blob: d99870903b62d811cad99f624876649abc6a3c25 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VPX_VPX_DSP_ARM_FDCT16X16_NEON_H_
#define VPX_VPX_DSP_ARM_FDCT16X16_NEON_H_
#include <arm_neon.h>
#include "fdct_neon.h"
static INLINE void load(const int16_t *a, int stride, int16x8_t *b /*[16]*/) {
b[0] = vld1q_s16(a);
a += stride;
b[1] = vld1q_s16(a);
a += stride;
b[2] = vld1q_s16(a);
a += stride;
b[3] = vld1q_s16(a);
a += stride;
b[4] = vld1q_s16(a);
a += stride;
b[5] = vld1q_s16(a);
a += stride;
b[6] = vld1q_s16(a);
a += stride;
b[7] = vld1q_s16(a);
a += stride;
b[8] = vld1q_s16(a);
a += stride;
b[9] = vld1q_s16(a);
a += stride;
b[10] = vld1q_s16(a);
a += stride;
b[11] = vld1q_s16(a);
a += stride;
b[12] = vld1q_s16(a);
a += stride;
b[13] = vld1q_s16(a);
a += stride;
b[14] = vld1q_s16(a);
a += stride;
b[15] = vld1q_s16(a);
}
// Store 8 16x8 values, assuming stride == 16.
static INLINE void store(tran_low_t *a, const int16x8_t *b /*[8]*/) {
store_s16q_to_tran_low(a, b[0]);
a += 16;
store_s16q_to_tran_low(a, b[1]);
a += 16;
store_s16q_to_tran_low(a, b[2]);
a += 16;
store_s16q_to_tran_low(a, b[3]);
a += 16;
store_s16q_to_tran_low(a, b[4]);
a += 16;
store_s16q_to_tran_low(a, b[5]);
a += 16;
store_s16q_to_tran_low(a, b[6]);
a += 16;
store_s16q_to_tran_low(a, b[7]);
}
// Load step of each pass. Add and subtract clear across the input, requiring
// all 16 values to be loaded. For the first pass it also multiplies by 4.
// To maybe reduce register usage this could be combined with the load() step to
// get the first 4 and last 4 values, cross those, then load the middle 8 values
// and cross them.
static INLINE void scale_input(const int16x8_t *a /*[16]*/,
int16x8_t *b /*[16]*/) {
b[0] = vshlq_n_s16(a[0], 2);
b[1] = vshlq_n_s16(a[1], 2);
b[2] = vshlq_n_s16(a[2], 2);
b[3] = vshlq_n_s16(a[3], 2);
b[4] = vshlq_n_s16(a[4], 2);
b[5] = vshlq_n_s16(a[5], 2);
b[6] = vshlq_n_s16(a[6], 2);
b[7] = vshlq_n_s16(a[7], 2);
b[8] = vshlq_n_s16(a[8], 2);
b[9] = vshlq_n_s16(a[9], 2);
b[10] = vshlq_n_s16(a[10], 2);
b[11] = vshlq_n_s16(a[11], 2);
b[12] = vshlq_n_s16(a[12], 2);
b[13] = vshlq_n_s16(a[13], 2);
b[14] = vshlq_n_s16(a[14], 2);
b[15] = vshlq_n_s16(a[15], 2);
}
static INLINE void cross_input(const int16x8_t *a /*[16]*/,
int16x8_t *b /*[16]*/) {
b[0] = vaddq_s16(a[0], a[15]);
b[1] = vaddq_s16(a[1], a[14]);
b[2] = vaddq_s16(a[2], a[13]);
b[3] = vaddq_s16(a[3], a[12]);
b[4] = vaddq_s16(a[4], a[11]);
b[5] = vaddq_s16(a[5], a[10]);
b[6] = vaddq_s16(a[6], a[9]);
b[7] = vaddq_s16(a[7], a[8]);
b[8] = vsubq_s16(a[7], a[8]);
b[9] = vsubq_s16(a[6], a[9]);
b[10] = vsubq_s16(a[5], a[10]);
b[11] = vsubq_s16(a[4], a[11]);
b[12] = vsubq_s16(a[3], a[12]);
b[13] = vsubq_s16(a[2], a[13]);
b[14] = vsubq_s16(a[1], a[14]);
b[15] = vsubq_s16(a[0], a[15]);
}
static INLINE void load_cross(const int16_t *a, int stride,
int16x8_t *b /*[16]*/) {
b[0] = vaddq_s16(vld1q_s16(a + 0 * stride), vld1q_s16(a + 15 * stride));
b[1] = vaddq_s16(vld1q_s16(a + 1 * stride), vld1q_s16(a + 14 * stride));
b[2] = vaddq_s16(vld1q_s16(a + 2 * stride), vld1q_s16(a + 13 * stride));
b[3] = vaddq_s16(vld1q_s16(a + 3 * stride), vld1q_s16(a + 12 * stride));
