blob: 282cf2f52a25a12a8d715024a9eef2e13d38b9ef [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <math.h>
#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/system_state.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_scan.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_aq_variance.h"
#define LAST_FRAME_MODE_MASK \
((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
#define GOLDEN_FRAME_MODE_MASK \
((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
#define ALT_REF_MODE_MASK \
((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME))
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01)
#define MIN_EARLY_TERM_INDEX 3
#define NEW_MV_DISCOUNT_FACTOR 8
typedef struct {
PREDICTION_MODE mode;
MV_REFERENCE_FRAME ref_frame[2];
} MODE_DEFINITION;
typedef struct {
MV_REFERENCE_FRAME ref_frame[2];
} REF_DEFINITION;
struct rdcost_block_args {
const VP9_COMP *cpi;
MACROBLOCK *x;
ENTROPY_CONTEXT t_above[16];
ENTROPY_CONTEXT t_left[16];
int this_rate;
int64_t this_dist;
int64_t this_sse;
int64_t this_rd;
int64_t best_rd;
int exit_early;
int use_fast_coef_costing;
const scan_order *so;
uint8_t skippable;
};
#define LAST_NEW_MV_INDEX 6
static const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
{ NEARESTMV, { LAST_FRAME, NONE } },
{ NEARESTMV, { ALTREF_FRAME, NONE } },
{ NEARESTMV, { GOLDEN_FRAME, NONE } },
{ DC_PRED, { INTRA_FRAME, NONE } },
{ NEWMV, { LAST_FRAME, NONE } },
{ NEWMV, { ALTREF_FRAME, NONE } },
{ NEWMV, { GOLDEN_FRAME, NONE } },
{ NEARMV, { LAST_FRAME, NONE } },
{ NEARMV, { ALTREF_FRAME, NONE } },
{ NEARMV, { GOLDEN_FRAME, NONE } },
{ ZEROMV, { LAST_FRAME, NONE } },
{ ZEROMV, { GOLDEN_FRAME, NONE } },
{ ZEROMV, { ALTREF_FRAME, NONE } },
{ NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ TM_PRED, { INTRA_FRAME, NONE } },
{ NEARMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEWMV, { LAST_FRAME, ALTREF_FRAME } },
{ NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ ZEROMV, { LAST_FRAME, ALTREF_FRAME } },
{ ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } },
{ H_PRED, { INTRA_FRAME, NONE } },
{ V_PRED, { INTRA_FRAME, NONE } },
{ D135_PRED, { INTRA_FRAME, NONE } },
{ D207_PRED, { INTRA_FRAME, NONE } },
{ D153_PRED, { INTRA_FRAME, NONE } },
{ D63_PRED, { INTRA_FRAME, NONE } },
{ D117_PRED, { INTRA_FRAME, NONE } },
{ D45_PRED, { INTRA_FRAME, NONE } },
};
static const REF_DEFINITION vp9_ref_order[MAX_REFS] = {
{ { LAST_FRAME, NONE } }, { { GOLDEN_FRAME, NONE } },
{ { ALTREF_FRAME, NONE } }, { { LAST_FRAME, ALTREF_FRAME } },
{ { GOLDEN_FRAME, ALTREF_FRAME } }, { { INTRA_FRAME, NONE } },
};
static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int m, int n,
int min_plane, int max_plane) {
int i;
for (i = min_plane; i < max_plane; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &x->e_mbd.plane[i];
p->coeff = ctx->coeff_pbuf[i][m];
p->qcoeff = ctx->qcoeff_pbuf[i][m];
pd->dqcoeff = ctx->dqcoeff_pbuf[i][m];
p->eobs = ctx->eobs_pbuf[i][m];
ctx->coeff_pbuf[i][m] = ctx->coeff_pbuf[i][n];
ctx->qcoeff_pbuf[i][m] = ctx->qcoeff_pbuf[i][n];
ctx->dqcoeff_pbuf[i][m] = ctx->dqcoeff_pbuf[i][n];
ctx->eobs_pbuf[i][m] = ctx->eobs_pbuf[i][n];
ctx->coeff_pbuf[i][n] = p->coeff;
ctx->qcoeff_pbuf[i][n] = p->qcoeff;
ctx->dqcoeff_pbuf[i][n] = pd->dqcoeff;
ctx->eobs_pbuf[i][n] = p->eobs;
}
}
static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
MACROBLOCKD *xd, int *out_rate_sum,
int64_t *out_dist_sum, int *skip_txfm_sb,
int64_t *skip_sse_sb) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
int i;
int64_t rate_sum = 0;
int64_t dist_sum = 0;
const int ref = xd->mi[0]->ref_frame[0];
unsigned int sse;
unsigned int var = 0;
int64_t total_sse = 0;
int skip_flag = 1;
const int shift = 6;
int64_t dist;
const int dequant_shift =
#if CONFIG_VP9_HIGHBITDEPTH
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 :
#endif // CONFIG_VP9_HIGHBITDEPTH
3;
unsigned int qstep_vec[MAX_MB_PLANE];
unsigned int nlog2_vec[MAX_MB_PLANE];
unsigned int sum_sse_vec[MAX_MB_PLANE];
int any_zero_sum_sse = 0;
x->pred_sse[ref] = 0;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
const BLOCK_SIZE unit_size = txsize_to_bsize[max_tx_size];
const int64_t dc_thr = p->quant_thred[0] >> shift;
const int64_t ac_thr = p->quant_thred[1] >> shift;
unsigned int sum_sse = 0;
// The low thresholds are used to measure if the prediction errors are
// low enough so that we can skip the mode search.
const int64_t low_dc_thr = VPXMIN(50, dc_thr >> 2);
const int64_t low_ac_thr = VPXMIN(80, ac_thr >> 2);
int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
int idx, idy;
int lw = b_width_log2_lookup[unit_size] + 2;
int lh = b_height_log2_lookup[unit_size] + 2;
for (idy = 0; idy < bh; ++idy) {
for (idx = 0; idx < bw; ++idx) {
uint8_t *src = p->src.buf + (idy * p->src.stride << lh) + (idx << lw);
uint8_t *dst = pd->dst.buf + (idy * pd->dst.stride << lh) + (idx << lh);
int block_idx = (idy << 1) + idx;
int low_err_skip = 0;
var = cpi->fn_ptr[unit_size].vf(src, p->src.stride, dst, pd->dst.stride,
&sse);
x->bsse[(i << 2) + block_idx] = sse;
sum_sse += sse;
x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_NONE;
if (!x->select_tx_size) {
// Check if all ac coefficients can be quantized to zero.
if (var < ac_thr || var == 0) {
x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_ONLY;
// Check if dc coefficient can be quantized to zero.
if (sse - var < dc_thr || sse == var) {
x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_DC;
if (!sse || (var < low_ac_thr && sse - var < low_dc_thr))
low_err_skip = 1;
}
}
}
if (skip_flag && !low_err_skip) skip_flag = 0;
if (i == 0) x->pred_sse[ref] += sse;
}
}
total_sse += sum_sse;
sum_sse_vec[i] = sum_sse;
any_zero_sum_sse = any_zero_sum_sse || (sum_sse == 0);
qstep_vec[i] = pd->dequant[1] >> dequant_shift;
nlog2_vec[i] = num_pels_log2_lookup[bs];
}
// Fast approximate the modelling function.
