blob: 5ce2282029ad73f8a0c06c25de6dff322fd48e05 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/bitops.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/system_state.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_tokenize.h"
#define RD_THRESH_POW 1.25
// Factor to weigh the rate for switchable interp filters.
#define SWITCHABLE_INTERP_RATE_FACTOR 1
void vp9_rd_cost_reset(RD_COST *rd_cost) {
rd_cost->rate = INT_MAX;
rd_cost->dist = INT64_MAX;
rd_cost->rdcost = INT64_MAX;
}
void vp9_rd_cost_init(RD_COST *rd_cost) {
rd_cost->rate = 0;
rd_cost->dist = 0;
rd_cost->rdcost = 0;
}
// The baseline rd thresholds for breaking out of the rd loop for
// certain modes are assumed to be based on 8x8 blocks.
// This table is used to correct for block size.
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = {
2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32
};
static void fill_mode_costs(VP9_COMP *cpi) {
const FRAME_CONTEXT *const fc = cpi->common.fc;
int i, j;
for (i = 0; i < INTRA_MODES; ++i) {
for (j = 0; j < INTRA_MODES; ++j) {
vp9_cost_tokens(cpi->y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j],
vp9_intra_mode_tree);
}
}
vp9_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp9_intra_mode_tree);
for (i = 0; i < INTRA_MODES; ++i) {
vp9_cost_tokens(cpi->intra_uv_mode_cost[KEY_FRAME][i],
vp9_kf_uv_mode_prob[i], vp9_intra_mode_tree);
vp9_cost_tokens(cpi->intra_uv_mode_cost[INTER_FRAME][i],
fc->uv_mode_prob[i], vp9_intra_mode_tree);
}
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) {
vp9_cost_tokens(cpi->switchable_interp_costs[i],
fc->switchable_interp_prob[i], vp9_switchable_interp_tree);
}
for (i = TX_8X8; i < TX_SIZES; ++i) {
for (j = 0; j < TX_SIZE_CONTEXTS; ++j) {
const vpx_prob *tx_probs = get_tx_probs(i, j, &fc->tx_probs);
int k;
for (k = 0; k <= i; ++k) {
int cost = 0;
int m;
for (m = 0; m <= k - (k == i); ++m) {
if (m == k)
cost += vp9_cost_zero(tx_probs[m]);
else
cost += vp9_cost_one(tx_probs[m]);
}
cpi->tx_size_cost[i - 1][j][k] = cost;
}
}
}
}
static void fill_token_costs(vp9_coeff_cost *c,
vp9_coeff_probs_model (*p)[PLANE_TYPES]) {
int i, j, k, l;
TX_SIZE t;
for (t = TX_4X4; t <= TX_32X32; ++t)
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
vpx_prob probs[ENTROPY_NODES];
vp9_model_to_full_probs(p[t][i][j][k][l], probs);
vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs, vp9_coef_tree);
vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs,
vp9_coef_tree);
assert(c[t][i][j][k][0][l][EOB_TOKEN] ==
c[t][i][j][k][1][l][EOB_TOKEN]);
}
}
// Values are now correlated to quantizer.
static int sad_per_bit16lut_8[QINDEX_RANGE];
static int sad_per_bit4lut_8[QINDEX_RANGE];
#if CONFIG_VP9_HIGHBITDEPTH
static int sad_per_bit16lut_10[QINDEX_RANGE];
static int sad_per_bit4lut_10[QINDEX_RANGE];
static int sad_per_bit16lut_12[QINDEX_RANGE];
static int sad_per_bit4lut_12[QINDEX_RANGE];
#endif
static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range,
vpx_bit_depth_t bit_depth) {
int i;
// Initialize the sad lut tables using a formulaic calculation for now.
