/) {
const __m256i r0 = _mm256_loadu_si256((const __m256i *)src);
const __m256i r1 = _mm256_loadu_si256((const __m256i *)(src + 8));
pack_16_2t_pixels(&r0, &r1, sig);
}
static INLINE void pack_8x1_2t_pixels(const uint16_t *src,
__m256i *sig /*sig[2]*/) {
const __m256i idx = _mm256_loadu_si256((const __m256i *)signal_index);
const __m256i sf2 = _mm256_loadu_si256((const __m256i *)signal_pattern_2);
__m256i r0 = _mm256_loadu_si256((const __m256i *)src);
__m256i x0 = _mm256_shuffle_epi8(r0, sf2);
r0 = _mm256_permutevar8x32_epi32(r0, idx);
r0 = _mm256_shuffle_epi8(r0, sf2);
sig[0] = _mm256_permute2x128_si256(x0, r0, 0x20);
}
// can be used by filter_8x2_2t_pixels() and filter_16x1_2t_pixels()
static INLINE void filter_16_2t_pixels(const __m256i *sig, const __m256i *f,
__m256i *y0, __m256i *y1) {
const __m256i rounding = _mm256_set1_epi32(1 << (CONV8_ROUNDING_BITS - 1));
__m256i x0 = _mm256_madd_epi16(sig[0], *f);
__m256i x1 = _mm256_madd_epi16(sig[1], *f);
x0 = _mm256_add_epi32(x0, rounding);
x1 = _mm256_add_epi32(x1, rounding);
*y0 = _mm256_srai_epi32(x0, CONV8_ROUNDING_BITS);
*y1 = _mm256_srai_epi32(x1, CONV8_ROUNDING_BITS);
}
static INLINE void filter_8x1_2t_pixels(const __m256i *sig, const __m256i *f,
__m256i *y0) {
const __m256i rounding = _mm256_set1_epi32(1 << (CONV8_ROUNDING_BITS - 1));
__m256i x0 = _mm256_madd_epi16(sig[0], *f);
x0 = _mm256_add_epi32(x0, rounding);
*y0 = _mm256_srai_epi32(x0, CONV8_ROUNDING_BITS);
}
static void vpx_highbd_filter_block1d8_h2_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[2], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff;
pack_2t_filter(filter, &ff);
src_ptr -= 3;
do {
pack_8x2_2t_pixels(src_ptr, src_pitch, signal);
filter_16_2t_pixels(signal, &ff, &res0, &res1);
store_8x2_pixels(&res0, &res1, &max, dst_ptr, dst_pitch);
height -= 2;
src_ptr += src_pitch << 1;
dst_ptr += dst_pitch << 1;
} while (height > 1);
if (height > 0) {
pack_8x1_2t_pixels(src_ptr, signal);
filter_8x1_2t_pixels(signal, &ff, &res0);
store_8x1_pixels(&res0, &max, dst_ptr);
}
}
static void vpx_highbd_filter_block1d16_h2_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[2], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff;
pack_2t_filter(filter, &ff);
src_ptr -= 3;
do {
pack_16x1_2t_pixels(src_ptr, signal);
filter_16_2t_pixels(signal, &ff, &res0, &res1);
store_16x1_pixels(&res0, &res1, &max, dst_ptr);
height -= 1;
src_ptr += src_pitch;
dst_ptr += dst_pitch;
} while (height > 0);
}
// -----------------------------------------------------------------------------
// Vertical Filtering
static void pack_8x9_init(const uint16_t *src, ptrdiff_t pitch, __m256i *sig) {
__m256i s0 = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)src));
__m256i s1 =
_mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src + pitch)));
__m256i s2 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src + 2 * pitch)));
__m256i s3 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src + 3 * pitch)));
__m256i s4 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src + 4 * pitch)));
__m256i s5 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src + 5 * pitch)));
__m256i s6 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src + 6 * pitch)));
s0 = _mm256_inserti128_si256(s0, _mm256_castsi256_si128(s1), 1);
s1 = _mm256_inserti128_si256(s1, _mm256_castsi256_si128(s2), 1);
s2 = _mm256_inserti128_si256(s2, _mm256_castsi256_si128(s3), 1);
s3 = _mm256_inserti128_si256(s3, _mm256_castsi256_si128(s4), 1);
s4 = _mm256_inserti128_si256(s4, _mm256_castsi256_si128(s5), 1);
s5 = _mm256_inserti128_si256(s5, _mm256_castsi256_si128(s6), 1);
sig[0] = _mm256_unpacklo_epi16(s0, s1);
sig[4] = _mm256_unpackhi_epi16(s0, s1);
sig[1] = _mm256_unpacklo_epi16(s2, s3);
sig[5] = _mm256_unpackhi_epi16(s2, s3);
sig[2] = _mm256_unpacklo_epi16(s4, s5);
sig[6] = _mm256_unpackhi_epi16(s4, s5);
sig[8] = s6;
}
static INLINE void pack_8x9_pixels(const uint16_t *src, ptrdiff_t pitch,