if (cpi->sf.simple_model_rd_from_var) {
for (i = 0; i < MAX_MB_PLANE; ++i) {
int64_t rate;
const int64_t square_error = sum_sse_vec[i];
int quantizer = qstep_vec[i];
if (quantizer < 120)
rate = (square_error * (280 - quantizer)) >> (16 - VP9_PROB_COST_SHIFT);
else
rate = 0;
dist = (square_error * quantizer) >> 8;
rate_sum += rate;
dist_sum += dist;
}
} else {
if (any_zero_sum_sse) {
for (i = 0; i < MAX_MB_PLANE; ++i) {
int rate;
vp9_model_rd_from_var_lapndz(sum_sse_vec[i], nlog2_vec[i], qstep_vec[i],
&rate, &dist);
rate_sum += rate;
dist_sum += dist;
}
} else {
vp9_model_rd_from_var_lapndz_vec(sum_sse_vec, nlog2_vec, qstep_vec,
&rate_sum, &dist_sum);
}
}
*skip_txfm_sb = skip_flag;
*skip_sse_sb = total_sse << 4;
*out_rate_sum = (int)rate_sum;
*out_dist_sum = dist_sum << 4;
}
#if CONFIG_VP9_HIGHBITDEPTH
int64_t vp9_highbd_block_error_c(const tran_low_t *coeff,
const tran_low_t *dqcoeff, intptr_t block_size,
int64_t *ssz, int bd) {
int i;
int64_t error = 0, sqcoeff = 0;
int shift = 2 * (bd - 8);
int rounding = shift > 0 ? 1 << (shift - 1) : 0;
for (i = 0; i < block_size; i++) {
const int64_t diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
}
assert(error >= 0 && sqcoeff >= 0);
error = (error + rounding) >> shift;
sqcoeff = (sqcoeff + rounding) >> shift;
*ssz = sqcoeff;
return error;
}
static int64_t vp9_highbd_block_error_dispatch(const tran_low_t *coeff,
const tran_low_t *dqcoeff,
intptr_t block_size,
int64_t *ssz, int bd) {
if (bd == 8) {
return vp9_block_error(coeff, dqcoeff, block_size, ssz);
} else {
return vp9_highbd_block_error(coeff, dqcoeff, block_size, ssz, bd);
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
int64_t vp9_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
int i;
int64_t error = 0, sqcoeff = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += coeff[i] * coeff[i];
}
*ssz = sqcoeff;
return error;
}
int64_t vp9_block_error_fp_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
int block_size) {
int i;
int64_t error = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
}
return error;
}
/* The trailing '0' is a terminator which is used inside cost_coeffs() to
* decide whether to include cost of a trailing EOB node or not (i.e. we
* can skip this if the last coefficient in this transform block, e.g. the
* 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block,
* were non-zero). */
static const int16_t band_counts[TX_SIZES][8] = {
{ 1, 2, 3, 4, 3, 16 - 13, 0 },
{ 1, 2, 3, 4, 11, 64 - 21, 0 },
{ 1, 2, 3, 4, 11, 256 - 21, 0 },
{ 1, 2, 3, 4, 11, 1024 - 21, 0 },
};
static int cost_coeffs(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
int pt, const int16_t *scan, const int16_t *nb,
int use_fast_coef_costing) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
const struct macroblock_plane *p = &x->plane[plane];
const PLANE_TYPE type = get_plane_type(plane);
const int16_t *band_count = &band_counts[tx_size][1];
const int eob = p->eobs[block];
const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
x->token_costs[tx_size][type][is_inter_block(mi)];
uint8_t token_cache[32 * 32];
int cost;
#if CONFIG_VP9_HIGHBITDEPTH
const uint16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd);
#else
const uint16_t *cat6_high_cost = vp9_get_high_cost_table(8);
#endif
// Check for consistency of tx_size with mode info
assert(type == PLANE_TYPE_Y
? mi->tx_size == tx_size
: get_uv_tx_size(mi, &xd->plane[plane]) == tx_size);
if (eob == 0) {
// single eob token
cost = token_costs[0][0][pt][EOB_TOKEN];
} else {
if (use_fast_coef_costing) {
int band_left = *band_count++;
int c;
// dc token
int v = qcoeff[0];
int16_t prev_t;
cost = vp9_get_token_cost(v, &prev_t, cat6_high_cost);
cost += (*token_costs)[0][pt][prev_t];
token_cache[0] = vp9_pt_energy_class[prev_t];
++token_costs;
// ac tokens
for (c = 1; c < eob; c++) {
const int rc = scan[c];
int16_t t;
v = qcoeff[rc];
cost += vp9_get_token_cost(v, &t, cat6_high_cost);
cost += (*token_costs)[!prev_t][!prev_t][t];
prev_t = t;
if (!--band_left) {
band_left = *band_count++;
++token_costs;
}
}
// eob token
if (band_left) cost += (*token_costs)[0][!prev_t][EOB_TOKEN];
} else { // !use_fast_coef_costing
int band_left = *band_count++;
int c;
// dc token
int v = qcoeff[0];
int16_t tok;
unsigned int(*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS];
cost = vp9_get_token_cost(v, &tok, cat6_high_cost);
cost += (*token_costs)[0][pt][tok];
token_cache[0] = vp9_pt_energy_class[tok];
++token_costs;
tok_cost_ptr = &((*token_costs)[!tok]);
// ac tokens
for (c = 1; c < eob; c++) {
const int rc = scan[c];
v = qcoeff[rc];
cost += vp9_get_token_cost(v, &tok, cat6_high_cost);
pt = get_coef_context(nb, token_cache, c);
cost += (*tok_cost_ptr)[pt][tok];
token_cache[rc] = vp9_pt_energy_class[tok];
if (!--band_left) {
band_left = *band_count++;
++token_costs;
}
tok_cost_ptr = &((*token_costs)[!tok]);
}
// eob token
if (band_left) {
pt = get_coef_context(nb, token_cache, c);
cost += (*token_costs)[0][pt][EOB_TOKEN];
}
}
}
return cost;
}
static INLINE int num_4x4_to_edge(int plane_4x4_dim, int mb_to_edge_dim,
int subsampling_dim, int blk_dim) {
return plane_4x4_dim + (mb_to_edge_dim >> (5 + subsampling_dim)) - blk_dim;
}
// Compute the pixel domain sum square error on all visible 4x4s in the
// transform block.
static unsigned pixel_sse(const VP9_COMP *const cpi, const MACROBLOCKD *xd,
const struct macroblockd_plane *const pd,
const uint8_t *src, const int src_stride,
const uint8_t *dst, const int dst_stride, int blk_row,
int blk_col, const BLOCK_SIZE plane_bsize,
const BLOCK_SIZE tx_bsize) {
unsigned int sse = 0;
const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize];
const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize];
int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge,
pd->subsampling_x, blk_col);
int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge,
pd->subsampling_y, blk_row);
if (tx_bsize == BLOCK_4X4 ||
(b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) {
cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
} else {
const vpx_variance_fn_t vf_4x4 = cpi->fn_ptr[BLOCK_4X4].vf;
int r, c;
unsigned this_sse = 0;
int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h);
int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w);
sse = 0;
// if we are in the unrestricted motion border.
for (r = 0; r < max_r; ++r) {
// Skip visiting the sub blocks that are wholly within the UMV.
for (c = 0; c < max_c; ++c) {
vf_4x4(src + r * src_stride * 4 + c * 4, src_stride,
dst + r * dst_stride * 4 + c * 4, dst_stride, &this_sse);
sse += this_sse;
}
}
}
return sse;
}
// Compute the squares sum squares on all visible 4x4s in the transform block.
static int64_t sum_squares_visible(const MACROBLOCKD *xd,
const struct macroblockd_plane *const pd,
const int16_t *diff, const int diff_stride,
int blk_row, int blk_col,
const BLOCK_SIZE plane_bsize,
const BLOCK_SIZE tx_bsize) {
int64_t sse;
const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize];
const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize];
int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge,
pd->subsampling_x, blk_col);
int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge,
pd->subsampling_y, blk_row);
if (tx_bsize == BLOCK_4X4 ||
(b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) {
assert(tx_4x4_w == tx_4x4_h);
sse = (int64_t)vpx_sum_squares_2d_i16(diff, diff_stride, tx_4x4_w << 2);
} else {
int r, c;
int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h);
int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w);
sse = 0;
// if we are in the unrestricted motion border.
for (r = 0; r < max_r; ++r) {
// Skip visiting the sub blocks that are wholly within the UMV.
for (c = 0; c < max_c; ++c) {
sse += (int64_t)vpx_sum_squares_2d_i16(
diff + r * diff_stride * 4 + c * 4, diff_stride, 4);
}
}
}
return sse;
}
static void dist_block(const VP9_COMP *cpi, MACROBLOCK *x, int plane,
BLOCK_SIZE plane_bsize, int block, int blk_row,
int blk_col, TX_SIZE tx_size, int64_t *out_dist,
int64_t *out_sse) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int eob = p->eobs[block];
if (x->block_tx_domain && eob) {
const int ss_txfrm_size = tx_size << 1;
int64_t this_sse;
const int shift = tx_size == TX_32X32 ? 0 : 2;
const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
const tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
#if CONFIG_VP9_HIGHBITDEPTH
const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8;
*out_dist = vp9_highbd_block_error_dispatch(
coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse, bd) >>
shift;
#else
*out_dist =
vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse) >>
shift;
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_sse = this_sse >> shift;
if (x->skip_encode && !is_inter_block(xd->mi[0])) {
// TODO(jingning): tune the model to better capture the distortion.
const int64_t p =
(pd->dequant[1] * pd->dequant[1] * (1 << ss_txfrm_size)) >>
#if CONFIG_VP9_HIGHBITDEPTH
(shift + 2 + (bd - 8) * 2);
#else
(shift + 2);
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_dist += (p >> 4);
*out_sse += p;
}
} else {
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
const int bs = 4 * num_4x4_blocks_wide_lookup[tx_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int src_idx = 4 * (blk_row * src_stride + blk_col);
const int dst_idx = 4 * (blk_row * dst_stride + blk_col);
const uint8_t *src = &p->src.buf[src_idx];
const uint8_t *dst = &pd->dst.buf[dst_idx];
const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
unsigned int tmp;
tmp = pixel_sse(cpi, xd, pd, src, src_stride, dst, dst_stride, blk_row,
blk_col, plane_bsize, tx_bsize);
*out_sse = (int64_t)tmp * 16;
if (eob) {
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, recon16[1024]);
uint8_t *recon = (uint8_t *)recon16;
#else
DECLARE_ALIGNED(16, uint8_t, recon[1024]);
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride, recon16,
32, NULL, 0, 0, 0, 0, bs, bs, xd->bd);
if (xd->lossless) {
vp9_highbd_iwht4x4_add(dqcoeff, recon16, 32, eob, xd->bd);
} else {
switch (tx_size) {
case TX_4X4:
vp9_highbd_idct4x4_add(dqcoeff, recon16, 32, eob, xd->bd);
break;
case TX_8X8:
vp9_highbd_idct8x8_add(dqcoeff, recon16, 32, eob, xd->bd);
break;
case TX_16X16:
vp9_highbd_idct16x16_add(dqcoeff, recon16, 32, eob, xd->bd);
break;
default:
assert(tx_size == TX_32X32);
vp9_highbd_idct32x32_add(dqcoeff, recon16, 32, eob, xd->bd);
break;
}
}
recon = CONVERT_TO_BYTEPTR(recon16);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
vpx_convolve_copy(dst, dst_stride, recon, 32, NULL, 0, 0, 0, 0, bs, bs);
switch (tx_size) {
case TX_32X32: vp9_idct32x32_add(dqcoeff, recon, 32, eob); break;
case TX_16X16: vp9_idct16x16_add(dqcoeff, recon, 32, eob); break;
case TX_8X8: vp9_idct8x8_add(dqcoeff, recon, 32, eob); break;
default:
assert(tx_size == TX_4X4);
// this is like vp9_short_idct4x4 but has a special case around
// eob<=1, which is significant (not just an optimization) for
// the lossless case.