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < range; i++) {
const double q = vp9_convert_qindex_to_q(i, bit_depth);
bit16lut[i] = (int)(0.0418 * q + 2.4107);
bit4lut[i] = (int)(0.063 * q + 2.742);
}
}
void vp9_init_me_luts(void) {
init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE,
VPX_BITS_8);
#if CONFIG_VP9_HIGHBITDEPTH
init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE,
VPX_BITS_10);
init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE,
VPX_BITS_12);
#endif
}
static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12,
8, 8, 4, 4, 2, 2, 1, 0 };
static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { 128, 144, 128,
128, 144 };
int64_t vp9_compute_rd_mult_based_on_qindex(const VP9_COMP *cpi, int qindex) {
const int64_t q = vp9_dc_quant(qindex, 0, cpi->common.bit_depth);
#if CONFIG_VP9_HIGHBITDEPTH
int64_t rdmult = 0;
switch (cpi->common.bit_depth) {
case VPX_BITS_8: rdmult = 88 * q * q / 24; break;
case VPX_BITS_10: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4); break;
default:
assert(cpi->common.bit_depth == VPX_BITS_12);
rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8);
break;
}
#else
int64_t rdmult = 88 * q * q / 24;
#endif // CONFIG_VP9_HIGHBITDEPTH
return rdmult;
}
int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) {
int64_t rdmult = vp9_compute_rd_mult_based_on_qindex(cpi, qindex);
if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
const int boost_index = VPXMIN(15, (cpi->rc.gfu_boost / 100));
rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7;
rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
}
if (rdmult < 1) rdmult = 1;
return (int)rdmult;
}
int vp9_get_adaptive_rdmult(const VP9_COMP *cpi, double beta) {
const VP9_COMMON *cm = &cpi->common;
int64_t q = vp9_dc_quant(cm->base_qindex, 0, cpi->common.bit_depth);
#if CONFIG_VP9_HIGHBITDEPTH
int64_t rdmult = 0;
switch (cpi->common.bit_depth) {
case VPX_BITS_8: rdmult = (int)((88 * q * q / beta) / 24); break;
case VPX_BITS_10:
rdmult = ROUND_POWER_OF_TWO((int)((88 * q * q / beta) / 24), 4);
break;
default:
assert(cpi->common.bit_depth == VPX_BITS_12);
rdmult = ROUND_POWER_OF_TWO((int)((88 * q * q / beta) / 24), 8);
break;
}
#else
int64_t rdmult = (int)((88 * q * q / beta) / 24);
#endif // CONFIG_VP9_HIGHBITDEPTH
if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
const int boost_index = VPXMIN(15, (cpi->rc.gfu_boost / 100));
rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7;
rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
}
if (rdmult < 1) rdmult = 1;
return (int)rdmult;
}
static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) {
double q;
#if CONFIG_VP9_HIGHBITDEPTH
switch (bit_depth) {
case VPX_BITS_8: q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0; break;
case VPX_BITS_10: q = vp9_dc_quant(qindex, 0, VPX_BITS_10) / 16.0; break;
default:
assert(bit_depth == VPX_BITS_12);
q = vp9_dc_quant(qindex, 0, VPX_BITS_12) / 64.0;
break;
}
#else
(void)bit_depth;
q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
#endif // CONFIG_VP9_HIGHBITDEPTH
// TODO(debargha): Adjust the function below.
return VPXMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
}
void vp9_initialize_me_consts(VP9_COMP *cpi, MACROBLOCK *x, int qindex) {
#if CONFIG_VP9_HIGHBITDEPTH
switch (cpi->common.bit_depth) {
case VPX_BITS_8:
x->sadperbit16 = sad_per_bit16lut_8[qindex];
x->sadperbit4 = sad_per_bit4lut_8[qindex];
break;
case VPX_BITS_10:
x->sadperbit16 = sad_per_bit16lut_10[qindex];
x->sadperbit4 = sad_per_bit4lut_10[qindex];
break;
default:
assert(cpi->common.bit_depth == VPX_BITS_12);
x->sadperbit16 = sad_per_bit16lut_12[qindex];
x->sadperbit4 = sad_per_bit4lut_12[qindex];
break;
}
#else
(void)cpi;
x->sadperbit16 = sad_per_bit16lut_8[qindex];
x->sadperbit4 = sad_per_bit4lut_8[qindex];
#endif // CONFIG_VP9_HIGHBITDEPTH
}
static void set_block_thresholds(const VP9_COMMON *cm, RD_OPT *rd) {
int i, bsize, segment_id;
for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
const int qindex =
clamp(vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex) +
cm->y_dc_delta_q,
0, MAXQ);
const int q = compute_rd_thresh_factor(qindex, cm->bit_depth);
for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) {
// Threshold here seems unnecessarily harsh but fine given actual
// range of values used for cpi->sf.thresh_mult[].