__m256i *sig) {
// base + 7th row
__m256i s0 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src + 7 * pitch)));
// base + 8th row
__m256i s1 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src + 8 * pitch)));
__m256i s2 = _mm256_inserti128_si256(sig[8], _mm256_castsi256_si128(s0), 1);
__m256i s3 = _mm256_inserti128_si256(s0, _mm256_castsi256_si128(s1), 1);
sig[3] = _mm256_unpacklo_epi16(s2, s3);
sig[7] = _mm256_unpackhi_epi16(s2, s3);
sig[8] = s1;
}
static INLINE void filter_8x9_pixels(const __m256i *sig, const __m256i *f,
__m256i *y0, __m256i *y1) {
filter_8x1_pixels(sig, f, y0);
filter_8x1_pixels(&sig[4], f, y1);
}
static INLINE void update_pixels(__m256i *sig) {
int i;
for (i = 0; i < 3; ++i) {
sig[i] = sig[i + 1];
sig[i + 4] = sig[i + 5];
}
}
static void vpx_highbd_filter_block1d8_v8_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[9], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff[4];
pack_filters(filter, ff);
pack_8x9_init(src_ptr, src_pitch, signal);
do {
pack_8x9_pixels(src_ptr, src_pitch, signal);
filter_8x9_pixels(signal, ff, &res0, &res1);
store_8x2_pixels(&res0, &res1, &max, dst_ptr, dst_pitch);
update_pixels(signal);
src_ptr += src_pitch << 1;
dst_ptr += dst_pitch << 1;
height -= 2;
} while (height > 0);
}
static void pack_16x9_init(const uint16_t *src, ptrdiff_t pitch, __m256i *sig) {
__m256i u0, u1, u2, u3;
// load 0-6 rows
const __m256i s0 = _mm256_loadu_si256((const __m256i *)src);
const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src + pitch));
const __m256i s2 = _mm256_loadu_si256((const __m256i *)(src + 2 * pitch));
const __m256i s3 = _mm256_loadu_si256((const __m256i *)(src + 3 * pitch));
const __m256i s4 = _mm256_loadu_si256((const __m256i *)(src + 4 * pitch));
const __m256i s5 = _mm256_loadu_si256((const __m256i *)(src + 5 * pitch));
const __m256i s6 = _mm256_loadu_si256((const __m256i *)(src + 6 * pitch));
u0 = _mm256_permute2x128_si256(s0, s1, 0x20); // 0, 1 low
u1 = _mm256_permute2x128_si256(s0, s1, 0x31); // 0, 1 high
u2 = _mm256_permute2x128_si256(s1, s2, 0x20); // 1, 2 low
u3 = _mm256_permute2x128_si256(s1, s2, 0x31); // 1, 2 high
sig[0] = _mm256_unpacklo_epi16(u0, u2);
sig[4] = _mm256_unpackhi_epi16(u0, u2);
sig[8] = _mm256_unpacklo_epi16(u1, u3);
sig[12] = _mm256_unpackhi_epi16(u1, u3);
u0 = _mm256_permute2x128_si256(s2, s3, 0x20);
u1 = _mm256_permute2x128_si256(s2, s3, 0x31);
u2 = _mm256_permute2x128_si256(s3, s4, 0x20);
u3 = _mm256_permute2x128_si256(s3, s4, 0x31);
sig[1] = _mm256_unpacklo_epi16(u0, u2);
sig[5] = _mm256_unpackhi_epi16(u0, u2);
sig[9] = _mm256_unpacklo_epi16(u1, u3);
sig[13] = _mm256_unpackhi_epi16(u1, u3);
u0 = _mm256_permute2x128_si256(s4, s5, 0x20);
u1 = _mm256_permute2x128_si256(s4, s5, 0x31);
u2 = _mm256_permute2x128_si256(s5, s6, 0x20);
u3 = _mm256_permute2x128_si256(s5, s6, 0x31);
sig[2] = _mm256_unpacklo_epi16(u0, u2);
sig[6] = _mm256_unpackhi_epi16(u0, u2);
sig[10] = _mm256_unpacklo_epi16(u1, u3);
sig[14] = _mm256_unpackhi_epi16(u1, u3);
sig[16] = s6;
}
static void pack_16x9_pixels(const uint16_t *src, ptrdiff_t pitch,
__m256i *sig) {
// base + 7th row
const __m256i s7 = _mm256_loadu_si256((const __m256i *)(src + 7 * pitch));
// base + 8th row
const __m256i s8 = _mm256_loadu_si256((const __m256i *)(src + 8 * pitch));
__m256i u0, u1, u2, u3;
u0 = _mm256_permute2x128_si256(sig[16], s7, 0x20);
u1 = _mm256_permute2x128_si256(sig[16], s7, 0x31);
u2 = _mm256_permute2x128_si256(s7, s8, 0x20);
u3 = _mm256_permute2x128_si256(s7, s8, 0x31);
sig[3] = _mm256_unpacklo_epi16(u0, u2);
sig[7] = _mm256_unpackhi_epi16(u0, u2);
sig[11] = _mm256_unpacklo_epi16(u1, u3);
sig[15] = _mm256_unpackhi_epi16(u1, u3);
sig[16] = s8;
}
static INLINE void filter_16x9_pixels(const __m256i *sig, const __m256i *f,
__m256i *y0, __m256i *y1) {
__m256i res[4];
int i;
for (i = 0; i < 4; ++i) {
filter_8x1_pixels(&sig[i << 2], f, &res[i]);
}
{