b[4] = vaddq_s16(vld1q_s16(a + 4 * stride), vld1q_s16(a + 11 * stride));
b[5] = vaddq_s16(vld1q_s16(a + 5 * stride), vld1q_s16(a + 10 * stride));
b[6] = vaddq_s16(vld1q_s16(a + 6 * stride), vld1q_s16(a + 9 * stride));
b[7] = vaddq_s16(vld1q_s16(a + 7 * stride), vld1q_s16(a + 8 * stride));
b[8] = vsubq_s16(vld1q_s16(a + 7 * stride), vld1q_s16(a + 8 * stride));
b[9] = vsubq_s16(vld1q_s16(a + 6 * stride), vld1q_s16(a + 9 * stride));
b[10] = vsubq_s16(vld1q_s16(a + 5 * stride), vld1q_s16(a + 10 * stride));
b[11] = vsubq_s16(vld1q_s16(a + 4 * stride), vld1q_s16(a + 11 * stride));
b[12] = vsubq_s16(vld1q_s16(a + 3 * stride), vld1q_s16(a + 12 * stride));
b[13] = vsubq_s16(vld1q_s16(a + 2 * stride), vld1q_s16(a + 13 * stride));
b[14] = vsubq_s16(vld1q_s16(a + 1 * stride), vld1q_s16(a + 14 * stride));
b[15] = vsubq_s16(vld1q_s16(a + 0 * stride), vld1q_s16(a + 15 * stride));
}
// Quarter round at the beginning of the second pass. Can't use vrshr (rounding)
// because this only adds 1, not 1 << 2.
static INLINE void partial_round_shift(int16x8_t *a /*[16]*/) {
const int16x8_t one = vdupq_n_s16(1);
a[0] = vshrq_n_s16(vaddq_s16(a[0], one), 2);
a[1] = vshrq_n_s16(vaddq_s16(a[1], one), 2);
a[2] = vshrq_n_s16(vaddq_s16(a[2], one), 2);
a[3] = vshrq_n_s16(vaddq_s16(a[3], one), 2);
a[4] = vshrq_n_s16(vaddq_s16(a[4], one), 2);
a[5] = vshrq_n_s16(vaddq_s16(a[5], one), 2);
a[6] = vshrq_n_s16(vaddq_s16(a[6], one), 2);
a[7] = vshrq_n_s16(vaddq_s16(a[7], one), 2);
a[8] = vshrq_n_s16(vaddq_s16(a[8], one), 2);
a[9] = vshrq_n_s16(vaddq_s16(a[9], one), 2);
a[10] = vshrq_n_s16(vaddq_s16(a[10], one), 2);
a[11] = vshrq_n_s16(vaddq_s16(a[11], one), 2);
a[12] = vshrq_n_s16(vaddq_s16(a[12], one), 2);
a[13] = vshrq_n_s16(vaddq_s16(a[13], one), 2);
a[14] = vshrq_n_s16(vaddq_s16(a[14], one), 2);
a[15] = vshrq_n_s16(vaddq_s16(a[15], one), 2);
}
// Main body of fdct16x16.
static void vpx_fdct16x16_body(const int16x8_t *in /*[16]*/,
int16x8_t *out /*[16]*/) {
int16x8_t s[8];
int16x8_t x[4];
int16x8_t step[8];
// stage 1
// From fwd_txfm.c: Work on the first eight values; fdct8(input,
// even_results);"
s[0] = vaddq_s16(in[0], in[7]);
s[1] = vaddq_s16(in[1], in[6]);
s[2] = vaddq_s16(in[2], in[5]);
s[3] = vaddq_s16(in[3], in[4]);
s[4] = vsubq_s16(in[3], in[4]);
s[5] = vsubq_s16(in[2], in[5]);
s[6] = vsubq_s16(in[1], in[6]);
s[7] = vsubq_s16(in[0], in[7]);
// fdct4(step, step);
x[0] = vaddq_s16(s[0], s[3]);
x[1] = vaddq_s16(s[1], s[2]);
x[2] = vsubq_s16(s[1], s[2]);
x[3] = vsubq_s16(s[0], s[3]);
// out[0] = fdct_round_shift((x0 + x1) * cospi_16_64)
// out[8] = fdct_round_shift((x0 - x1) * cospi_16_64)
butterfly_one_coeff(x[0], x[1], cospi_16_64, &out[0], &out[8]);
// out[4] = fdct_round_shift(x3 * cospi_8_64 + x2 * cospi_24_64);
// out[12] = fdct_round_shift(x3 * cospi_24_64 - x2 * cospi_8_64);
butterfly_two_coeff(x[3], x[2], cospi_24_64, cospi_8_64, &out[4], &out[12]);
// Stage 2
// Re-using source s5/s6
// s5 = fdct_round_shift((s6 - s5) * cospi_16_64)
// s6 = fdct_round_shift((s6 + s5) * cospi_16_64)
butterfly_one_coeff(s[6], s[5], cospi_16_64, &s[6], &s[5]);
// Stage 3
x[0] = vaddq_s16(s[4], s[5]);
x[1] = vsubq_s16(s[4], s[5]);
x[2] = vsubq_s16(s[7], s[6]);
x[3] = vaddq_s16(s[7], s[6]);