x->inv_txfm_add(dqcoeff, recon, 32, eob);
break;
}
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
tmp = pixel_sse(cpi, xd, pd, src, src_stride, recon, 32, blk_row, blk_col,
plane_bsize, tx_bsize);
}
*out_dist = (int64_t)tmp * 16;
}
}
static int rate_block(int plane, int block, TX_SIZE tx_size, int coeff_ctx,
struct rdcost_block_args *args) {
return cost_coeffs(args->x, plane, block, tx_size, coeff_ctx, args->so->scan,
args->so->neighbors, args->use_fast_coef_costing);
}
static void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct rdcost_block_args *args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
int64_t rd1, rd2, rd;
int rate;
int64_t dist;
int64_t sse;
const int coeff_ctx =
combine_entropy_contexts(args->t_left[blk_row], args->t_above[blk_col]);
if (args->exit_early) return;
if (!is_inter_block(mi)) {
struct encode_b_args intra_arg = { x, x->block_qcoeff_opt, args->t_above,
args->t_left, &mi->skip };
vp9_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
&intra_arg);
if (x->block_tx_domain) {
dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col,
tx_size, &dist, &sse);
} else {
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const uint8_t *src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
const uint8_t *dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
unsigned int tmp;
sse = sum_squares_visible(xd, pd, diff, diff_stride, blk_row, blk_col,
plane_bsize, tx_bsize);
#if CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && (xd->bd > 8))
sse = ROUND64_POWER_OF_TWO(sse, (xd->bd - 8) * 2);
#endif // CONFIG_VP9_HIGHBITDEPTH
sse = sse * 16;
tmp = pixel_sse(args->cpi, xd, pd, src, src_stride, dst, dst_stride,
blk_row, blk_col, plane_bsize, tx_bsize);
dist = (int64_t)tmp * 16;
}
} else if (max_txsize_lookup[plane_bsize] == tx_size) {
if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] ==
SKIP_TXFM_NONE) {
// full forward transform and quantization
vp9_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size);
if (x->block_qcoeff_opt)
vp9_optimize_b(x, plane, block, tx_size, coeff_ctx);
dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col,
tx_size, &dist, &sse);
} else if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] ==
SKIP_TXFM_AC_ONLY) {
// compute DC coefficient
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[plane].coeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block);
vp9_xform_quant_dc(x, plane, block, blk_row, blk_col, plane_bsize,
tx_size);
sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
dist = sse;
if (x->plane[plane].eobs[block]) {
const int64_t orig_sse = (int64_t)coeff[0] * coeff[0];
const int64_t resd_sse = coeff[0] - dqcoeff[0];
int64_t dc_correct = orig_sse - resd_sse * resd_sse;
#if CONFIG_VP9_HIGHBITDEPTH
dc_correct >>= ((xd->bd - 8) * 2);
#endif
if (tx_size != TX_32X32) dc_correct >>= 2;
dist = VPXMAX(0, sse - dc_correct);
}
} else {
// SKIP_TXFM_AC_DC
// skip forward transform. Because this is handled here, the quantization
// does not need to do it.
x->plane[plane].eobs[block] = 0;
sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
dist = sse;
}
} else {
// full forward transform and quantization
vp9_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size);
if (x->block_qcoeff_opt)
vp9_optimize_b(x, plane, block, tx_size, coeff_ctx);
dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col,
tx_size, &dist, &sse);
}
rd = RDCOST(x->rdmult, x->rddiv, 0, dist);
if (args->this_rd + rd > args->best_rd) {
args->exit_early = 1;
return;
}
rate = rate_block(plane, block, tx_size, coeff_ctx, args);
args->t_above[blk_col] = (x->plane[plane].eobs[block] > 0) ? 1 : 0;
args->t_left[blk_row] = (x->plane[plane].eobs[block] > 0) ? 1 : 0;
rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse);
// TODO(jingning): temporarily enabled only for luma component
rd = VPXMIN(rd1, rd2);
if (plane == 0) {
x->zcoeff_blk[tx_size][block] =
!x->plane[plane].eobs[block] || (rd1 > rd2 && !xd->lossless);
x->sum_y_eobs[tx_size] += x->plane[plane].eobs[block];
}
args->this_rate += rate;
args->this_dist += dist;
args->this_sse += sse;
args->this_rd += rd;
if (args->this_rd > args->best_rd) {
args->exit_early = 1;
return;
}
args->skippable &= !x->plane[plane].eobs[block];
}
static void txfm_rd_in_plane(const VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int64_t *distortion, int *skippable, int64_t *sse,
int64_t ref_best_rd, int plane, BLOCK_SIZE bsize,
TX_SIZE tx_size, int use_fast_coef_costing) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
struct rdcost_block_args args;
vp9_zero(args);
args.cpi = cpi;
args.x = x;
args.best_rd = ref_best_rd;
args.use_fast_coef_costing = use_fast_coef_costing;
args.skippable = 1;
if (plane == 0) xd->mi[0]->tx_size = tx_size;
vp9_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
args.so = get_scan(xd, tx_size, get_plane_type(plane), 0);
vp9_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm,
&args);
if (args.exit_early) {
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
} else {
*distortion = args.this_dist;
*rate = args.this_rate;
*sse = args.this_sse;
*skippable = args.skippable;
}
}
static void choose_largest_tx_size(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int64_t *distortion, int *skip, int64_t *sse,
int64_t ref_best_rd, BLOCK_SIZE bs) {
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
VP9_COMMON *const cm = &cpi->common;
const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
mi->tx_size = VPXMIN(max_tx_size, largest_tx_size);
txfm_rd_in_plane(cpi, x, rate, distortion, skip, sse, ref_best_rd, 0, bs,
mi->tx_size, cpi->sf.use_fast_coef_costing);
}
static void choose_tx_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int64_t *distortion, int *skip,
int64_t *psse, int64_t ref_best_rd,
BLOCK_SIZE bs) {
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
vpx_prob skip_prob = vp9_get_skip_prob(cm, xd);
int r[TX_SIZES][2], s[TX_SIZES];
int64_t d[TX_SIZES], sse[TX_SIZES];
int64_t rd[TX_SIZES][2] = { { INT64_MAX, INT64_MAX },
{ INT64_MAX, INT64_MAX },
{ INT64_MAX, INT64_MAX },
{ INT64_MAX, INT64_MAX } };
int n;
int s0, s1;
int64_t best_rd = ref_best_rd;
TX_SIZE best_tx = max_tx_size;
int start_tx, end_tx;
const int tx_size_ctx = get_tx_size_context(xd);
assert(skip_prob > 0);
s0 = vp9_cost_bit(skip_prob, 0);
s1 = vp9_cost_bit(skip_prob, 1);
if (cm->tx_mode == TX_MODE_SELECT) {
start_tx = max_tx_size;
end_tx = VPXMAX(start_tx - cpi->sf.tx_size_search_depth, 0);
if (bs > BLOCK_32X32) end_tx = VPXMIN(end_tx + 1, start_tx);
} else {
TX_SIZE chosen_tx_size =
VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[cm->tx_mode]);
start_tx = chosen_tx_size;
end_tx = chosen_tx_size;
}
for (n = start_tx; n >= end_tx; n--) {
const int r_tx_size = cpi->tx_size_cost[max_tx_size - 1][tx_size_ctx][n];
txfm_rd_in_plane(cpi, x, &r[n][0], &d[n], &s[n], &sse[n], best_rd, 0, bs, n,
cpi->sf.use_fast_coef_costing);
r[n][1] = r[n][0];
if (r[n][0] < INT_MAX) {
r[n][1] += r_tx_size;
}
if (d[n] == INT64_MAX || r[n][0] == INT_MAX) {
rd[n][0] = rd[n][1] = INT64_MAX;
} else if (s[n]) {
if (is_inter_block(mi)) {
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]);
r[n][1] -= r_tx_size;
} else {
rd[n][0] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size, sse[n]);
}
} else {
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
}
if (is_inter_block(mi) && !xd->lossless && !s[n] && sse[n] != INT64_MAX) {
rd[n][0] = VPXMIN(rd[n][0], RDCOST(x->rdmult, x->rddiv, s1, sse[n]));
rd[n][1] = VPXMIN(rd[n][1], RDCOST(x->rdmult, x->rddiv, s1, sse[n]));
}
// Early termination in transform size search.