const int t = q * rd_thresh_block_size_factor[bsize];
const int thresh_max = INT_MAX / t;
if (bsize >= BLOCK_8X8) {
for (i = 0; i < MAX_MODES; ++i)
rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max
? rd->thresh_mult[i] * t / 4
: INT_MAX;
} else {
for (i = 0; i < MAX_REFS; ++i)
rd->threshes[segment_id][bsize][i] =
rd->thresh_mult_sub8x8[i] < thresh_max
? rd->thresh_mult_sub8x8[i] * t / 4
: INT_MAX;
}
}
}
}
void vp9_initialize_rd_consts(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
RD_OPT *const rd = &cpi->rd;
int i;
vpx_clear_system_state();
rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128).
rd->RDMULT = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
set_error_per_bit(x, rd->RDMULT);
x->select_tx_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
cm->frame_type != KEY_FRAME)
? 0
: 1;
set_block_thresholds(cm, rd);
set_partition_probs(cm, xd);
if (cpi->oxcf.pass == 1) {
if (!frame_is_intra_only(cm))
vp9_build_nmv_cost_table(
x->nmvjointcost,
cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost,
&cm->fc->nmvc, cm->allow_high_precision_mv);
} else {
if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME)
fill_token_costs(x->token_costs, cm->fc->coef_probs);
if (cpi->sf.partition_search_type != VAR_BASED_PARTITION ||
cm->frame_type == KEY_FRAME) {
for (i = 0; i < PARTITION_CONTEXTS; ++i)
vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(xd, i),
vp9_partition_tree);
}
if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 ||
cm->frame_type == KEY_FRAME) {
fill_mode_costs(cpi);
if (!frame_is_intra_only(cm)) {
vp9_build_nmv_cost_table(
x->nmvjointcost,
cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost,
&cm->fc->nmvc, cm->allow_high_precision_mv);
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
vp9_cost_tokens((int *)cpi->inter_mode_cost[i],
cm->fc->inter_mode_probs[i], vp9_inter_mode_tree);
}
}
}
}
// NOTE: The tables below must be of the same size.
// The functions described below are sampled at the four most significant
// bits of x^2 + 8 / 256.
// Normalized rate:
// This table models the rate for a Laplacian source with given variance
// when quantized with a uniform quantizer with given stepsize. The
// closed form expression is:
// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
// and H(x) is the binary entropy function.
static const int rate_tab_q10[] = {
65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, 4044,
3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, 3133, 3037,
2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, 2290, 2232, 2179,
2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, 1608, 1530, 1460, 1398,
1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, 911, 864, 821, 781, 745,
680, 623, 574, 530, 490, 455, 424, 395, 345, 304, 269, 239, 213,
190, 171, 154, 126, 104, 87, 73, 61, 52, 44, 38, 28, 21,
16, 12, 10, 8, 6, 5, 3, 2, 1, 1, 1, 0, 0,
};
// Normalized distortion:
// This table models the normalized distortion for a Laplacian source
// with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expression is:
// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
// where x = qpstep / sqrt(variance).