// Stage 4
// out[2] = fdct_round_shift(x0 * cospi_28_64 + x3 * cospi_4_64)
// out[14] = fdct_round_shift(x3 * cospi_28_64 + x0 * -cospi_4_64)
butterfly_two_coeff(x[3], x[0], cospi_28_64, cospi_4_64, &out[2], &out[14]);
// out[6] = fdct_round_shift(x1 * cospi_12_64 + x2 * cospi_20_64)
// out[10] = fdct_round_shift(x2 * cospi_12_64 + x1 * -cospi_20_64)
butterfly_two_coeff(x[2], x[1], cospi_12_64, cospi_20_64, &out[10], &out[6]);
// step 2
// From fwd_txfm.c: Work on the next eight values; step1 -> odd_results"
// That file distinguished between "in_high" and "step1" but the only
// difference is that "in_high" is the first 8 values and "step 1" is the
// second. Here, since they are all in one array, "step1" values are += 8.
// step2[2] = fdct_round_shift((step1[5] - step1[2]) * cospi_16_64)
// step2[3] = fdct_round_shift((step1[4] - step1[3]) * cospi_16_64)
// step2[4] = fdct_round_shift((step1[4] + step1[3]) * cospi_16_64)
// step2[5] = fdct_round_shift((step1[5] + step1[2]) * cospi_16_64)
butterfly_one_coeff(in[13], in[10], cospi_16_64, &s[5], &s[2]);
butterfly_one_coeff(in[12], in[11], cospi_16_64, &s[4], &s[3]);
// step 3
s[0] = vaddq_s16(in[8], s[3]);
s[1] = vaddq_s16(in[9], s[2]);
x[0] = vsubq_s16(in[9], s[2]);
x[1] = vsubq_s16(in[8], s[3]);
x[2] = vsubq_s16(in[15], s[4]);
x[3] = vsubq_s16(in[14], s[5]);
s[6] = vaddq_s16(in[14], s[5]);
s[7] = vaddq_s16(in[15], s[4]);
// step 4
// step2[1] = fdct_round_shift(step3[1] *-cospi_8_64 + step3[6] * cospi_24_64)
// step2[6] = fdct_round_shift(step3[1] * cospi_24_64 + step3[6] * cospi_8_64)
butterfly_two_coeff(s[6], s[1], cospi_24_64, cospi_8_64, &s[6], &s[1]);
// step2[2] = fdct_round_shift(step3[2] * cospi_24_64 + step3[5] * cospi_8_64)
// step2[5] = fdct_round_shift(step3[2] * cospi_8_64 - step3[5] * cospi_24_64)
butterfly_two_coeff(x[0], x[3], cospi_8_64, cospi_24_64, &s[2], &s[5]);
// step 5
step[0] = vaddq_s16(s[0], s[1]);
step[1] = vsubq_s16(s[0], s[1]);
step[2] = vaddq_s16(x[1], s[2]);
step[3] = vsubq_s16(x[1], s[2]);
step[4] = vsubq_s16(x[2], s[5]);
step[5] = vaddq_s16(x[2], s[5]);
step[6] = vsubq_s16(s[7], s[6]);
step[7] = vaddq_s16(s[7], s[6]);
// step 6
// out[1] = fdct_round_shift(step1[0] * cospi_30_64 + step1[7] * cospi_2_64)
// out[9] = fdct_round_shift(step1[1] * cospi_14_64 + step1[6] * cospi_18_64)
// out[5] = fdct_round_shift(step1[2] * cospi_22_64 + step1[5] * cospi_10_64)
// out[13] = fdct_round_shift(step1[3] * cospi_6_64 + step1[4] * cospi_26_64)
// out[3] = fdct_round_shift(step1[3] * -cospi_26_64 + step1[4] * cospi_6_64)
// out[11] = fdct_round_shift(step1[2] * -cospi_10_64 + step1[5] *
// cospi_22_64)
// out[7] = fdct_round_shift(step1[1] * -cospi_18_64 + step1[6] * cospi_14_64)
// out[15] = fdct_round_shift(step1[0] * -cospi_2_64 + step1[7] * cospi_30_64)
butterfly_two_coeff(step[6], step[1], cospi_14_64, cospi_18_64, &out[9],
&out[7]);
butterfly_two_coeff(step[7], step[0], cospi_30_64, cospi_2_64, &out[1],
&out[15]);
butterfly_two_coeff(step[4], step[3], cospi_6_64, cospi_26_64, &out[13],
&out[3]);
butterfly_two_coeff(step[5], step[2], cospi_22_64, cospi_10_64, &out[5],
&out[11]);
}
#if CONFIG_VP9_HIGHBITDEPTH