if (cpi->sf.tx_size_search_breakout &&
(rd[n][1] == INT64_MAX ||
(n < (int)max_tx_size && rd[n][1] > rd[n + 1][1]) || s[n] == 1))
break;
if (rd[n][1] < best_rd) {
best_tx = n;
best_rd = rd[n][1];
}
}
mi->tx_size = best_tx;
*distortion = d[mi->tx_size];
*rate = r[mi->tx_size][cm->tx_mode == TX_MODE_SELECT];
*skip = s[mi->tx_size];
*psse = sse[mi->tx_size];
}
static void super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int64_t *distortion, int *skip, int64_t *psse,
BLOCK_SIZE bs, int64_t ref_best_rd) {
MACROBLOCKD *xd = &x->e_mbd;
int64_t sse;
int64_t *ret_sse = psse ? psse : &sse;
assert(bs == xd->mi[0]->sb_type);
if (cpi->sf.tx_size_search_method == USE_LARGESTALL || xd->lossless) {
choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
bs);
} else {
choose_tx_size_from_rd(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
bs);
}
}
static int conditional_skipintra(PREDICTION_MODE mode,
PREDICTION_MODE best_intra_mode) {
if (mode == D117_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D135_PRED)
return 1;
if (mode == D63_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D207_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D153_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D135_PRED)
return 1;
return 0;
}
static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int row,
int col, PREDICTION_MODE *best_mode,
const int *bmode_costs, ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l, int *bestrate,
int *bestratey, int64_t *bestdistortion,
BLOCK_SIZE bsize, int64_t rd_thresh) {
PREDICTION_MODE mode;
MACROBLOCKD *const xd = &x->e_mbd;
int64_t best_rd = rd_thresh;
struct macroblock_plane *p = &x->plane[0];
struct macroblockd_plane *pd = &xd->plane[0];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4];
uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4];
ENTROPY_CONTEXT ta[2], tempa[2];
ENTROPY_CONTEXT tl[2], templ[2];
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
uint8_t best_dst[8 * 8];
#if CONFIG_VP9_HIGHBITDEPTH
uint16_t best_dst16[8 * 8];
#endif
memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0]));
memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0]));
xd->mi[0]->tx_size = TX_4X4;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
int64_t distortion = 0;
int rate = bmode_costs[mode];
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
// Only do the oblique modes if the best so far is
// one of the neighboring directional modes
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mode, *best_mode)) continue;
}
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
const int block = (row + idy) * 2 + (col + idx);
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
int16_t *const src_diff =
vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
xd->mi[0]->bmi[block].as_mode = mode;
vp9_predict_intra_block(xd, 1, TX_4X4, mode,
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride, dst,
dst_stride, col + idx, row + idy, 0);
vpx_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, dst,
dst_stride, xd->bd);
if (xd->lossless) {
const scan_order *so = &vp9_default_scan_orders[TX_4X4];
const int coeff_ctx =
combine_entropy_contexts(tempa[idx], templ[idy]);
vp9_highbd_fwht4x4(src_diff, coeff, 8);
vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0 ? 1 : 0);
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next_highbd;
vp9_highbd_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst16,
dst_stride, p->eobs[block], xd->bd);
} else {
int64_t unused;
const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block);
const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type];
const int coeff_ctx =
combine_entropy_contexts(tempa[idx], templ[idy]);
if (tx_type == DCT_DCT)
vpx_highbd_fdct4x4(src_diff, coeff, 8);
else
vp9_highbd_fht4x4(src_diff, coeff, 8, tx_type);
vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
distortion += vp9_highbd_block_error_dispatch(
coeff, BLOCK_OFFSET(pd->dqcoeff, block), 16,
&unused, xd->bd) >>
2;
tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0 ? 1 : 0);
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next_highbd;
vp9_highbd_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block),
dst16, dst_stride, p->eobs[block], xd->bd);
}
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
memcpy(best_dst16 + idy * 8,
CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
num_4x4_blocks_wide * 4 * sizeof(uint16_t));
}
}
next_highbd : {}
}
if (best_rd >= rd_thresh || x->skip_encode) return best_rd;
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
best_dst16 + idy * 8, num_4x4_blocks_wide * 4 * sizeof(uint16_t));
}
return best_rd;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
int64_t this_rd;
int ratey = 0;
int64_t distortion = 0;
int rate = bmode_costs[mode];
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
// Only do the oblique modes if the best so far is
// one of the neighboring directional modes
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(mode, *best_mode)) continue;
}
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
const int block = (row + idy) * 2 + (col + idx);
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
int16_t *const src_diff =
vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
xd->mi[0]->bmi[block].as_mode = mode;
vp9_predict_intra_block(xd, 1, TX_4X4, mode, x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride, dst,
dst_stride, col + idx, row + idy, 0);
vpx_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride);
if (xd->lossless) {
const scan_order *so = &vp9_default_scan_orders[TX_4X4];
const int coeff_ctx =
combine_entropy_contexts(tempa[idx], templ[idy]);
vp9_fwht4x4(src_diff, coeff, 8);
vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0) ? 1 : 0;
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next;
vp9_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride,
p->eobs[block]);
} else {
int64_t unused;
const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block);
const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type];
const int coeff_ctx =
combine_entropy_contexts(tempa[idx], templ[idy]);
vp9_fht4x4(src_diff, coeff, 8, tx_type);
vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0) ? 1 : 0;
distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block),
16, &unused) >>
2;
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
goto next;
vp9_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block), dst,
dst_stride, p->eobs[block]);
}
}
}
rate += ratey;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd) {
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
memcpy(best_dst + idy * 8, dst_init + idy * dst_stride,
num_4x4_blocks_wide * 4);
}
next : {}
}
if (best_rd >= rd_thresh || x->skip_encode) return best_rd;
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
memcpy(dst_init + idy * dst_stride, best_dst + idy * 8,
num_4x4_blocks_wide * 4);
return best_rd;
}
static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP *cpi, MACROBLOCK *mb,
int *rate, int *rate_y,
int64_t *distortion,
int64_t best_rd) {
int i, j;
const MACROBLOCKD *const xd = &mb->e_mbd;
MODE_INFO *const mic = xd->mi[0];
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
int cost = 0;
int64_t total_distortion = 0;
int tot_rate_y = 0;
int64_t total_rd = 0;
const int *bmode_costs = cpi->mbmode_cost;
// Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block.
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
PREDICTION_MODE best_mode = DC_PRED;
int r = INT_MAX, ry = INT_MAX;
int64_t d = INT64_MAX, this_rd = INT64_MAX;
i = idy * 2 + idx;
if (cpi->common.frame_type == KEY_FRAME) {
const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, i);
const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, i);
bmode_costs = cpi->y_mode_costs[A][L];
}
this_rd = rd_pick_intra4x4block(
cpi, mb, idy, idx, &best_mode, bmode_costs,
xd->plane[0].above_context + idx, xd->plane[0].left_context + idy, &r,
&ry, &d, bsize, best_rd - total_rd);
if (this_rd >= best_rd - total_rd) return INT64_MAX;
total_rd += this_rd;
cost += r;
total_distortion += d;
tot_rate_y += ry;
mic->bmi[i].as_mode = best_mode;
for (j = 1; j < num_4x4_blocks_high; ++j)
mic->bmi[i + j * 2].as_mode = best_mode;
for (j = 1; j < num_4x4_blocks_wide; ++j)
mic->bmi[i + j].as_mode = best_mode;
if (total_rd >= best_rd) return INT64_MAX;
}
}
*rate = cost;
*rate_y = tot_rate_y;
*distortion = total_distortion;
mic->mode = mic->bmi[3].as_mode;
return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion);
}
// This function is used only for intra_only frames
static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int *rate_tokenonly, int64_t *distortion,
int *skippable, BLOCK_SIZE bsize,
int64_t best_rd) {
PREDICTION_MODE mode;
PREDICTION_MODE mode_selected = DC_PRED;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mic = xd->mi[0];
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
TX_SIZE best_tx = TX_4X4;
int *bmode_costs;
const MODE_INFO *above_mi = xd->above_mi;
const MODE_INFO *left_mi = xd->left_mi;
const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
bmode_costs = cpi->y_mode_costs[A][L];
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
/* Y Search for intra prediction mode */
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
if (cpi->sf.use_nonrd_pick_mode) {
// These speed features are turned on in hybrid non-RD and RD mode
// for key frame coding in the context of real-time setting.
if (conditional_skipintra(mode, mode_selected)) continue;
if (*skippable) break;
}
mic->mode = mode;
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
bsize, best_rd);
if (this_rate_tokenonly == INT_MAX) continue;
this_rate = this_rate_tokenonly + bmode_costs[mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
best_tx = mic->tx_size;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
}
}
mic->mode = mode_selected;
mic->tx_size = best_tx;
return best_rd;
}
// Return value 0: early termination triggered, no valid rd cost available;
// 1: rd cost values are valid.
static int super_block_uvrd(const VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int64_t *distortion, int *skippable, int64_t *sse,
BLOCK_SIZE bsize, int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
const TX_SIZE uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]);
int plane;
int pnrate = 0, pnskip = 1;
int64_t pndist = 0, pnsse = 0;
int is_cost_valid = 1;
if (ref_best_rd < 0) is_cost_valid = 0;
if (is_inter_block(mi) && is_cost_valid) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; ++plane)
vp9_subtract_plane(x, bsize, plane);
}
*rate = 0;
*distortion = 0;
*sse = 0;
*skippable = 1;
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
txfm_rd_in_plane(cpi, x, &pnrate, &pndist, &pnskip, &pnsse, ref_best_rd,
plane, bsize, uv_tx_size, cpi->sf.use_fast_coef_costing);
if (pnrate == INT_MAX) {
is_cost_valid = 0;
break;
}
*rate += pnrate;
*distortion += pndist;
*sse += pnsse;
*skippable &= pnskip;
}
if (!is_cost_valid) {
// reset cost value
*rate = INT_MAX;
*distortion = INT64_MAX;
*sse = INT64_MAX;
*skippable = 0;
}
return is_cost_valid;
}
static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
PICK_MODE_CONTEXT *ctx, int *rate,
int *rate_tokenonly, int64_t *distortion,
int *skippable, BLOCK_SIZE bsize,
TX_SIZE max_tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
PREDICTION_MODE mode;
PREDICTION_MODE mode_selected = DC_PRED;
int64_t best_rd = INT64_MAX, this_rd;
int this_rate_tokenonly, this_rate, s;
int64_t this_distortion, this_sse;
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) continue;
#if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) &&
(xd->above_mi == NULL || xd->left_mi == NULL) && need_top_left[mode])
continue;
#endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
xd->mi[0]->uv_mode = mode;
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
&this_sse, bsize, best_rd))
continue;
this_rate =
this_rate_tokenonly +
cpi->intra_uv_mode_cost[cpi->common.frame_type][xd->mi[0]->mode][mode];
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
if (this_rd < best_rd) {
mode_selected = mode;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
if (!x->select_tx_size) swap_block_ptr(x, ctx, 2, 0, 1, MAX_MB_PLANE);
}
}
xd->mi[0]->uv_mode = mode_selected;
return best_rd;
}
static int64_t rd_sbuv_dcpred(const VP9_COMP *cpi, MACROBLOCK *x, int *rate,
int *rate_tokenonly, int64_t *distortion,
int *skippable, BLOCK_SIZE bsize) {
const VP9_COMMON *cm = &cpi->common;
int64_t unused;
x->e_mbd.mi[0]->uv_mode = DC_PRED;
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
super_block_uvrd(cpi, x, rate_tokenonly, distortion, skippable, &unused,
bsize, INT64_MAX);
*rate =
*rate_tokenonly +
cpi->intra_uv_mode_cost[cm->frame_type][x->e_mbd.mi[0]->mode][DC_PRED];
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
}
static void choose_intra_uv_mode(VP9_COMP *cpi, MACROBLOCK *const x,
PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize,
TX_SIZE max_tx_size, int *rate_uv,
int *rate_uv_tokenonly, int64_t *dist_uv,
int *skip_uv, PREDICTION_MODE *mode_uv) {
// Use an estimated rd for uv_intra based on DC_PRED if the
// appropriate speed flag is set.
if (cpi->sf.use_uv_intra_rd_estimate) {
rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize);
// Else do a proper rd search for each possible transform size that may
// be considered in the main rd loop.