const __m256i l0l1 = _mm256_packus_epi32(res[0], res[1]);
const __m256i h0h1 = _mm256_packus_epi32(res[2], res[3]);
*y0 = _mm256_permute2x128_si256(l0l1, h0h1, 0x20);
*y1 = _mm256_permute2x128_si256(l0l1, h0h1, 0x31);
}
}
static INLINE void store_16x2_pixels(const __m256i *y0, const __m256i *y1,
const __m256i *mask, uint16_t *dst,
ptrdiff_t pitch) {
__m256i p = _mm256_min_epi16(*y0, *mask);
_mm256_storeu_si256((__m256i *)dst, p);
p = _mm256_min_epi16(*y1, *mask);
_mm256_storeu_si256((__m256i *)(dst + pitch), p);
}
static void update_16x9_pixels(__m256i *sig) {
update_pixels(&sig[0]);
update_pixels(&sig[8]);
}
static void vpx_highbd_filter_block1d16_v8_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[17], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff[4];
pack_filters(filter, ff);
pack_16x9_init(src_ptr, src_pitch, signal);
do {
pack_16x9_pixels(src_ptr, src_pitch, signal);
filter_16x9_pixels(signal, ff, &res0, &res1);
store_16x2_pixels(&res0, &res1, &max, dst_ptr, dst_pitch);
update_16x9_pixels(signal);
src_ptr += src_pitch << 1;
dst_ptr += dst_pitch << 1;
height -= 2;
} while (height > 0);
}
// -----------------------------------------------------------------------------
// 2-tap vertical filtering
static void pack_16x2_init(const uint16_t *src, __m256i *sig) {
sig[2] = _mm256_loadu_si256((const __m256i *)src);
}
static INLINE void pack_16x2_2t_pixels(const uint16_t *src, ptrdiff_t pitch,
__m256i *sig) {
// load the next row
const __m256i u = _mm256_loadu_si256((const __m256i *)(src + pitch));
sig[0] = _mm256_unpacklo_epi16(sig[2], u);
sig[1] = _mm256_unpackhi_epi16(sig[2], u);
sig[2] = u;
}
static INLINE void filter_16x2_2t_pixels(const __m256i *sig, const __m256i *f,
__m256i *y0, __m256i *y1) {
filter_16_2t_pixels(sig, f, y0, y1);
}
static void vpx_highbd_filter_block1d16_v2_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[3], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff;
pack_2t_filter(filter, &ff);
pack_16x2_init(src_ptr, signal);
do {
pack_16x2_2t_pixels(src_ptr, src_pitch, signal);
filter_16x2_2t_pixels(signal, &ff, &res0, &res1);
store_16x1_pixels(&res0, &res1, &max, dst_ptr);
src_ptr += src_pitch;
dst_ptr += dst_pitch;
height -= 1;
} while (height > 0);
}
static INLINE void pack_8x1_2t_filter(const int16_t *filter, __m128i *f) {
const __m128i h = _mm_loadu_si128((const __m128i *)filter);
const __m128i p = _mm_set1_epi32(0x09080706);
f[0] = _mm_shuffle_epi8(h, p);
}
static void pack_8x2_init(const uint16_t *src, __m128i *sig) {
sig[2] = _mm_loadu_si128((const __m128i *)src);
}
static INLINE void pack_8x2_2t_pixels_ver(const uint16_t *src, ptrdiff_t pitch,
__m128i *sig) {
// load the next row
const __m128i u = _mm_loadu_si128((const __m128i *)(src + pitch));
sig[0] = _mm_unpacklo_epi16(sig[2], u);
sig[1] = _mm_unpackhi_epi16(sig[2], u);
sig[2] = u;
}
static INLINE void filter_8_2t_pixels(const __m128i *sig, const __m128i *f,
__m128i *y0, __m128i *y1) {
const __m128i rounding = _mm_set1_epi32(1 << (CONV8_ROUNDING_BITS - 1));
__m128i x0 = _mm_madd_epi16(sig[0], *f);
__m128i x1 = _mm_madd_epi16(sig[1], *f);
x0 = _mm_add_epi32(x0, rounding);
x1 = _mm_add_epi32(x1, rounding);
*y0 = _mm_srai_epi32(x0, CONV8_ROUNDING_BITS);
*y1 = _mm_srai_epi32(x1, CONV8_ROUNDING_BITS);
}
static INLINE void store_8x1_2t_pixels_ver(const __m128i *y0, const __m128i *y1,
const __m128i *mask, uint16_t *dst) {
__m128i res = _mm_packus_epi32(*y0, *y1);
res = _mm_min_epi16(res, *mask);
_mm_storeu_si128((__m128i *)dst, res);
}
static void vpx_highbd_filter_block1d8_v2_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m128i signal[3], res0, res1;
const __m128i max = _mm_set1_epi16((1 << bd) - 1);
__m128i ff;
pack_8x1_2t_filter(filter, &ff);
pack_8x2_init(src_ptr, signal);
do {
pack_8x2_2t_pixels_ver(src_ptr, src_pitch, signal);
filter_8_2t_pixels(signal, &ff, &res0, &res1);
store_8x1_2t_pixels_ver(&res0, &res1, &max, dst_ptr);
src_ptr += src_pitch;