// Note the actual distortion is Dn * variance.
static const int dist_tab_q10[] = {
0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5,
6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 21,
24, 26, 29, 31, 34, 36, 39, 44, 49, 54, 59, 64, 69,
73, 78, 88, 97, 106, 115, 124, 133, 142, 151, 167, 184, 200,
215, 231, 245, 260, 274, 301, 327, 351, 375, 397, 418, 439, 458,
495, 528, 559, 587, 613, 637, 659, 680, 717, 749, 777, 801, 823,
842, 859, 874, 899, 919, 936, 949, 960, 969, 977, 983, 994, 1001,
1006, 1010, 1013, 1015, 1017, 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
};
static const int xsq_iq_q10[] = {
0, 4, 8, 12, 16, 20, 24, 28, 32,
40, 48, 56, 64, 72, 80, 88, 96, 112,
128, 144, 160, 176, 192, 208, 224, 256, 288,
320, 352, 384, 416, 448, 480, 544, 608, 672,
736, 800, 864, 928, 992, 1120, 1248, 1376, 1504,
1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296,
3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136,
7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736,
36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696,
81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808,
180192, 196576, 212960, 229344, 245728,
};
static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
const int tmp = (xsq_q10 >> 2) + 8;
const int k = get_msb(tmp) - 3;
const int xq = (k << 3) + ((tmp >> k) & 0x7);
const int one_q10 = 1 << 10;
const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
const int b_q10 = one_q10 - a_q10;
*r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
*d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
}
static void model_rd_norm_vec(int xsq_q10[MAX_MB_PLANE],
int r_q10[MAX_MB_PLANE],
int d_q10[MAX_MB_PLANE]) {
int i;
const int one_q10 = 1 << 10;
for (i = 0; i < MAX_MB_PLANE; ++i) {
const int tmp = (xsq_q10[i] >> 2) + 8;
const int k = get_msb(tmp) - 3;
const int xq = (k << 3) + ((tmp >> k) & 0x7);
const int a_q10 = ((xsq_q10[i] - xsq_iq_q10[xq]) << 10) >> (2 + k);
const int b_q10 = one_q10 - a_q10;
r_q10[i] = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
d_q10[i] = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
}
}
static const uint32_t MAX_XSQ_Q10 = 245727;
void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2,
unsigned int qstep, int *rate,
int64_t *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
if (var == 0) {
*rate = 0;
*dist = 0;
} else {
int d_q10, r_q10;
const uint64_t xsq_q10_64 =
(((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
const int xsq_q10 = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10);
model_rd_norm(xsq_q10, &r_q10, &d_q10);
*rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - VP9_PROB_COST_SHIFT);
*dist = (var * (int64_t)d_q10 + 512) >> 10;
}
}
// Implements a fixed length vector form of vp9_model_rd_from_var_lapndz where
// vectors are of length MAX_MB_PLANE and all elements of var are non-zero.
void vp9_model_rd_from_var_lapndz_vec(unsigned int var[MAX_MB_PLANE],
unsigned int n_log2[MAX_MB_PLANE],
unsigned int qstep[MAX_MB_PLANE],
int64_t *rate_sum, int64_t *dist_sum) {
int i;
int xsq_q10[MAX_MB_PLANE], d_q10[MAX_MB_PLANE], r_q10[MAX_MB_PLANE];
for (i = 0; i < MAX_MB_PLANE; ++i) {
const uint64_t xsq_q10_64 =
(((uint64_t)qstep[i] * qstep[i] << (n_log2[i] + 10)) + (var[i] >> 1)) /
var[i];
xsq_q10[i] = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10);
}
model_rd_norm_vec(xsq_q10, r_q10, d_q10);
for (i = 0; i < MAX_MB_PLANE; ++i) {
int rate =
ROUND_POWER_OF_TWO(r_q10[i] << n_log2[i], 10 - VP9_PROB_COST_SHIFT);
int64_t dist = (var[i] * (int64_t)d_q10[i] + 512) >> 10;
*rate_sum += rate;
*dist_sum += dist;
}
}
void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[16],
ENTROPY_CONTEXT t_left[16]) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const ENTROPY_CONTEXT *const above = pd->above_context;
const ENTROPY_CONTEXT *const left = pd->left_context;
int i;
switch (tx_size) {
case TX_4X4:
memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
break;
case TX_8X8:
for (i = 0; i < num_4x4_w; i += 2)
t_above[i] = !!*(const uint16_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 2)
t_left[i] = !!*(const uint16_t *)&left[i];
break;
case TX_16X16:
for (i = 0; i < num_4x4_w; i += 4)
t_above[i] = !!*(const uint32_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 4)
t_left[i] = !!*(const uint32_t *)&left[i];
break;
default:
assert(tx_size == TX_32X32);
for (i = 0; i < num_4x4_w; i += 8)
t_above[i] = !!*(const uint64_t *)&above[i];
for (i = 0; i < num_4x4_h; i += 8)
t_left[i] = !!*(const uint64_t *)&left[i];
break;
}
}
void vp9_mv_pred(VP9_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) {
int i;
int zero_seen = 0;
int best_index = 0;
int best_sad = INT_MAX;
int this_sad = INT_MAX;
int max_mv = 0;
int near_same_nearest;
uint8_t *src_y_ptr = x->plane[0].src.buf;
uint8_t *ref_y_ptr;
const int num_mv_refs =
MAX_MV_REF_CANDIDATES + (block_size < x->max_partition_size);
MV pred_mv[3];
pred_mv[0] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv;
pred_mv[1] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv;
pred_mv[2] = x->pred_mv[ref_frame];
assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
near_same_nearest = x->mbmi_ext->ref_mvs[ref_frame][0].as_int ==
x->mbmi_ext->ref_mvs[ref_frame][1].as_int;
// Get the sad for each candidate reference mv.