static INLINE void highbd_scale_input(const int16x8_t *a /*[16]*/,
int32x4_t *left /*[16]*/,
int32x4_t *right /* [16] */) {
left[0] = vshll_n_s16(vget_low_s16(a[0]), 2);
right[0] = vshll_n_s16(vget_high_s16(a[0]), 2);
left[1] = vshll_n_s16(vget_low_s16(a[1]), 2);
right[1] = vshll_n_s16(vget_high_s16(a[1]), 2);
left[2] = vshll_n_s16(vget_low_s16(a[2]), 2);
right[2] = vshll_n_s16(vget_high_s16(a[2]), 2);
left[3] = vshll_n_s16(vget_low_s16(a[3]), 2);
right[3] = vshll_n_s16(vget_high_s16(a[3]), 2);
left[4] = vshll_n_s16(vget_low_s16(a[4]), 2);
right[4] = vshll_n_s16(vget_high_s16(a[4]), 2);
left[5] = vshll_n_s16(vget_low_s16(a[5]), 2);
right[5] = vshll_n_s16(vget_high_s16(a[5]), 2);
left[6] = vshll_n_s16(vget_low_s16(a[6]), 2);
right[6] = vshll_n_s16(vget_high_s16(a[6]), 2);
left[7] = vshll_n_s16(vget_low_s16(a[7]), 2);
right[7] = vshll_n_s16(vget_high_s16(a[7]), 2);
left[8] = vshll_n_s16(vget_low_s16(a[8]), 2);
right[8] = vshll_n_s16(vget_high_s16(a[8]), 2);
left[9] = vshll_n_s16(vget_low_s16(a[9]), 2);
right[9] = vshll_n_s16(vget_high_s16(a[9]), 2);
left[10] = vshll_n_s16(vget_low_s16(a[10]), 2);
right[10] = vshll_n_s16(vget_high_s16(a[10]), 2);
left[11] = vshll_n_s16(vget_low_s16(a[11]), 2);
right[11] = vshll_n_s16(vget_high_s16(a[11]), 2);
left[12] = vshll_n_s16(vget_low_s16(a[12]), 2);
right[12] = vshll_n_s16(vget_high_s16(a[12]), 2);
left[13] = vshll_n_s16(vget_low_s16(a[13]), 2);
right[13] = vshll_n_s16(vget_high_s16(a[13]), 2);
left[14] = vshll_n_s16(vget_low_s16(a[14]), 2);
right[14] = vshll_n_s16(vget_high_s16(a[14]), 2);
left[15] = vshll_n_s16(vget_low_s16(a[15]), 2);
right[15] = vshll_n_s16(vget_high_s16(a[15]), 2);
}
static INLINE void highbd_cross_input(const int32x4_t *a_left /*[16]*/,
int32x4_t *a_right /*[16]*/,
int32x4_t *b_left /*[16]*/,
int32x4_t *b_right /*[16]*/) {
b_left[0] = vaddq_s32(a_left[0], a_left[15]);
b_left[1] = vaddq_s32(a_left[1], a_left[14]);
b_left[2] = vaddq_s32(a_left[2], a_left[13]);
b_left[3] = vaddq_s32(a_left[3], a_left[12]);
b_left[4] = vaddq_s32(a_left[4], a_left[11]);
b_left[5] = vaddq_s32(a_left[5], a_left[10]);
b_left[6] = vaddq_s32(a_left[6], a_left[9]);
b_left[7] = vaddq_s32(a_left[7], a_left[8]);
b_right[0] = vaddq_s32(a_right[0], a_right[15]);
b_right[1] = vaddq_s32(a_right[1], a_right[14]);
b_right[2] = vaddq_s32(a_right[2], a_right[13]);
b_right[3] = vaddq_s32(a_right[3], a_right[12]);
b_right[4] = vaddq_s32(a_right[4], a_right[11]);
b_right[5] = vaddq_s32(a_right[5], a_right[10]);
b_right[6] = vaddq_s32(a_right[6], a_right[9]);
b_right[7] = vaddq_s32(a_right[7], a_right[8]);
b_left[8] = vsubq_s32(a_left[7], a_left[8]);
b_left[9] = vsubq_s32(a_left[6], a_left[9]);
b_left[10] = vsubq_s32(a_left[5], a_left[10]);
b_left[11] = vsubq_s32(a_left[4], a_left[11]);
b_left[12] = vsubq_s32(a_left[3], a_left[12]);
b_left[13] = vsubq_s32(a_left[2], a_left[13]);
b_left[14] = vsubq_s32(a_left[1], a_left[14]);
b_left[15] = vsubq_s32(a_left[0], a_left[15]);
b_right[8] = vsubq_s32(a_right[7], a_right[8]);
b_right[9] = vsubq_s32(a_right[6], a_right[9]);
b_right[10] = vsubq_s32(a_right[5], a_right[10]);
b_right[11] = vsubq_s32(a_right[4], a_right[11]);
b_right[12] = vsubq_s32(a_right[3], a_right[12]);