} else {
rd_pick_intra_sbuv_mode(cpi, x, ctx, rate_uv, rate_uv_tokenonly, dist_uv,
skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize,
max_tx_size);
}
*mode_uv = x->e_mbd.mi[0]->uv_mode;
}
static int cost_mv_ref(const VP9_COMP *cpi, PREDICTION_MODE mode,
int mode_context) {
assert(is_inter_mode(mode));
return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)];
}
static int set_and_cost_bmi_mvs(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
int i, PREDICTION_MODE mode, int_mv this_mv[2],
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
int_mv seg_mvs[MAX_REF_FRAMES],
int_mv *best_ref_mv[2], const int *mvjcost,
int *mvcost[2]) {
MODE_INFO *const mi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
int thismvcost = 0;
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mi->sb_type];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mi->sb_type];
const int is_compound = has_second_ref(mi);
switch (mode) {
case NEWMV:
this_mv[0].as_int = seg_mvs[mi->ref_frame[0]].as_int;
thismvcost += vp9_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
if (is_compound) {
this_mv[1].as_int = seg_mvs[mi->ref_frame[1]].as_int;
thismvcost += vp9_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
}
break;
case NEARMV:
case NEARESTMV:
this_mv[0].as_int = frame_mv[mode][mi->ref_frame[0]].as_int;
if (is_compound)
this_mv[1].as_int = frame_mv[mode][mi->ref_frame[1]].as_int;
break;
default:
assert(mode == ZEROMV);
this_mv[0].as_int = 0;
if (is_compound) this_mv[1].as_int = 0;
break;
}
mi->bmi[i].as_mv[0].as_int = this_mv[0].as_int;
if (is_compound) mi->bmi[i].as_mv[1].as_int = this_mv[1].as_int;
mi->bmi[i].as_mode = mode;
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
memmove(&mi->bmi[i + idy * 2 + idx], &mi->bmi[i], sizeof(mi->bmi[i]));
return cost_mv_ref(cpi, mode, mbmi_ext->mode_context[mi->ref_frame[0]]) +
thismvcost;
}
static int64_t encode_inter_mb_segment(VP9_COMP *cpi, MACROBLOCK *x,
int64_t best_yrd, int i, int *labelyrate,
int64_t *distortion, int64_t *sse,
ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl,
int mi_row, int mi_col) {
int k;
MACROBLOCKD *xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
MODE_INFO *const mi = xd->mi[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->sb_type, pd);
const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize];
int idx, idy;
const uint8_t *const src =
&p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
uint8_t *const dst =
&pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
int64_t thisdistortion = 0, thissse = 0;
int thisrate = 0, ref;
const scan_order *so = &vp9_default_scan_orders[TX_4X4];
const int is_compound = has_second_ref(mi);
const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
for (ref = 0; ref < 1 + is_compound; ++ref) {
const int bw = b_width_log2_lookup[BLOCK_8X8];
const int h = 4 * (i >> bw);
const int w = 4 * (i & ((1 << bw) - 1));
const struct scale_factors *sf = &xd->block_refs[ref]->sf;
int y_stride = pd->pre[ref].stride;
uint8_t *pre = pd->pre[ref].buf + (h * pd->pre[ref].stride + w);
if (vp9_is_scaled(sf)) {
const int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
const int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
y_stride = xd->block_refs[ref]->buf->y_stride;
pre = xd->block_refs[ref]->buf->y_buffer;
pre += scaled_buffer_offset(x_start + w, y_start + h, y_stride, sf);
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_highbd_build_inter_predictor(
CONVERT_TO_SHORTPTR(pre), y_stride, CONVERT_TO_SHORTPTR(dst),
pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv,
&xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2),
xd->bd);
} else {
vp9_build_inter_predictor(
pre, y_stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv,
&xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2));
}
#else
vp9_build_inter_predictor(
pre, y_stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv,
&xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2));
#endif // CONFIG_VP9_HIGHBITDEPTH
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_subtract_block(
height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride, xd->bd);
} else {
vpx_subtract_block(height, width,
vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride);
}
#else
vpx_subtract_block(height, width,
vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
8, src, p->src.stride, dst, pd->dst.stride);
#endif // CONFIG_VP9_HIGHBITDEPTH
k = i;
for (idy = 0; idy < height / 4; ++idy) {
for (idx = 0; idx < width / 4; ++idx) {
#if CONFIG_VP9_HIGHBITDEPTH
const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8;
#endif
int64_t ssz, rd, rd1, rd2;
tran_low_t *coeff;
int coeff_ctx;
k += (idy * 2 + idx);
coeff_ctx = combine_entropy_contexts(ta[k & 1], tl[k >> 1]);
coeff = BLOCK_OFFSET(p->coeff, k);
x->fwd_txfm4x4(vp9_raster_block_offset_int16(BLOCK_8X8, k, p->src_diff),
coeff, 8);
vp9_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan);
#if CONFIG_VP9_HIGHBITDEPTH
thisdistortion += vp9_highbd_block_error_dispatch(
coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz, bd);
#else
thisdistortion +=
vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz);
#endif // CONFIG_VP9_HIGHBITDEPTH
thissse += ssz;
thisrate += cost_coeffs(x, 0, k, TX_4X4, coeff_ctx, so->scan,
so->neighbors, cpi->sf.use_fast_coef_costing);
ta[k & 1] = tl[k >> 1] = (x->plane[0].eobs[k] > 0) ? 1 : 0;
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2);
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2);
rd = VPXMIN(rd1, rd2);
if (rd >= best_yrd) return INT64_MAX;
}
}
*distortion = thisdistortion >> 2;
*labelyrate = thisrate;
*sse = thissse >> 2;
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
}
typedef struct {
int eobs;
int brate;
int byrate;
int64_t bdist;
int64_t bsse;
int64_t brdcost;
int_mv mvs[2];
ENTROPY_CONTEXT ta[2];
ENTROPY_CONTEXT tl[2];
} SEG_RDSTAT;
typedef struct {
int_mv *ref_mv[2];
int_mv mvp;
int64_t segment_rd;
int r;
int64_t d;
int64_t sse;
int segment_yrate;
PREDICTION_MODE modes[4];
SEG_RDSTAT rdstat[4][INTER_MODES];
int mvthresh;
} BEST_SEG_INFO;
static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) {
return (mv->row >> 3) < mv_limits->row_min ||
(mv->row >> 3) > mv_limits->row_max ||
(mv->col >> 3) < mv_limits->col_min ||
(mv->col >> 3) > mv_limits->col_max;
}
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
MODE_INFO *const mi = x->e_mbd.mi[0];
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
p->src.buf =
&p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
assert(((intptr_t)pd->pre[0].buf & 0x7) == 0);
pd->pre[0].buf =
&pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)];
if (has_second_ref(mi))
pd->pre[1].buf =
&pd->pre[1]
.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)];
}
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
struct buf_2d orig_pre[2]) {
MODE_INFO *mi = x->e_mbd.mi[0];
x->plane[0].src = orig_src;
x->e_mbd.plane[0].pre[0] = orig_pre[0];
if (has_second_ref(mi)) x->e_mbd.plane[0].pre[1] = orig_pre[1];
}
static INLINE int mv_has_subpel(const MV *mv) {
return (mv->row & 0x0F) || (mv->col & 0x0F);
}
// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion.
// TODO(aconverse): Find out if this is still productive then clean up or remove
static int check_best_zero_mv(const VP9_COMP *cpi,
const uint8_t mode_context[MAX_REF_FRAMES],
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
int this_mode,
const MV_REFERENCE_FRAME ref_frames[2]) {
if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
(ref_frames[1] == NONE ||
frame_mv[this_mode][ref_frames[1]].as_int == 0)) {
int rfc = mode_context[ref_frames[0]];
int c1 = cost_mv_ref(cpi, NEARMV, rfc);
int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
if (this_mode == NEARMV) {
if (c1 > c3) return 0;
} else if (this_mode == NEARESTMV) {
if (c2 > c3) return 0;
} else {
assert(this_mode == ZEROMV);
if (ref_frames[1] == NONE) {
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) ||
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0))
return 0;
} else {
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) ||
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 &&
frame_mv[NEARMV][ref_frames[1]].as_int == 0))
return 0;
}
}
}
return 1;
}
static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
int_mv *frame_mv, int mi_row, int mi_col,
int_mv single_newmv[MAX_REF_FRAMES],
int *rate_mv) {
const VP9_COMMON *const cm = &cpi->common;
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
MACROBLOCKD *xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
const int refs[2] = { mi->ref_frame[0],
mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1] };
int_mv ref_mv[2];
int ite, ref;
const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
struct scale_factors sf;
// Do joint motion search in compound mode to get more accurate mv.
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
uint32_t last_besterr[2] = { UINT_MAX, UINT_MAX };
const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
vp9_get_scaled_ref_frame(cpi, mi->ref_frame[0]),
vp9_get_scaled_ref_frame(cpi, mi->ref_frame[1])
};
// Prediction buffer from second frame.
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[64 * 64]);
uint8_t *second_pred;
#else
DECLARE_ALIGNED(16, uint8_t, second_pred[64 * 64]);
#endif // CONFIG_VP9_HIGHBITDEPTH
for (ref = 0; ref < 2; ++ref) {
ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0];
if (scaled_ref_frame[ref]) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[ref][i] = xd->plane[i].pre[ref];
vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
NULL);
}
frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int;
}
// Since we have scaled the reference frames to match the size of the current
// frame we must use a unit scaling factor during mode selection.
#if CONFIG_VP9_HIGHBITDEPTH
vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
cm->height, cm->use_highbitdepth);
#else
vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
cm->height);
#endif // CONFIG_VP9_HIGHBITDEPTH
// Allow joint search multiple times iteratively for each reference frame
// and break out of the search loop if it couldn't find a better mv.
for (ite = 0; ite < 4; ite++) {
struct buf_2d ref_yv12[2];
uint32_t bestsme = UINT_MAX;
int sadpb = x->sadperbit16;
MV tmp_mv;
int search_range = 3;
const MvLimits tmp_mv_limits = x->mv_limits;
int id = ite % 2; // Even iterations search in the first reference frame,
// odd iterations search in the second. The predictor
// found for the 'other' reference frame is factored in.
// Initialized here because of compiler problem in Visual Studio.
ref_yv12[0] = xd->plane[0].pre[0];
ref_yv12[1] = xd->plane[0].pre[1];
// Get the prediction block from the 'other' reference frame.