for (i = 0; i < num_mv_refs; ++i) {
const MV *this_mv = &pred_mv[i];
int fp_row, fp_col;
if (i == 1 && near_same_nearest) continue;
fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
max_mv = VPXMAX(max_mv, VPXMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
if (fp_row == 0 && fp_col == 0 && zero_seen) continue;
zero_seen |= (fp_row == 0 && fp_col == 0);
ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col];
// Find sad for current vector.
this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
ref_y_ptr, ref_y_stride);
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
best_index = i;
}
}
// Note the index of the mv that worked best in the reference list.
x->mv_best_ref_index[ref_frame] = best_index;
x->max_mv_context[ref_frame] = max_mv;
x->pred_mv_sad[ref_frame] = best_sad;
}
void vp9_setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *scale,
const struct scale_factors *scale_uv) {
int i;
dst[0].buf = src->y_buffer;
dst[0].stride = src->y_stride;
dst[1].buf = src->u_buffer;
dst[2].buf = src->v_buffer;
dst[1].stride = dst[2].stride = src->uv_stride;
for (i = 0; i < MAX_MB_PLANE; ++i) {
setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
i ? scale_uv : scale, xd->plane[i].subsampling_x,
xd->plane[i].subsampling_y);
}
}
int vp9_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block,
int stride) {
const int bw = b_width_log2_lookup[plane_bsize];
const int y = 4 * (raster_block >> bw);
const int x = 4 * (raster_block & ((1 << bw) - 1));
return y * stride + x;
}
int16_t *vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block,
int16_t *base) {
const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
return base + vp9_raster_block_offset(plane_bsize, raster_block, stride);
}
YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi,
int ref_frame) {
const VP9_COMMON *const cm = &cpi->common;
const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1];
const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame);
return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX)
? &cm->buffer_pool->frame_bufs[scaled_idx].buf
: NULL;
}
int vp9_get_switchable_rate(const VP9_COMP *cpi, const MACROBLOCKD *const xd) {
const MODE_INFO *const mi = xd->mi[0];
const int ctx = get_pred_context_switchable_interp(xd);
return SWITCHABLE_INTERP_RATE_FACTOR *
cpi->switchable_interp_costs[ctx][mi->interp_filter];
}
void vp9_set_rd_speed_thresholds(VP9_COMP *cpi) {
int i;
RD_OPT *const rd = &cpi->rd;
SPEED_FEATURES *const sf = &cpi->sf;
// Set baseline threshold values.