dst_ptr += dst_pitch;
height -= 1;
} while (height > 0);
}
// Calculation with averaging the input pixels
static INLINE void store_8x1_avg_pixels(const __m256i *y0, const __m256i *mask,
uint16_t *dst) {
const __m128i a0 = _mm256_castsi256_si128(*y0);
const __m128i a1 = _mm256_extractf128_si256(*y0, 1);
__m128i res = _mm_packus_epi32(a0, a1);
const __m128i pix = _mm_loadu_si128((const __m128i *)dst);
res = _mm_min_epi16(res, _mm256_castsi256_si128(*mask));
res = _mm_avg_epu16(res, pix);
_mm_storeu_si128((__m128i *)dst, res);
}
static INLINE void store_8x2_avg_pixels(const __m256i *y0, const __m256i *y1,
const __m256i *mask, uint16_t *dst,
ptrdiff_t pitch) {
__m256i a = _mm256_packus_epi32(*y0, *y1);
const __m128i pix0 = _mm_loadu_si128((const __m128i *)dst);
const __m128i pix1 = _mm_loadu_si128((const __m128i *)(dst + pitch));
const __m256i pix =
_mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1);
a = _mm256_min_epi16(a, *mask);
a = _mm256_avg_epu16(a, pix);
_mm_storeu_si128((__m128i *)dst, _mm256_castsi256_si128(a));
_mm_storeu_si128((__m128i *)(dst + pitch), _mm256_extractf128_si256(a, 1));
}
static INLINE void store_16x1_avg_pixels(const __m256i *y0, const __m256i *y1,
const __m256i *mask, uint16_t *dst) {
__m256i a = _mm256_packus_epi32(*y0, *y1);
const __m256i pix = _mm256_loadu_si256((const __m256i *)dst);
a = _mm256_min_epi16(a, *mask);
a = _mm256_avg_epu16(a, pix);
_mm256_storeu_si256((__m256i *)dst, a);
}
static INLINE void store_16x2_avg_pixels(const __m256i *y0, const __m256i *y1,
const __m256i *mask, uint16_t *dst,
ptrdiff_t pitch) {
const __m256i pix0 = _mm256_loadu_si256((const __m256i *)dst);
const __m256i pix1 = _mm256_loadu_si256((const __m256i *)(dst + pitch));
__m256i p = _mm256_min_epi16(*y0, *mask);
p = _mm256_avg_epu16(p, pix0);
_mm256_storeu_si256((__m256i *)dst, p);
p = _mm256_min_epi16(*y1, *mask);
p = _mm256_avg_epu16(p, pix1);
_mm256_storeu_si256((__m256i *)(dst + pitch), p);
}
static INLINE void store_8x1_2t_avg_pixels_ver(const __m128i *y0,
const __m128i *y1,
const __m128i *mask,
uint16_t *dst) {
__m128i res = _mm_packus_epi32(*y0, *y1);
const __m128i pix = _mm_loadu_si128((const __m128i *)dst);
res = _mm_min_epi16(res, *mask);
res = _mm_avg_epu16(res, pix);
_mm_storeu_si128((__m128i *)dst, res);
}
static void vpx_highbd_filter_block1d8_h8_avg_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[8], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff[4];
pack_filters(filter, ff);
src_ptr -= 3;
do {
pack_8x2_pixels(src_ptr, src_pitch, signal);
filter_8x1_pixels(signal, ff, &res0);
filter_8x1_pixels(&signal[4], ff, &res1);
store_8x2_avg_pixels(&res0, &res1, &max, dst_ptr, dst_pitch);
height -= 2;
src_ptr += src_pitch << 1;
dst_ptr += dst_pitch << 1;
} while (height > 1);
if (height > 0) {
pack_8x1_pixels(src_ptr, signal);
filter_8x1_pixels(signal, ff, &res0);
store_8x1_avg_pixels(&res0, &max, dst_ptr);
}
}
static void vpx_highbd_filter_block1d16_h8_avg_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[8], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff[4];
pack_filters(filter, ff);
src_ptr -= 3;
do {
pack_16x1_pixels(src_ptr, signal);
filter_8x1_pixels(signal, ff, &res0);
filter_8x1_pixels(&signal[4], ff, &res1);
store_16x1_avg_pixels(&res0, &res1, &max, dst_ptr);
height -= 1;
src_ptr += src_pitch;
dst_ptr += dst_pitch;
} while (height > 0);
}
static void vpx_highbd_filter_block1d4_h4_avx2(
const uint16_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel, int bd) {
// We extract the middle four elements of the kernel into two registers in
// the form
// ... k[3] k[2] k[3] k[2]
// ... k[5] k[4] k[5] k[4]
// Then we shuffle the source into
// ... s[1] s[0] s[0] s[-1]
// ... s[3] s[2] s[2] s[1]
// Calling multiply and add gives us half of the sum. Calling add on the two
// halves gives us the output. Since avx2 allows us to use 256-bit buffer, we
// can do this two rows at a time.