b_right[13] = vsubq_s32(a_right[2], a_right[13]);
b_right[14] = vsubq_s32(a_right[1], a_right[14]);
b_right[15] = vsubq_s32(a_right[0], a_right[15]);
}
static INLINE void highbd_partial_round_shift(int32x4_t *left /*[16]*/,
int32x4_t *right /* [16] */) {
const int32x4_t one = vdupq_n_s32(1);
left[0] = vshrq_n_s32(vaddq_s32(left[0], one), 2);
right[0] = vshrq_n_s32(vaddq_s32(right[0], one), 2);
left[1] = vshrq_n_s32(vaddq_s32(left[1], one), 2);
right[1] = vshrq_n_s32(vaddq_s32(right[1], one), 2);
left[2] = vshrq_n_s32(vaddq_s32(left[2], one), 2);
right[2] = vshrq_n_s32(vaddq_s32(right[2], one), 2);
left[3] = vshrq_n_s32(vaddq_s32(left[3], one), 2);
right[3] = vshrq_n_s32(vaddq_s32(right[3], one), 2);
left[4] = vshrq_n_s32(vaddq_s32(left[4], one), 2);
right[4] = vshrq_n_s32(vaddq_s32(right[4], one), 2);
left[5] = vshrq_n_s32(vaddq_s32(left[5], one), 2);
right[5] = vshrq_n_s32(vaddq_s32(right[5], one), 2);
left[6] = vshrq_n_s32(vaddq_s32(left[6], one), 2);
right[6] = vshrq_n_s32(vaddq_s32(right[6], one), 2);
left[7] = vshrq_n_s32(vaddq_s32(left[7], one), 2);
right[7] = vshrq_n_s32(vaddq_s32(right[7], one), 2);
left[8] = vshrq_n_s32(vaddq_s32(left[8], one), 2);
right[8] = vshrq_n_s32(vaddq_s32(right[8], one), 2);
left[9] = vshrq_n_s32(vaddq_s32(left[9], one), 2);
right[9] = vshrq_n_s32(vaddq_s32(right[9], one), 2);
left[10] = vshrq_n_s32(vaddq_s32(left[10], one), 2);
right[10] = vshrq_n_s32(vaddq_s32(right[10], one), 2);
left[11] = vshrq_n_s32(vaddq_s32(left[11], one), 2);
right[11] = vshrq_n_s32(vaddq_s32(right[11], one), 2);
left[12] = vshrq_n_s32(vaddq_s32(left[12], one), 2);
right[12] = vshrq_n_s32(vaddq_s32(right[12], one), 2);
left[13] = vshrq_n_s32(vaddq_s32(left[13], one), 2);
right[13] = vshrq_n_s32(vaddq_s32(right[13], one), 2);
left[14] = vshrq_n_s32(vaddq_s32(left[14], one), 2);
right[14] = vshrq_n_s32(vaddq_s32(right[14], one), 2);
left[15] = vshrq_n_s32(vaddq_s32(left[15], one), 2);
right[15] = vshrq_n_s32(vaddq_s32(right[15], one), 2);
}
static INLINE void transpose_s32_8x8_2(int32x4_t *left /*[8]*/,
int32x4_t *right /*[8]*/,
int32x4_t *out_left /*[8]*/,
int32x4_t *out_right /*[8]*/) {
int32x4x2_t out[8];
out[0].val[0] = left[0];
out[0].val[1] = right[0];
out[1].val[0] = left[1];
out[1].val[1] = right[1];
out[2].val[0] = left[2];
out[2].val[1] = right[2];
out[3].val[0] = left[3];
out[3].val[1] = right[3];
out[4].val[0] = left[4];
out[4].val[1] = right[4];
out[5].val[0] = left[5];
out[5].val[1] = right[5];
out[6].val[0] = left[6];
out[6].val[1] = right[6];
out[7].val[0] = left[7];
out[7].val[1] = right[7];
transpose_s32_8x8(&out[0], &out[1], &out[2], &out[3], &out[4], &out[5],
&out[6], &out[7]);
out_left[0] = out[0].val[0];
out_left[1] = out[1].val[0];
out_left[2] = out[2].val[0];
out_left[3] = out[3].val[0];
out_left[4] = out[4].val[0];
out_left[5] = out[5].val[0];
out_left[6] = out[6].val[0];
out_left[7] = out[7].val[0];
out_right[0] = out[0].val[1];
out_right[1] = out[1].val[1];
out_right[2] = out[2].val[1];
out_right[3] = out[3].val[1];
out_right[4] = out[4].val[1];
out_right[5] = out[5].val[1];
out_right[6] = out[6].val[1];
out_right[7] = out[7].val[1];
}
// Store 16 32x4 vectors, assuming stride == 16.