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
vp9_highbd_build_inter_predictor(
CONVERT_TO_SHORTPTR(ref_yv12[!id].buf), ref_yv12[!id].stride,
second_pred_alloc_16, pw, &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0,
kernel, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd->bd);
} else {
second_pred = (uint8_t *)second_pred_alloc_16;
vp9_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
second_pred, pw, &frame_mv[refs[!id]].as_mv,
&sf, pw, ph, 0, kernel, MV_PRECISION_Q3,
mi_col * MI_SIZE, mi_row * MI_SIZE);
}
#else
vp9_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf,
pw, ph, 0, kernel, MV_PRECISION_Q3,
mi_col * MI_SIZE, mi_row * MI_SIZE);
#endif // CONFIG_VP9_HIGHBITDEPTH
// Do compound motion search on the current reference frame.
if (id) xd->plane[0].pre[0] = ref_yv12[id];
vp9_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv);
// Use the mv result from the single mode as mv predictor.
tmp_mv = frame_mv[refs[id]].as_mv;
tmp_mv.col >>= 3;
tmp_mv.row >>= 3;
// Small-range full-pixel motion search.
bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb, search_range,
&cpi->fn_ptr[bsize], &ref_mv[id].as_mv,
second_pred);
if (bestsme < UINT_MAX)
bestsme = vp9_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv,
second_pred, &cpi->fn_ptr[bsize], 1);
x->mv_limits = tmp_mv_limits;
if (bestsme < UINT_MAX) {
uint32_t dis; /* TODO: use dis in distortion calculation later. */
uint32_t sse;
bestsme = cpi->find_fractional_mv_step(
x, &tmp_mv, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], 0,
cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost,
&dis, &sse, second_pred, pw, ph);
}
// Restore the pointer to the first (possibly scaled) prediction buffer.
if (id) xd->plane[0].pre[0] = ref_yv12[0];
if (bestsme < last_besterr[id]) {
frame_mv[refs[id]].as_mv = tmp_mv;
last_besterr[id] = bestsme;
} else {
break;
}
}
*rate_mv = 0;
for (ref = 0; ref < 2; ++ref) {
if (scaled_ref_frame[ref]) {
// Restore the prediction frame pointers to their unscaled versions.
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[ref] = backup_yv12[ref][i];
}
*rate_mv += vp9_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
&x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
}
static int64_t rd_pick_best_sub8x8_mode(
VP9_COMP *cpi, MACROBLOCK *x, int_mv *best_ref_mv,
int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate,
int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse,
int mvthresh, int_mv seg_mvs[4][MAX_REF_FRAMES], BEST_SEG_INFO *bsi_buf,
int filter_idx, int mi_row, int mi_col) {
int i;
BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
MACROBLOCKD *xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
int mode_idx;
int k, br = 0, idx, idy;
int64_t bd = 0, block_sse = 0;
PREDICTION_MODE this_mode;
VP9_COMMON *cm = &cpi->common;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const int label_count = 4;
int64_t this_segment_rd = 0;
int label_mv_thresh;
int segmentyrate = 0;
const BLOCK_SIZE bsize = mi->sb_type;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
ENTROPY_CONTEXT t_above[2], t_left[2];
int subpelmv = 1, have_ref = 0;
SPEED_FEATURES *const sf = &cpi->sf;
const int has_second_rf = has_second_ref(mi);
const int inter_mode_mask = sf->inter_mode_mask[bsize];
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
vp9_zero(*bsi);
bsi->segment_rd = best_rd;
bsi->ref_mv[0] = best_ref_mv;
bsi->ref_mv[1] = second_best_ref_mv;
bsi->mvp.as_int = best_ref_mv->as_int;
bsi->mvthresh = mvthresh;
for (i = 0; i < 4; i++) bsi->modes[i] = ZEROMV;
memcpy(t_above, pd->above_context, sizeof(t_above));
memcpy(t_left, pd->left_context, sizeof(t_left));
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count;
// Segmentation method overheads
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
int_mv mode_mv[MB_MODE_COUNT][2];
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
PREDICTION_MODE mode_selected = ZEROMV;
int64_t best_rd = INT64_MAX;
const int i = idy * 2 + idx;
int ref;
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
frame_mv[ZEROMV][frame].as_int = 0;
vp9_append_sub8x8_mvs_for_idx(
cm, xd, i, ref, mi_row, mi_col, &frame_mv[NEARESTMV][frame],
&frame_mv[NEARMV][frame], mbmi_ext->mode_context);
}
// search for the best motion vector on this segment
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
const struct buf_2d orig_src = x->plane[0].src;
struct buf_2d orig_pre[2];
mode_idx = INTER_OFFSET(this_mode);
bsi->rdstat[i][mode_idx].brdcost = INT64_MAX;
if (!(inter_mode_mask & (1 << this_mode))) continue;
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv,
this_mode, mi->ref_frame))
continue;
memcpy(orig_pre, pd->pre, sizeof(orig_pre));
memcpy(bsi->rdstat[i][mode_idx].ta, t_above,
sizeof(bsi->rdstat[i][mode_idx].ta));
memcpy(bsi->rdstat[i][mode_idx].tl, t_left,
sizeof(bsi->rdstat[i][mode_idx].tl));
// motion search for newmv (single predictor case only)
if (!has_second_rf && this_mode == NEWMV &&
seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV) {
MV *const new_mv = &mode_mv[NEWMV][0].as_mv;
int step_param = 0;
uint32_t bestsme = UINT_MAX;
int sadpb = x->sadperbit4;
MV mvp_full;
int max_mv;
int cost_list[5];
const MvLimits tmp_mv_limits = x->mv_limits;
/* Is the best so far sufficiently good that we cant justify doing
* and new motion search. */
if (best_rd < label_mv_thresh) break;
if (cpi->oxcf.mode != BEST) {
// use previous block's result as next block's MV predictor.
if (i > 0) {
bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int;
if (i == 2) bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int;
}
}
if (i == 0)
max_mv = x->max_mv_context[mi->ref_frame[0]];
else
max_mv =
VPXMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
if (sf->mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and the best ref mvs of the current block for
// the given reference.
step_param =
(vp9_init_search_range(max_mv) + cpi->mv_step_param) / 2;
} else {
step_param = cpi->mv_step_param;
}
mvp_full.row = bsi->mvp.as_mv.row >> 3;
mvp_full.col = bsi->mvp.as_mv.col >> 3;
if (sf->adaptive_motion_search) {
mvp_full.row = x->pred_mv[mi->ref_frame[0]].row >> 3;
mvp_full.col = x->pred_mv[mi->ref_frame[0]].col >> 3;
step_param = VPXMAX(step_param, 8);
}
// adjust src pointer for this block
mi_buf_shift(x, i);
vp9_set_mv_search_range(&x->mv_limits, &bsi->ref_mv[0]->as_mv);
bestsme = vp9_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method,
sadpb,
sf->mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL,
&bsi->ref_mv[0]->as_mv, new_mv, INT_MAX, 1);
x->mv_limits = tmp_mv_limits;
if (bestsme < UINT_MAX) {
uint32_t distortion;
cpi->find_fractional_mv_step(
x, new_mv, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv,
x->errorperbit, &cpi->fn_ptr[bsize], sf->mv.subpel_force_stop,
sf->mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost, &distortion,
&x->pred_sse[mi->ref_frame[0]], NULL, 0, 0);
// save motion search result for use in compound prediction
seg_mvs[i][mi->ref_frame[0]].as_mv = *new_mv;
}
x->pred_mv[mi->ref_frame[0]] = *new_mv;
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
if (has_second_rf) {
if (seg_mvs[i][mi->ref_frame[1]].as_int == INVALID_MV ||
seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV)
continue;
}
if (has_second_rf && this_mode == NEWMV &&
mi->interp_filter == EIGHTTAP) {
// adjust src pointers
mi_buf_shift(x, i);
if (sf->comp_inter_joint_search_thresh <= bsize) {
int rate_mv;
joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row,
mi_col, seg_mvs[i], &rate_mv);
seg_mvs[i][mi->ref_frame[0]].as_int =
frame_mv[this_mode][mi->ref_frame[0]].as_int;
seg_mvs[i][mi->ref_frame[1]].as_int =
frame_mv[this_mode][mi->ref_frame[1]].as_int;
}
// restore src pointers
mi_buf_restore(x, orig_src, orig_pre);
}
bsi->rdstat[i][mode_idx].brate = set_and_cost_bmi_mvs(
cpi, x, xd, i, this_mode, mode_mv[this_mode], frame_mv, seg_mvs[i],
bsi->ref_mv, x->nmvjointcost, x->mvcost);
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
bsi->rdstat[i][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int =
mode_mv[this_mode][ref].as_int;
}
// Trap vectors that reach beyond the UMV borders
if (mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][0].as_mv) ||
(has_second_rf &&
mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][1].as_mv)))
continue;
if (filter_idx > 0) {
BEST_SEG_INFO *ref_bsi = bsi_buf;
subpelmv = 0;
have_ref = 1;
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv);
have_ref &= mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
}
if (filter_idx > 1 && !subpelmv && !have_ref) {
ref_bsi = bsi_buf + 1;
have_ref = 1;
for (ref = 0; ref < 1 + has_second_rf; ++ref)
have_ref &= mode_mv[this_mode][ref].as_int ==
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
}
if (!subpelmv && have_ref &&
ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx],
sizeof(SEG_RDSTAT));
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].eobs =
ref_bsi->rdstat[i + 1][mode_idx].eobs;
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].eobs =
ref_bsi->rdstat[i + 2][mode_idx].eobs;
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
mode_selected = this_mode;
best_rd = bsi->rdstat[i][mode_idx].brdcost;
}
continue;
}
}
bsi->rdstat[i][mode_idx].brdcost = encode_inter_mb_segment(
cpi, x, bsi->segment_rd - this_segment_rd, i,
&bsi->rdstat[i][mode_idx].byrate, &bsi->rdstat[i][mode_idx].bdist,
&bsi->rdstat[i][mode_idx].bsse, bsi->rdstat[i][mode_idx].ta,
bsi->rdstat[i][mode_idx].tl, mi_row, mi_col);
if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
bsi->rdstat[i][mode_idx].brdcost +=
RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate, 0);
bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate;