__m256i src_reg, src_reg_shift_0, src_reg_shift_2;
__m256i res_reg;
__m256i idx_shift_0 =
_mm256_setr_epi8(0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 0, 1, 2,
3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9);
__m256i idx_shift_2 =
_mm256_setr_epi8(4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 4,
5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13);
__m128i kernel_reg_128; // Kernel
__m256i kernel_reg, kernel_reg_23,
kernel_reg_45; // Segments of the kernel used
const __m256i reg_round =
_mm256_set1_epi32(CONV8_ROUNDING_NUM); // Used for rounding
const __m256i reg_max = _mm256_set1_epi16((1 << bd) - 1);
const ptrdiff_t unrolled_src_stride = src_stride << 1;
const ptrdiff_t unrolled_dst_stride = dst_stride << 1;
int h;
// Start one pixel before as we need tap/2 - 1 = 1 sample from the past
src_ptr -= 1;
// Load Kernel
kernel_reg_128 = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm256_broadcastsi128_si256(kernel_reg_128);
kernel_reg_23 = _mm256_shuffle_epi32(kernel_reg, 0x55);
kernel_reg_45 = _mm256_shuffle_epi32(kernel_reg, 0xaa);
for (h = height; h >= 2; h -= 2) {
// Load the source
src_reg = mm256_loadu2_si128(src_ptr, src_ptr + src_stride);
src_reg_shift_0 = _mm256_shuffle_epi8(src_reg, idx_shift_0);
src_reg_shift_2 = _mm256_shuffle_epi8(src_reg, idx_shift_2);
// Get the output
res_reg = mm256_madd_add_epi32(&src_reg_shift_0, &src_reg_shift_2,
&kernel_reg_23, &kernel_reg_45);
// Round the result
res_reg = mm256_round_epi32(&res_reg, &reg_round, CONV8_ROUNDING_BITS);
// Finally combine to get the final dst
res_reg = _mm256_packus_epi32(res_reg, res_reg);
res_reg = _mm256_min_epi16(res_reg, reg_max);
mm256_storeu2_epi64((__m128i *)dst_ptr, (__m128i *)(dst_ptr + dst_stride),
&res_reg);
src_ptr += unrolled_src_stride;
dst_ptr += unrolled_dst_stride;
}
// Repeat for the last row if needed
if (h > 0) {
// Load the source
src_reg = mm256_loadu2_si128(src_ptr, src_ptr + 4);
src_reg_shift_0 = _mm256_shuffle_epi8(src_reg, idx_shift_0);
src_reg_shift_2 = _mm256_shuffle_epi8(src_reg, idx_shift_2);
// Get the output
res_reg = mm256_madd_add_epi32(&src_reg_shift_0, &src_reg_shift_2,
&kernel_reg_23, &kernel_reg_45);
// Round the result
res_reg = mm256_round_epi32(&res_reg, &reg_round, CONV8_ROUNDING_BITS);
// Finally combine to get the final dst
res_reg = _mm256_packus_epi32(res_reg, res_reg);
res_reg = _mm256_min_epi16(res_reg, reg_max);
_mm_storel_epi64((__m128i *)dst_ptr, _mm256_castsi256_si128(res_reg));
}
}
static void vpx_highbd_filter_block1d8_h4_avx2(
const uint16_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel, int bd) {
// We will extract the middle four elements of the kernel into two registers
// in the form
// ... k[3] k[2] k[3] k[2]
// ... k[5] k[4] k[5] k[4]
// Then we shuffle the source into
// ... s[1] s[0] s[0] s[-1]
// ... s[3] s[2] s[2] s[1]
// Calling multiply and add gives us half of the sum of the first half.
// Calling add gives us first half of the output. Repat again to get the whole
// output. Since avx2 allows us to use 256-bit buffer, we can do this two rows
// at a time.
__m256i src_reg, src_reg_shift_0, src_reg_shift_2;
__m256i res_reg, res_first, res_last;
__m256i idx_shift_0 =
_mm256_setr_epi8(0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 0, 1, 2,
3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9);
__m256i idx_shift_2 =
_mm256_setr_epi8(4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 4,
5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13);
__m128i kernel_reg_128; // Kernel
__m256i kernel_reg, kernel_reg_23,
kernel_reg_45; // Segments of the kernel used
const __m256i reg_round =
_mm256_set1_epi32(CONV8_ROUNDING_NUM); // Used for rounding
const __m256i reg_max = _mm256_set1_epi16((1 << bd) - 1);
const ptrdiff_t unrolled_src_stride = src_stride << 1;
const ptrdiff_t unrolled_dst_stride = dst_stride << 1;
int h;
// Start one pixel before as we need tap/2 - 1 = 1 sample from the past
src_ptr -= 1;
// Load Kernel
kernel_reg_128 = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm256_broadcastsi128_si256(kernel_reg_128);
kernel_reg_23 = _mm256_shuffle_epi32(kernel_reg, 0x55);
kernel_reg_45 = _mm256_shuffle_epi32(kernel_reg, 0xaa);
for (h = height; h >= 2; h -= 2) {
// Load the source
src_reg = mm256_loadu2_si128(src_ptr, src_ptr + src_stride);
src_reg_shift_0 = _mm256_shuffle_epi8(src_reg, idx_shift_0);
src_reg_shift_2 = _mm256_shuffle_epi8(src_reg, idx_shift_2);
// Result for first half
res_first = mm256_madd_add_epi32(&src_reg_shift_0, &src_reg_shift_2,
&kernel_reg_23, &kernel_reg_45);
// Do again to get the second half of dst
// Load the source
src_reg = mm256_loadu2_si128(src_ptr + 4, src_ptr + src_stride + 4);
src_reg_shift_0 = _mm256_shuffle_epi8(src_reg, idx_shift_0);
src_reg_shift_2 = _mm256_shuffle_epi8(src_reg, idx_shift_2);
// Result for second half
res_last = mm256_madd_add_epi32(&src_reg_shift_0, &src_reg_shift_2,