static INLINE void store16_s32(tran_low_t *a, const int32x4_t *b /*[32]*/) {
vst1q_s32(a, b[0]);
a += 16;
vst1q_s32(a, b[1]);
a += 16;
vst1q_s32(a, b[2]);
a += 16;
vst1q_s32(a, b[3]);
a += 16;
vst1q_s32(a, b[4]);
a += 16;
vst1q_s32(a, b[5]);
a += 16;
vst1q_s32(a, b[6]);
a += 16;
vst1q_s32(a, b[7]);
a += 16;
vst1q_s32(a, b[8]);
a += 16;
vst1q_s32(a, b[9]);
a += 16;
vst1q_s32(a, b[10]);
a += 16;
vst1q_s32(a, b[11]);
a += 16;
vst1q_s32(a, b[12]);
a += 16;
vst1q_s32(a, b[13]);
a += 16;
vst1q_s32(a, b[14]);
a += 16;
vst1q_s32(a, b[15]);
}
// Main body of fdct16x16.
static void vpx_highbd_fdct16x16_body(int32x4_t *left /*[16]*/,
int32x4_t *right /* [16] */) {
int32x4_t sl[8];
int32x4_t sr[8];
int32x4_t xl[4];
int32x4_t xr[4];
int32x4_t inl[8];
int32x4_t inr[8];
int32x4_t stepl[8];
int32x4_t stepr[8];
// stage 1
// From fwd_txfm.c: Work on the first eight values; fdct8(input,
// even_results);"
sl[0] = vaddq_s32(left[0], left[7]);
sr[0] = vaddq_s32(right[0], right[7]);
sl[1] = vaddq_s32(left[1], left[6]);
sr[1] = vaddq_s32(right[1], right[6]);
sl[2] = vaddq_s32(left[2], left[5]);
sr[2] = vaddq_s32(right[2], right[5]);
sl[3] = vaddq_s32(left[3], left[4]);
sr[3] = vaddq_s32(right[3], right[4]);
sl[4] = vsubq_s32(left[3], left[4]);
sr[4] = vsubq_s32(right[3], right[4]);
sl[5] = vsubq_s32(left[2], left[5]);
sr[5] = vsubq_s32(right[2], right[5]);
sl[6] = vsubq_s32(left[1], left[6]);
sr[6] = vsubq_s32(right[1], right[6]);
sl[7] = vsubq_s32(left[0], left[7]);
sr[7] = vsubq_s32(right[0], right[7]);
// Copy values 8-15 as we're storing in-place
inl[0] = left[8];
inr[0] = right[8];
inl[1] = left[9];
inr[1] = right[9];
inl[2] = left[10];
inr[2] = right[10];
inl[3] = left[11];
inr[3] = right[11];
inl[4] = left[12];
inr[4] = right[12];
inl[5] = left[13];
inr[5] = right[13];
inl[6] = left[14];
inr[6] = right[14];
inl[7] = left[15];
inr[7] = right[15];
// fdct4(step, step);
xl[0] = vaddq_s32(sl[0], sl[3]);
xr[0] = vaddq_s32(sr[0], sr[3]);
xl[1] = vaddq_s32(sl[1], sl[2]);
xr[1] = vaddq_s32(sr[1], sr[2]);
xl[2] = vsubq_s32(sl[1], sl[2]);
xr[2] = vsubq_s32(sr[1], sr[2]);
xl[3] = vsubq_s32(sl[0], sl[3]);
xr[3] = vsubq_s32(sr[0], sr[3]);
// out[0] = fdct_round_shift((x0 + x1) * cospi_16_64)
// out[8] = fdct_round_shift((x0 - x1) * cospi_16_64)
highbd_butterfly_one_coeff_s32(xl[0], xl[1], cospi_16_64, &left[0], &left[8]);
highbd_butterfly_one_coeff_s32(xr[0], xr[1], cospi_16_64, &right[0],
&right[8]);
// out[4] = fdct_round_shift(x3 * cospi_8_64 + x2 * cospi_24_64);
// out[12] = fdct_round_shift(x3 * cospi_24_64 - x2 * cospi_8_64);
highbd_butterfly_two_coeff_s32(xl[3], xl[2], cospi_8_64, cospi_24_64,
&left[4], &left[12]);
highbd_butterfly_two_coeff_s32(xr[3], xr[2], cospi_8_64, cospi_24_64,