bsi->rdstat[i][mode_idx].eobs = p->eobs[i];
if (num_4x4_blocks_wide > 1)
bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1];
if (num_4x4_blocks_high > 1)
bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2];
}
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
mode_selected = this_mode;
best_rd = bsi->rdstat[i][mode_idx].brdcost;
}
} /*for each 4x4 mode*/
if (best_rd == INT64_MAX) {
int iy, midx;
for (iy = i + 1; iy < 4; ++iy)
for (midx = 0; midx < INTER_MODES; ++midx)
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
return INT64_MAX;
}
mode_idx = INTER_OFFSET(mode_selected);
memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above));
memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left));
set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected],
frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost,
x->mvcost);
br += bsi->rdstat[i][mode_idx].brate;
bd += bsi->rdstat[i][mode_idx].bdist;
block_sse += bsi->rdstat[i][mode_idx].bsse;
segmentyrate += bsi->rdstat[i][mode_idx].byrate;
this_segment_rd += bsi->rdstat[i][mode_idx].brdcost;
if (this_segment_rd > bsi->segment_rd) {
int iy, midx;
for (iy = i + 1; iy < 4; ++iy)
for (midx = 0; midx < INTER_MODES; ++midx)
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
bsi->segment_rd = INT64_MAX;
return INT64_MAX;
}
}
} /* for each label */
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->sse = block_sse;
// update the coding decisions
for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode;
if (bsi->segment_rd > best_rd) return INT64_MAX;
/* set it to the best */
for (i = 0; i < 4; i++) {
mode_idx = INTER_OFFSET(bsi->modes[i]);
mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int;
if (has_second_ref(mi))
mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int;
x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs;
mi->bmi[i].as_mode = bsi->modes[i];
}
/*
* used to set mbmi->mv.as_int
*/
*returntotrate = bsi->r;
*returndistortion = bsi->d;
*returnyrate = bsi->segment_yrate;
*skippable = vp9_is_skippable_in_plane(x, BLOCK_8X8, 0);
*psse = bsi->sse;
mi->mode = bsi->modes[3];
return bsi->segment_rd;
}
static void estimate_ref_frame_costs(const VP9_COMMON *cm,
const MACROBLOCKD *xd, int segment_id,
unsigned int *ref_costs_single,
unsigned int *ref_costs_comp,
vpx_prob *comp_mode_p) {
int seg_ref_active =
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single));
memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
*comp_mode_p = 128;
} else {
vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
vpx_prob comp_inter_p = 128;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
comp_inter_p = vp9_get_reference_mode_prob(cm, xd);
*comp_mode_p = comp_inter_p;
} else {
*comp_mode_p = 128;
}
ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
if (cm->reference_mode != COMPOUND_REFERENCE) {
vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
if (cm->reference_mode == REFERENCE_MODE_SELECT)
base_cost += vp9_cost_bit(comp_inter_p, 0);
ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] =
ref_costs_single[ALTREF_FRAME] = base_cost;
ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
} else {
ref_costs_single[LAST_FRAME] = 512;
ref_costs_single[GOLDEN_FRAME] = 512;
ref_costs_single[ALTREF_FRAME] = 512;
}
if (cm->reference_mode != SINGLE_REFERENCE) {
vpx_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd);
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
if (cm->reference_mode == REFERENCE_MODE_SELECT)
base_cost += vp9_cost_bit(comp_inter_p, 1);
ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0);
ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1);
} else {
ref_costs_comp[LAST_FRAME] = 512;
ref_costs_comp[GOLDEN_FRAME] = 512;
}
}
}
static void store_coding_context(
MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index,
int64_t comp_pred_diff[REFERENCE_MODES],
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS], int skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->skip = x->skip;
ctx->skippable = skippable;
ctx->best_mode_index = mode_index;
ctx->mic = *xd->mi[0];
ctx->mbmi_ext = *x->mbmi_ext;
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
memcpy(ctx->best_filter_diff, best_filter_diff,
sizeof(*best_filter_diff) * SWITCHABLE_FILTER_CONTEXTS);
}
static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
MV_REFERENCE_FRAME ref_frame,
BLOCK_SIZE block_size, int mi_row, int mi_col,
int_mv frame_nearest_mv[MAX_REF_FRAMES],
int_mv frame_near_mv[MAX_REF_FRAMES],
struct buf_2d yv12_mb[4][MAX_MB_PLANE]) {
const VP9_COMMON *cm = &cpi->common;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
assert(yv12 != NULL);
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
// use the UV scaling factors.
vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
// Gets an initial list of candidate vectors from neighbours and orders them
vp9_find_mv_refs(cm, xd, mi, ref_frame, candidates, mi_row, mi_col,
mbmi_ext->mode_context);
// Candidate refinement carried out at encoder and decoder
vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
&frame_nearest_mv[ref_frame],
&frame_near_mv[ref_frame]);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the centre point for subsequent searches.
// The current implementation doesn't support scaling.
if (!vp9_is_scaled(sf) && block_size >= BLOCK_8X8)
vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
block_size);
}
static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
int mi_row, int mi_col, int_mv *tmp_mv,
int *rate_mv) {
MACROBLOCKD *xd = &x->e_mbd;
const VP9_COMMON *cm = &cpi->common;
MODE_INFO *mi = xd->mi[0];
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } };
int bestsme = INT_MAX;
int step_param;
int sadpb = x->sadperbit16;
MV mvp_full;
int ref = mi->ref_frame[0];
MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
const MvLimits tmp_mv_limits = x->mv_limits;
int cost_list[5];
const YV12_BUFFER_CONFIG *scaled_ref_frame =
vp9_get_scaled_ref_frame(cpi, ref);
MV pred_mv[3];
pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
pred_mv[2] = x->pred_mv[ref];
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
// Work out the size of the first step in the mv step search.
// 0 here is maximum length first step. 1 is VPXMAX >> 1 etc.
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
// Take wtd average of the step_params based on the last frame's
// max mv magnitude and that based on the best ref mvs of the current
// block for the given reference.
step_param =
(vp9_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
2;
} else {
step_param = cpi->mv_step_param;
}
if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) {
const int boffset =
2 * (b_width_log2_lookup[BLOCK_64X64] -
VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
step_param = VPXMAX(step_param, boffset);
}
if (cpi->sf.adaptive_motion_search) {
int bwl = b_width_log2_lookup[bsize];
int bhl = b_height_log2_lookup[bsize];
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
if (tlevel < 5) step_param += 2;
// prev_mv_sad is not setup for dynamically scaled frames.
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
int i;
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
x->pred_mv[ref].row = 0;
x->pred_mv[ref].col = 0;
tmp_mv->as_int = INVALID_MV;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i)
xd->plane[i].pre[0] = backup_yv12[i];
}
return;
}
}
}
}
// Note: MV limits are modified here. Always restore the original values
// after full-pixel motion search.
vp9_set_mv_search_range(&x->mv_limits, &ref_mv);
mvp_full = pred_mv[x->mv_best_ref_index[ref]];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
bestsme = vp9_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb,
cond_cost_list(cpi, cost_list), &ref_mv, &tmp_mv->as_mv, INT_MAX, 1);
if (cpi->sf.enhanced_full_pixel_motion_search) {
if (x->mv_best_ref_index[ref] == 2) {
const int diff_row = ((int)pred_mv[0].row - pred_mv[2].row) >> 3;
const int diff_col = ((int)pred_mv[0].col - pred_mv[2].col) >> 3;
const int diff_sse = diff_row * diff_row + diff_col * diff_col;
// If pred_mv[0] and pred_mv[2] are very different, also search around
// pred_mv[0].
if (diff_sse > 10) {
int this_me;
MV this_mv;
mvp_full = pred_mv[0];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
this_me = vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param,
cpi->sf.mv.search_method, sadpb,
cond_cost_list(cpi, cost_list), &ref_mv,
&this_mv, INT_MAX, 1);
if (this_me < bestsme) {
tmp_mv->as_mv = this_mv;
bestsme = this_me;
}
}
}
}
x->mv_limits = tmp_mv_limits;
if (bestsme < INT_MAX) {
uint32_t dis; /* TODO: use dis in distortion calculation later. */
cpi->find_fractional_mv_step(
x, &tmp_mv->as_mv, &ref_mv, cm->allow_high_precision_mv, x->errorperbit,
&cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0);
}
*rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost,
x->mvcost, MV_COST_WEIGHT);
x->pred_mv[ref] = tmp_mv->as_mv;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
}
}
static INLINE void restore_dst_buf(MACROBLOCKD *xd,
uint8_t *orig_dst[MAX_MB_PLANE],
int orig_dst_stride[MAX_MB_PLANE]) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = orig_dst[i];
xd->plane[i].dst.stride = orig_dst_stride[i];
}
}
// In some situations we want to discount tha pparent cost of a new motion
// vector. Where there is a subtle motion field and especially where there is
// low spatial complexity then it can be hard to cover the cost of a new motion
// vector in a single block, even if that motion vector reduces distortion.
// However, once established that vector may be usable through the nearest and
// near mv modes to reduce distortion in subsequent blocks and also improve
// visual quality.