&kernel_reg_23, &kernel_reg_45);
// Round each result
res_first = mm256_round_epi32(&res_first, &reg_round, CONV8_ROUNDING_BITS);
res_last = mm256_round_epi32(&res_last, &reg_round, CONV8_ROUNDING_BITS);
// Finally combine to get the final dst
res_reg = _mm256_packus_epi32(res_first, res_last);
res_reg = _mm256_min_epi16(res_reg, reg_max);
mm256_store2_si128((__m128i *)dst_ptr, (__m128i *)(dst_ptr + dst_stride),
&res_reg);
src_ptr += unrolled_src_stride;
dst_ptr += unrolled_dst_stride;
}
// Repeat for the last row if needed
if (h > 0) {
src_reg = mm256_loadu2_si128(src_ptr, src_ptr + 4);
src_reg_shift_0 = _mm256_shuffle_epi8(src_reg, idx_shift_0);
src_reg_shift_2 = _mm256_shuffle_epi8(src_reg, idx_shift_2);
res_reg = mm256_madd_add_epi32(&src_reg_shift_0, &src_reg_shift_2,
&kernel_reg_23, &kernel_reg_45);
res_reg = mm256_round_epi32(&res_reg, &reg_round, CONV8_ROUNDING_BITS);
res_reg = _mm256_packus_epi32(res_reg, res_reg);
res_reg = _mm256_min_epi16(res_reg, reg_max);
mm256_storeu2_epi64((__m128i *)dst_ptr, (__m128i *)(dst_ptr + 4), &res_reg);
}
}
static void vpx_highbd_filter_block1d16_h4_avx2(
const uint16_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel, int bd) {
vpx_highbd_filter_block1d8_h4_avx2(src_ptr, src_stride, dst_ptr, dst_stride,
height, kernel, bd);
vpx_highbd_filter_block1d8_h4_avx2(src_ptr + 8, src_stride, dst_ptr + 8,
dst_stride, height, kernel, bd);
}
static void vpx_highbd_filter_block1d8_v8_avg_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[9], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff[4];
pack_filters(filter, ff);
pack_8x9_init(src_ptr, src_pitch, signal);
do {
pack_8x9_pixels(src_ptr, src_pitch, signal);
filter_8x9_pixels(signal, ff, &res0, &res1);
store_8x2_avg_pixels(&res0, &res1, &max, dst_ptr, dst_pitch);
update_pixels(signal);
src_ptr += src_pitch << 1;
dst_ptr += dst_pitch << 1;
height -= 2;
} while (height > 0);
}
static void vpx_highbd_filter_block1d16_v8_avg_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[17], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff[4];
pack_filters(filter, ff);
pack_16x9_init(src_ptr, src_pitch, signal);
do {
pack_16x9_pixels(src_ptr, src_pitch, signal);
filter_16x9_pixels(signal, ff, &res0, &res1);
store_16x2_avg_pixels(&res0, &res1, &max, dst_ptr, dst_pitch);
update_16x9_pixels(signal);
src_ptr += src_pitch << 1;
dst_ptr += dst_pitch << 1;
height -= 2;
} while (height > 0);
}
static void vpx_highbd_filter_block1d8_h2_avg_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[2], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff;
pack_2t_filter(filter, &ff);
src_ptr -= 3;
do {
pack_8x2_2t_pixels(src_ptr, src_pitch, signal);
filter_16_2t_pixels(signal, &ff, &res0, &res1);
store_8x2_avg_pixels(&res0, &res1, &max, dst_ptr, dst_pitch);
height -= 2;
src_ptr += src_pitch << 1;
dst_ptr += dst_pitch << 1;
} while (height > 1);
if (height > 0) {
pack_8x1_2t_pixels(src_ptr, signal);
filter_8x1_2t_pixels(signal, &ff, &res0);
store_8x1_avg_pixels(&res0, &max, dst_ptr);
}
}
static void vpx_highbd_filter_block1d16_h2_avg_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[2], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff;
pack_2t_filter(filter, &ff);
src_ptr -= 3;
do {
pack_16x1_2t_pixels(src_ptr, signal);
filter_16_2t_pixels(signal, &ff, &res0, &res1);
store_16x1_avg_pixels(&res0, &res1, &max, dst_ptr);
height -= 1;
src_ptr += src_pitch;
dst_ptr += dst_pitch;
} while (height > 0);
}
static void vpx_highbd_filter_block1d16_v2_avg_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m256i signal[3], res0, res1;
const __m256i max = _mm256_set1_epi16((1 << bd) - 1);
__m256i ff;
pack_2t_filter(filter, &ff);
pack_16x2_init(src_ptr, signal);
do {
pack_16x2_2t_pixels(src_ptr, src_pitch, signal);
filter_16x2_2t_pixels(signal, &ff, &res0, &res1);
store_16x1_avg_pixels(&res0, &res1, &max, dst_ptr);
src_ptr += src_pitch;
dst_ptr += dst_pitch;
height -= 1;
} while (height > 0);
}
static void vpx_highbd_filter_block1d8_v2_avg_avx2(
const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr,
ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) {
__m128i signal[3], res0, res1;
const __m128i max = _mm_set1_epi16((1 << bd) - 1);
__m128i ff;
pack_8x1_2t_filter(filter, &ff);
pack_8x2_init(src_ptr, signal);
do {
pack_8x2_2t_pixels_ver(src_ptr, src_pitch, signal);
filter_8_2t_pixels(signal, &ff, &res0, &res1);
store_8x1_2t_avg_pixels_ver(&res0, &res1, &max, dst_ptr);
src_ptr += src_pitch;
dst_ptr += dst_pitch;
height -= 1;
} while (height > 0);
}
static void vpx_highbd_filter_block1d4_v4_avx2(
const uint16_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel, int bd) {
// We will load two rows of pixels and rearrange them into the form
// ... s[1,0] s[0,0] s[0,0] s[-1,0]
// so that we can call multiply and add with the kernel partial output. Then
// we can call add with another row to get the output.