&right[4], &right[12]);
// Stage 2
// Re-using source s5/s6
// s5 = fdct_round_shift((s6 - s5) * cospi_16_64)
// s6 = fdct_round_shift((s6 + s5) * cospi_16_64)
highbd_butterfly_one_coeff_s32(sl[6], sl[5], cospi_16_64, &sl[6], &sl[5]);
highbd_butterfly_one_coeff_s32(sr[6], sr[5], cospi_16_64, &sr[6], &sr[5]);
// Stage 3
xl[0] = vaddq_s32(sl[4], sl[5]);
xr[0] = vaddq_s32(sr[4], sr[5]);
xl[1] = vsubq_s32(sl[4], sl[5]);
xr[1] = vsubq_s32(sr[4], sr[5]);
xl[2] = vsubq_s32(sl[7], sl[6]);
xr[2] = vsubq_s32(sr[7], sr[6]);
xl[3] = vaddq_s32(sl[7], sl[6]);
xr[3] = vaddq_s32(sr[7], sr[6]);
// Stage 4
// out[2] = fdct_round_shift(x0 * cospi_28_64 + x3 * cospi_4_64)
// out[14] = fdct_round_shift(x3 * cospi_28_64 + x0 * -cospi_4_64)
highbd_butterfly_two_coeff_s32(xl[3], xl[0], cospi_4_64, cospi_28_64,
&left[2], &left[14]);
highbd_butterfly_two_coeff_s32(xr[3], xr[0], cospi_4_64, cospi_28_64,
&right[2], &right[14]);
// out[6] = fdct_round_shift(x1 * cospi_12_64 + x2 * cospi_20_64)
// out[10] = fdct_round_shift(x2 * cospi_12_64 + x1 * -cospi_20_64)
highbd_butterfly_two_coeff_s32(xl[2], xl[1], cospi_20_64, cospi_12_64,
&left[10], &left[6]);
highbd_butterfly_two_coeff_s32(xr[2], xr[1], cospi_20_64, cospi_12_64,
&right[10], &right[6]);
// step 2
// From fwd_txfm.c: Work on the next eight values; step1 -> odd_results"
// That file distinguished between "in_high" and "step1" but the only
// difference is that "in_high" is the first 8 values and "step 1" is the
// second. Here, since they are all in one array, "step1" values are += 8.
// step2[2] = fdct_round_shift((step1[5] - step1[2]) * cospi_16_64)
// step2[3] = fdct_round_shift((step1[4] - step1[3]) * cospi_16_64)
// step2[4] = fdct_round_shift((step1[4] + step1[3]) * cospi_16_64)
// step2[5] = fdct_round_shift((step1[5] + step1[2]) * cospi_16_64)
highbd_butterfly_one_coeff_s32(inl[5], inl[2], cospi_16_64, &sl[5], &sl[2]);
highbd_butterfly_one_coeff_s32(inr[5], inr[2], cospi_16_64, &sr[5], &sr[2]);
highbd_butterfly_one_coeff_s32(inl[4], inl[3], cospi_16_64, &sl[4], &sl[3]);
highbd_butterfly_one_coeff_s32(inr[4], inr[3], cospi_16_64, &sr[4], &sr[3]);
// step 3
sl[0] = vaddq_s32(inl[0], sl[3]);
sr[0] = vaddq_s32(inr[0], sr[3]);
sl[1] = vaddq_s32(inl[1], sl[2]);
sr[1] = vaddq_s32(inr[1], sr[2]);
xl[0] = vsubq_s32(inl[1], sl[2]);
xr[0] = vsubq_s32(inr[1], sr[2]);
xl[1] = vsubq_s32(inl[0], sl[3]);
xr[1] = vsubq_s32(inr[0], sr[3]);
xl[2] = vsubq_s32(inl[7], sl[4]);
xr[2] = vsubq_s32(inr[7], sr[4]);
xl[3] = vsubq_s32(inl[6], sl[5]);
xr[3] = vsubq_s32(inr[6], sr[5]);
sl[6] = vaddq_s32(inl[6], sl[5]);
sr[6] = vaddq_s32(inr[6], sr[5]);
sl[7] = vaddq_s32(inl[7], sl[4]);
sr[7] = vaddq_s32(inr[7], sr[4]);
// step 4
// step2[1] = fdct_round_shift(step3[1] *-cospi_8_64 + step3[6] * cospi_24_64)