for (i = 0; i < MAX_MODES; ++i)
rd->thresh_mult[i] = cpi->oxcf.mode == BEST ? -500 : 0;
if (sf->adaptive_rd_thresh) {
rd->thresh_mult[THR_NEARESTMV] = 300;
rd->thresh_mult[THR_NEARESTG] = 300;
rd->thresh_mult[THR_NEARESTA] = 300;
} else {
rd->thresh_mult[THR_NEARESTMV] = 0;
rd->thresh_mult[THR_NEARESTG] = 0;
rd->thresh_mult[THR_NEARESTA] = 0;
}
rd->thresh_mult[THR_DC] += 1000;
rd->thresh_mult[THR_NEWMV] += 1000;
rd->thresh_mult[THR_NEWA] += 1000;
rd->thresh_mult[THR_NEWG] += 1000;
rd->thresh_mult[THR_NEARMV] += 1000;
rd->thresh_mult[THR_NEARA] += 1000;
rd->thresh_mult[THR_COMP_NEARESTLA] += 1000;
rd->thresh_mult[THR_COMP_NEARESTGA] += 1000;
rd->thresh_mult[THR_TM] += 1000;
rd->thresh_mult[THR_COMP_NEARLA] += 1500;
rd->thresh_mult[THR_COMP_NEWLA] += 2000;
rd->thresh_mult[THR_NEARG] += 1000;
rd->thresh_mult[THR_COMP_NEARGA] += 1500;
rd->thresh_mult[THR_COMP_NEWGA] += 2000;
rd->thresh_mult[THR_ZEROMV] += 2000;
rd->thresh_mult[THR_ZEROG] += 2000;
rd->thresh_mult[THR_ZEROA] += 2000;
rd->thresh_mult[THR_COMP_ZEROLA] += 2500;
rd->thresh_mult[THR_COMP_ZEROGA] += 2500;
rd->thresh_mult[THR_H_PRED] += 2000;
rd->thresh_mult[THR_V_PRED] += 2000;
rd->thresh_mult[THR_D45_PRED] += 2500;
rd->thresh_mult[THR_D135_PRED] += 2500;
rd->thresh_mult[THR_D117_PRED] += 2500;
rd->thresh_mult[THR_D153_PRED] += 2500;
rd->thresh_mult[THR_D207_PRED] += 2500;
rd->thresh_mult[THR_D63_PRED] += 2500;
}
void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) {
static const int thresh_mult[2][MAX_REFS] = {
{ 2500, 2500, 2500, 4500, 4500, 2500 },
{ 2000, 2000, 2000, 4000, 4000, 2000 }
};
RD_OPT *const rd = &cpi->rd;
const int idx = cpi->oxcf.mode == BEST;
memcpy(rd->thresh_mult_sub8x8, thresh_mult[idx], sizeof(thresh_mult[idx]));
}
void vp9_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh,
int bsize, int best_mode_index) {
if (rd_thresh > 0) {
const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
int mode;
for (mode = 0; mode < top_mode; ++mode) {
const BLOCK_SIZE min_size = VPXMAX(bsize - 1, BLOCK_4X4);
const BLOCK_SIZE max_size = VPXMIN(bsize + 2, BLOCK_64X64);
BLOCK_SIZE bs;
for (bs = min_size; bs <= max_size; ++bs) {
int *const fact = &factor_buf[bs][mode];
if (mode == best_mode_index) {
*fact -= (*fact >> 4);
} else {
*fact = VPXMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT);
}
}
}
}
}
int vp9_get_intra_cost_penalty(const VP9_COMP *const cpi, BLOCK_SIZE bsize,
int qindex, int qdelta) {
// Reduce the intra cost penalty for small blocks (<=16x16).
int reduction_fac =
(bsize <= BLOCK_16X16) ? ((bsize <= BLOCK_8X8) ? 4 : 2) : 0;
if (cpi->noise_estimate.enabled && cpi->noise_estimate.level == kHigh)
// Don't reduce intra cost penalty if estimated noise level is high.
reduction_fac = 0;
// Always use VPX_BITS_8 as input here because the penalty is applied
// to rate not distortion so we want a consistent penalty for all bit
// depths. If the actual bit depth were passed in here then the value
// retured by vp9_dc_quant() would scale with the bit depth and we would
// then need to apply inverse scaling to correct back to a bit depth
// independent rate penalty.
return (20 * vp9_dc_quant(qindex, qdelta, VPX_BITS_8)) >> reduction_fac;
}