// Register for source s[-1:3, :]
__m256i src_reg_1, src_reg_2, src_reg_3;
// Interleaved rows of the source. lo is first half, hi second
__m256i src_reg_m10, src_reg_01, src_reg_12, src_reg_23;
__m256i src_reg_m1001, src_reg_1223;
// Result after multiply and add
__m256i res_reg;
__m128i kernel_reg_128; // Kernel
__m256i kernel_reg, kernel_reg_23, kernel_reg_45; // Segments of kernel used
const __m256i reg_round =
_mm256_set1_epi32(CONV8_ROUNDING_NUM); // Used for rounding
const __m256i reg_max = _mm256_set1_epi16((1 << bd) - 1);
const ptrdiff_t src_stride_unrolled = src_stride << 1;
const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
int h;
// Load Kernel
kernel_reg_128 = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm256_broadcastsi128_si256(kernel_reg_128);
kernel_reg_23 = _mm256_shuffle_epi32(kernel_reg, 0x55);
kernel_reg_45 = _mm256_shuffle_epi32(kernel_reg, 0xaa);
// Row -1 to row 0
src_reg_m10 = mm256_loadu2_epi64((const __m128i *)src_ptr,
(const __m128i *)(src_ptr + src_stride));
// Row 0 to row 1
src_reg_1 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 2)));
src_reg_01 = _mm256_permute2x128_si256(src_reg_m10, src_reg_1, 0x21);
// First three rows
src_reg_m1001 = _mm256_unpacklo_epi16(src_reg_m10, src_reg_01);
for (h = height; h > 1; h -= 2) {
src_reg_2 = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 3)));
src_reg_12 = _mm256_inserti128_si256(src_reg_1,
_mm256_castsi256_si128(src_reg_2), 1);
src_reg_3 = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 4)));
src_reg_23 = _mm256_inserti128_si256(src_reg_2,
_mm256_castsi256_si128(src_reg_3), 1);
// Last three rows
src_reg_1223 = _mm256_unpacklo_epi16(src_reg_12, src_reg_23);
// Output
res_reg = mm256_madd_add_epi32(&src_reg_m1001, &src_reg_1223,
&kernel_reg_23, &kernel_reg_45);
// Round the words
res_reg = mm256_round_epi32(&res_reg, &reg_round, CONV8_ROUNDING_BITS);
// Combine to get the result
res_reg = _mm256_packus_epi32(res_reg, res_reg);
res_reg = _mm256_min_epi16(res_reg, reg_max);
// Save the result
mm256_storeu2_epi64((__m128i *)dst_ptr, (__m128i *)(dst_ptr + dst_stride),
&res_reg);
// Update the source by two rows
src_ptr += src_stride_unrolled;
dst_ptr += dst_stride_unrolled;
src_reg_m1001 = src_reg_1223;
src_reg_1 = src_reg_3;
}
}
static void vpx_highbd_filter_block1d8_v4_avx2(
const uint16_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel, int bd) {
// We will load two rows of pixels and rearrange them into the form
// ... s[1,0] s[0,0] s[0,0] s[-1,0]
// so that we can call multiply and add with the kernel partial output. Then
// we can call add with another row to get the output.
// Register for source s[-1:3, :]
__m256i src_reg_1, src_reg_2, src_reg_3;
// Interleaved rows of the source. lo is first half, hi second
__m256i src_reg_m10, src_reg_01, src_reg_12, src_reg_23;
__m256i src_reg_m1001_lo, src_reg_m1001_hi, src_reg_1223_lo, src_reg_1223_hi;
__m128i kernel_reg_128; // Kernel
__m256i kernel_reg, kernel_reg_23, kernel_reg_45; // Segments of kernel
// Result after multiply and add
__m256i res_reg, res_reg_lo, res_reg_hi;
const __m256i reg_round =
_mm256_set1_epi32(CONV8_ROUNDING_NUM); // Used for rounding
const __m256i reg_max = _mm256_set1_epi16((1 << bd) - 1);
const ptrdiff_t src_stride_unrolled = src_stride << 1;
const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
int h;
// Load Kernel
kernel_reg_128 = _mm_loadu_si128((const __m128i *)kernel);
kernel_reg = _mm256_broadcastsi128_si256(kernel_reg_128);
kernel_reg_23 = _mm256_shuffle_epi32(kernel_reg, 0x55);
kernel_reg_45 = _mm256_shuffle_epi32(kernel_reg, 0xaa);
// Row -1 to row 0
src_reg_m10 = mm256_loadu2_si128((const __m128i *)src_ptr,
(const __m128i *)(src_ptr + src_stride));
// Row 0 to row 1
src_reg_1 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 2)));
src_reg_01 = _mm256_permute2x128_si256(src_reg_m10, src_reg_1, 0x21);
// First three rows
src_reg_m1001_lo = _mm256_unpacklo_epi16(src_reg_m10, src_reg_01);
src_reg_m1001_hi = _mm256_unpackhi_epi16(src_reg_m10, src_reg_01);
for (h = height; h > 1; h -= 2) {
src_reg_2 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 3)));