// step2[6] = fdct_round_shift(step3[1] * cospi_24_64 + step3[6] * cospi_8_64)
highbd_butterfly_two_coeff_s32(sl[6], sl[1], cospi_8_64, cospi_24_64, &sl[6],
&sl[1]);
highbd_butterfly_two_coeff_s32(sr[6], sr[1], cospi_8_64, cospi_24_64, &sr[6],
&sr[1]);
// step2[2] = fdct_round_shift(step3[2] * cospi_24_64 + step3[5] * cospi_8_64)
// step2[5] = fdct_round_shift(step3[2] * cospi_8_64 - step3[5] * cospi_24_64)
highbd_butterfly_two_coeff_s32(xl[0], xl[3], cospi_24_64, cospi_8_64, &sl[2],
&sl[5]);
highbd_butterfly_two_coeff_s32(xr[0], xr[3], cospi_24_64, cospi_8_64, &sr[2],
&sr[5]);
// step 5
stepl[0] = vaddq_s32(sl[0], sl[1]);
stepr[0] = vaddq_s32(sr[0], sr[1]);
stepl[1] = vsubq_s32(sl[0], sl[1]);
stepr[1] = vsubq_s32(sr[0], sr[1]);
stepl[2] = vaddq_s32(xl[1], sl[2]);
stepr[2] = vaddq_s32(xr[1], sr[2]);
stepl[3] = vsubq_s32(xl[1], sl[2]);
stepr[3] = vsubq_s32(xr[1], sr[2]);
stepl[4] = vsubq_s32(xl[2], sl[5]);
stepr[4] = vsubq_s32(xr[2], sr[5]);
stepl[5] = vaddq_s32(xl[2], sl[5]);
stepr[5] = vaddq_s32(xr[2], sr[5]);
stepl[6] = vsubq_s32(sl[7], sl[6]);
stepr[6] = vsubq_s32(sr[7], sr[6]);
stepl[7] = vaddq_s32(sl[7], sl[6]);
stepr[7] = vaddq_s32(sr[7], sr[6]);
// step 6
// out[1] = fdct_round_shift(step1[0] * cospi_30_64 + step1[7] * cospi_2_64)
// out[15] = fdct_round_shift(step1[0] * -cospi_2_64 + step1[7] * cospi_30_64)
// out[9] = fdct_round_shift(step1[1] * cospi_14_64 + step1[6] * cospi_18_64)
// out[7] = fdct_round_shift(step1[1] * -cospi_18_64 + step1[6] * cospi_14_64)
// out[5] = fdct_round_shift(step1[2] * cospi_22_64 + step1[5] * cospi_10_64)
// out[11] = fdct_round_shift(step1[2] * -cospi_10_64 + step1[5] *
// cospi_22_64) out[13] = fdct_round_shift(step1[3] * cospi_6_64 + step1[4] *
// cospi_26_64) out[3] = fdct_round_shift(step1[3] * -cospi_26_64 + step1[4] *
// cospi_6_64)
highbd_butterfly_two_coeff_s32(stepl[7], stepl[0], cospi_2_64, cospi_30_64,
&left[1], &left[15]);
highbd_butterfly_two_coeff_s32(stepr[7], stepr[0], cospi_2_64, cospi_30_64,
&right[1], &right[15]);
highbd_butterfly_two_coeff_s32(stepl[6], stepl[1], cospi_18_64, cospi_14_64,
&left[9], &left[7]);
highbd_butterfly_two_coeff_s32(stepr[6], stepr[1], cospi_18_64, cospi_14_64,
&right[9], &right[7]);
highbd_butterfly_two_coeff_s32(stepl[5], stepl[2], cospi_10_64, cospi_22_64,
&left[5], &left[11]);
highbd_butterfly_two_coeff_s32(stepr[5], stepr[2], cospi_10_64, cospi_22_64,
&right[5], &right[11]);
highbd_butterfly_two_coeff_s32(stepl[4], stepl[3], cospi_26_64, cospi_6_64,
&left[13], &left[3]);
highbd_butterfly_two_coeff_s32(stepr[4], stepr[3], cospi_26_64, cospi_6_64,
&right[13], &right[3]);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // VPX_VPX_DSP_ARM_FDCT16X16_NEON_H_