src_reg_12 = _mm256_inserti128_si256(src_reg_1,
_mm256_castsi256_si128(src_reg_2), 1);
src_reg_3 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 4)));
src_reg_23 = _mm256_inserti128_si256(src_reg_2,
_mm256_castsi256_si128(src_reg_3), 1);
// Last three rows
src_reg_1223_lo = _mm256_unpacklo_epi16(src_reg_12, src_reg_23);
src_reg_1223_hi = _mm256_unpackhi_epi16(src_reg_12, src_reg_23);
// Output from first half
res_reg_lo = mm256_madd_add_epi32(&src_reg_m1001_lo, &src_reg_1223_lo,
&kernel_reg_23, &kernel_reg_45);
// Output from second half
res_reg_hi = mm256_madd_add_epi32(&src_reg_m1001_hi, &src_reg_1223_hi,
&kernel_reg_23, &kernel_reg_45);
// Round the words
res_reg_lo =
mm256_round_epi32(&res_reg_lo, &reg_round, CONV8_ROUNDING_BITS);
res_reg_hi =
mm256_round_epi32(&res_reg_hi, &reg_round, CONV8_ROUNDING_BITS);
// Combine to get the result
res_reg = _mm256_packus_epi32(res_reg_lo, res_reg_hi);
res_reg = _mm256_min_epi16(res_reg, reg_max);
// Save the result
mm256_store2_si128((__m128i *)dst_ptr, (__m128i *)(dst_ptr + dst_stride),
&res_reg);
// Update the source by two rows
src_ptr += src_stride_unrolled;
dst_ptr += dst_stride_unrolled;
src_reg_m1001_lo = src_reg_1223_lo;
src_reg_m1001_hi = src_reg_1223_hi;
src_reg_1 = src_reg_3;
}
}
static void vpx_highbd_filter_block1d16_v4_avx2(
const uint16_t *src_ptr, ptrdiff_t src_stride, uint16_t *dst_ptr,
ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel, int bd) {
vpx_highbd_filter_block1d8_v4_avx2(src_ptr, src_stride, dst_ptr, dst_stride,
height, kernel, bd);
vpx_highbd_filter_block1d8_v4_avx2(src_ptr + 8, src_stride, dst_ptr + 8,
dst_stride, height, kernel, bd);
}
// From vpx_dsp/x86/vpx_high_subpixel_8t_sse2.asm.
highbd_filter8_1dfunction vpx_highbd_filter_block1d4_h8_sse2;
highbd_filter8_1dfunction vpx_highbd_filter_block1d4_v8_sse2;
// From vpx_dsp/x86/vpx_high_subpixel_bilinear_sse2.asm.
highbd_filter8_1dfunction vpx_highbd_filter_block1d4_h2_sse2;
highbd_filter8_1dfunction vpx_highbd_filter_block1d4_v2_sse2;
#define vpx_highbd_filter_block1d4_h8_avx2 vpx_highbd_filter_block1d4_h8_sse2
#define vpx_highbd_filter_block1d4_h2_avx2 vpx_highbd_filter_block1d4_h2_sse2
#define vpx_highbd_filter_block1d4_v8_avx2 vpx_highbd_filter_block1d4_v8_sse2
#define vpx_highbd_filter_block1d4_v2_avx2 vpx_highbd_filter_block1d4_v2_sse2
// Use the [vh]8 version because there is no [vh]4 implementation.
#define vpx_highbd_filter_block1d16_v4_avg_avx2 \
vpx_highbd_filter_block1d16_v8_avg_avx2
#define vpx_highbd_filter_block1d16_h4_avg_avx2 \
vpx_highbd_filter_block1d16_h8_avg_avx2
#define vpx_highbd_filter_block1d8_v4_avg_avx2 \
vpx_highbd_filter_block1d8_v8_avg_avx2
#define vpx_highbd_filter_block1d8_h4_avg_avx2 \
vpx_highbd_filter_block1d8_h8_avg_avx2
#define vpx_highbd_filter_block1d4_v4_avg_avx2 \
vpx_highbd_filter_block1d4_v8_avg_avx2
#define vpx_highbd_filter_block1d4_h4_avg_avx2 \
vpx_highbd_filter_block1d4_h8_avg_avx2
HIGH_FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , avx2, 0);
HIGH_FUN_CONV_1D(vert, y0_q4, y_step_q4, v,
src - src_stride * (num_taps / 2 - 1), , avx2, 0);
HIGH_FUN_CONV_2D(, avx2, 0);
// From vpx_dsp/x86/vpx_high_subpixel_8t_sse2.asm.
highbd_filter8_1dfunction vpx_highbd_filter_block1d4_h8_avg_sse2;
highbd_filter8_1dfunction vpx_highbd_filter_block1d4_v8_avg_sse2;
// From vpx_dsp/x86/vpx_high_subpixel_bilinear_sse2.asm.
highbd_filter8_1dfunction vpx_highbd_filter_block1d4_h2_avg_sse2;
highbd_filter8_1dfunction vpx_highbd_filter_block1d4_v2_avg_sse2;
#define vpx_highbd_filter_block1d4_h8_avg_avx2 \
vpx_highbd_filter_block1d4_h8_avg_sse2
#define vpx_highbd_filter_block1d4_h2_avg_avx2 \
vpx_highbd_filter_block1d4_h2_avg_sse2
#define vpx_highbd_filter_block1d4_v8_avg_avx2 \
vpx_highbd_filter_block1d4_v8_avg_sse2
#define vpx_highbd_filter_block1d4_v2_avg_avx2 \
vpx_highbd_filter_block1d4_v2_avg_sse2
HIGH_FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, avx2, 1);
HIGH_FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v,
src - src_stride * (num_taps / 2 - 1), avg_, avx2, 1);
HIGH_FUN_CONV_2D(avg_, avx2, 1);
#undef HIGHBD_FUNC