static int discount_newmv_test(const VP9_COMP *cpi, int this_mode,
int_mv this_mv,
int_mv (*mode_mv)[MAX_REF_FRAMES],
int ref_frame) {
return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) &&
(this_mv.as_int != 0) &&
((mode_mv[NEARESTMV][ref_frame].as_int == 0) ||
(mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) &&
((mode_mv[NEARMV][ref_frame].as_int == 0) ||
(mode_mv[NEARMV][ref_frame].as_int == INVALID_MV)));
}
static int64_t handle_inter_mode(
VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int *rate2,
int64_t *distortion, int *skippable, int *rate_y, int *rate_uv,
int *disable_skip, int_mv (*mode_mv)[MAX_REF_FRAMES], int mi_row,
int mi_col, int_mv single_newmv[MAX_REF_FRAMES],
INTERP_FILTER (*single_filter)[MAX_REF_FRAMES],
int (*single_skippable)[MAX_REF_FRAMES], int64_t *psse,
const int64_t ref_best_rd, int64_t *mask_filter, int64_t filter_cache[]) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const int is_comp_pred = has_second_ref(mi);
const int this_mode = mi->mode;
int_mv *frame_mv = mode_mv[this_mode];
int i;
int refs[2] = { mi->ref_frame[0],
(mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1]) };
int_mv cur_mv[2];
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * 64 * 64]);
uint8_t *tmp_buf;
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * 64 * 64]);
#endif // CONFIG_VP9_HIGHBITDEPTH
int pred_exists = 0;
int intpel_mv;
int64_t rd, tmp_rd, best_rd = INT64_MAX;
int best_needs_copy = 0;
uint8_t *orig_dst[MAX_MB_PLANE];
int orig_dst_stride[MAX_MB_PLANE];
int rs = 0;
INTERP_FILTER best_filter = SWITCHABLE;
uint8_t skip_txfm[MAX_MB_PLANE << 2] = { 0 };
int64_t bsse[MAX_MB_PLANE << 2] = { 0 };
int bsl = mi_width_log2_lookup[bsize];
int pred_filter_search =
cpi->sf.cb_pred_filter_search
? (((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_video_frame)) &
0x1
: 0;
int skip_txfm_sb = 0;
int64_t skip_sse_sb = INT64_MAX;
int64_t distortion_y = 0, distortion_uv = 0;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16);
} else {
tmp_buf = (uint8_t *)tmp_buf16;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (pred_filter_search) {
INTERP_FILTER af = SWITCHABLE, lf = SWITCHABLE;
if (xd->above_mi && is_inter_block(xd->above_mi))
af = xd->above_mi->interp_filter;
if (xd->left_mi && is_inter_block(xd->left_mi))
lf = xd->left_mi->interp_filter;
if ((this_mode != NEWMV) || (af == lf)) best_filter = af;
}
if (is_comp_pred) {
if (frame_mv[refs[0]].as_int == INVALID_MV ||
frame_mv[refs[1]].as_int == INVALID_MV)
return INT64_MAX;
if (cpi->sf.adaptive_mode_search) {
if (single_filter[this_mode][refs[0]] ==
single_filter[this_mode][refs[1]])
best_filter = single_filter[this_mode][refs[0]];
}
}
if (this_mode == NEWMV) {
int rate_mv;
if (is_comp_pred) {
// Initialize mv using single prediction mode result.
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col,
single_newmv, &rate_mv);
} else {
rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]].as_mv,
&x->mbmi_ext->ref_mvs[refs[0]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]].as_mv,
&x->mbmi_ext->ref_mvs[refs[1]][0].as_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}
*rate2 += rate_mv;
} else {
int_mv tmp_mv;
single_motion_search(cpi, x, bsize, mi_row, mi_col, &tmp_mv, &rate_mv);
if (tmp_mv.as_int == INVALID_MV) return INT64_MAX;
frame_mv[refs[0]].as_int = xd->mi[0]->bmi[0].as_mv[0].as_int =
tmp_mv.as_int;
single_newmv[refs[0]].as_int = tmp_mv.as_int;
// Estimate the rate implications of a new mv but discount this
// under certain circumstances where we want to help initiate a weak
// motion field, where the distortion gain for a single block may not
// be enough to overcome the cost of a new mv.
if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) {
*rate2 += VPXMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
} else {
*rate2 += rate_mv;
}
}
}
for (i = 0; i < is_comp_pred + 1; ++i) {
cur_mv[i] = frame_mv[refs[i]];
// Clip "next_nearest" so that it does not extend to far out of image
if (this_mode != NEWMV) clamp_mv2(&cur_mv[i].as_mv, xd);
if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) return INT64_MAX;
mi->mv[i].as_int = cur_mv[i].as_int;
}
// do first prediction into the destination buffer. Do the next
// prediction into a temporary buffer. Then keep track of which one
// of these currently holds the best predictor, and use the other
// one for future predictions. In the end, copy from tmp_buf to
// dst if necessary.
for (i = 0; i < MAX_MB_PLANE; i++) {
orig_dst[i] = xd->plane[i].dst.buf;
orig_dst_stride[i] = xd->plane[i].dst.stride;
}
// We don't include the cost of the second reference here, because there
// are only two options: Last/ARF or Golden/ARF; The second one is always
// known, which is ARF.
//
// Under some circumstances we discount the cost of new mv mode to encourage
// initiation of a motion field.
if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv,
refs[0])) {
*rate2 +=
VPXMIN(cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]),
cost_mv_ref(cpi, NEARESTMV, mbmi_ext->mode_context[refs[0]]));
} else {
*rate2 += cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]);
}
if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd &&
mi->mode != NEARESTMV)
return INT64_MAX;
pred_exists = 0;
// Are all MVs integer pel for Y and UV
intpel_mv = !mv_has_subpel(&mi->mv[0].as_mv);
if (is_comp_pred) intpel_mv &= !mv_has_subpel(&mi->mv[1].as_mv);
// Search for best switchable filter by checking the variance of
// pred error irrespective of whether the filter will be used
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX;
if (cm->interp_filter != BILINEAR) {
if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
best_filter = EIGHTTAP;
} else if (best_filter == SWITCHABLE) {
int newbest;
int tmp_rate_sum = 0;
int64_t tmp_dist_sum = 0;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
int j;
int64_t rs_rd;
int tmp_skip_sb = 0;
int64_t tmp_skip_sse = INT64_MAX;
mi->interp_filter = i;
rs = vp9_get_switchable_rate(cpi, xd);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
if (i > 0 && intpel_mv) {
rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum);
filter_cache[i] = rd;
filter_cache[SWITCHABLE_FILTERS] =
VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
if (cm->interp_filter == SWITCHABLE) rd += rs_rd;
*mask_filter = VPXMAX(*mask_filter, rd);
} else {
int rate_sum = 0;
int64_t dist_sum = 0;
if (i > 0 && cpi->sf.adaptive_interp_filter_search &&
(cpi->sf.interp_filter_search_mask & (1 << i))) {
rate_sum = INT_MAX;
dist_sum = INT64_MAX;
continue;
}
if ((cm->interp_filter == SWITCHABLE && (!i || best_needs_copy)) ||
(cm->interp_filter != SWITCHABLE &&
(cm->interp_filter == mi->interp_filter ||
(i == 0 && intpel_mv)))) {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
} else {
for (j = 0; j < MAX_MB_PLANE; j++) {
xd->plane[j].dst.buf = tmp_buf + j * 64 * 64;
xd->plane[j].dst.stride = 64;
}
}
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum, &tmp_skip_sb,
&tmp_skip_sse);
rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum);
filter_cache[i] = rd;
filter_cache[SWITCHABLE_FILTERS] =
VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
if (cm->interp_filter == SWITCHABLE) rd += rs_rd;
*mask_filter = VPXMAX(*mask_filter, rd);
if (i == 0 && intpel_mv) {
tmp_rate_sum = rate_sum;
tmp_dist_sum = dist_sum;
}
}
if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
if (rd / 2 > ref_best_rd) {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
}
newbest = i == 0 || rd < best_rd;
if (newbest) {
best_rd = rd;
best_filter = mi->interp_filter;
if (cm->interp_filter == SWITCHABLE && i && !intpel_mv)
best_needs_copy = !best_needs_copy;
}
if ((cm->interp_filter == SWITCHABLE && newbest) ||
(cm->interp_filter != SWITCHABLE &&
cm->interp_filter == mi->interp_filter)) {
pred_exists = 1;
tmp_rd = best_rd;
skip_txfm_sb = tmp_skip_sb;
skip_sse_sb = tmp_skip_sse;
memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
memcpy(bsse, x->bsse, sizeof(bsse));
}
}
restore_dst_buf(xd, orig_dst, orig_dst_stride);
}
}
// Set the appropriate filter
mi->interp_filter =
cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter;
rs = cm->interp_filter == SWITCHABLE ? vp9_get_switchable_rate(cpi, xd) : 0;
if (pred_exists) {
if (best_needs_copy) {
// again temporarily set the buffers to local memory to prevent a memcpy
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = tmp_buf + i * 64 * 64;
xd->plane[i].dst.stride = 64;
}
}
rd = tmp_rd + RDCOST(x->rdmult, x->rddiv, rs, 0);
} else {
int tmp_rate;
int64_t tmp_dist;
// Handles the special case when a filter that is not in the
// switchable list (ex. bilinear) is indicated at the frame level, or
// skip condition holds.
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist, &skip_txfm_sb,
&skip_sse_sb);
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
memcpy(bsse, x->bsse, sizeof(bsse));
}
if (!is_comp_pred) single_filter[this_mode][refs[0]] = mi->interp_filter;
if (cpi->sf.adaptive_mode_search)
if (is_comp_pred)
if (single_skippable[this_mode][refs[0]] &&
single_skippable[this_mode][refs[1]])
memset(skip_txfm, SKIP_TXFM_AC_DC, sizeof(skip_txfm));
if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
// if current pred_error modeled rd is substantially more than the best
// so far, do not bother doing full rd
if (rd / 2 > ref_best_rd) {
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
}
if (cm->interp_filter == SWITCHABLE) *rate2 += rs;
memcpy(x->skip_txfm, skip_txfm, sizeof(skip_txfm));
memcpy(x->bsse, bsse, sizeof(bsse));
if (!skip_txfm_sb) {
int skippable_y, skippable_uv;
int64_t sseuv = INT64_MAX;
int64_t rdcosty = INT64_MAX;
// Y cost and distortion
vp9_subtract_plane(x, bsize, 0);
super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize,
ref_best_rd);
if (*rate_y == INT_MAX) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
*rate2 += *rate_y;
*distortion += distortion_y;
rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
rdcosty = VPXMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
&sseuv, bsize, ref_best_rd - rdcosty)) {
*rate2 = INT_MAX;
*distortion = INT64_MAX;
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return INT64_MAX;
}
*psse += sseuv;
*rate2 += *rate_uv;
*distortion += distortion_uv;
*skippable = skippable_y && skippable_uv;
} else {
x->skip = 1;
*disable_skip = 1;
// The cost of skip bit needs to be added.
*rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
*distortion = skip_sse_sb;
}
if (!is_comp_pred) single_skippable[this_mode][refs[0]] = *skippable;
restore_dst_buf(xd, orig_dst, orig_dst_stride);
return 0; // The rate-distortion cost will be re-calculated by caller.
}
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = xd->plane;
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
int y_skip = 0, uv_skip = 0;
int64_t dist_y = 0, dist_uv = 0;
TX_SIZE max_uv_tx_size;
x->skip_encode = 0;
ctx->skip = 0;
xd->mi[0]->ref_frame[0] = INTRA_FRAME;
xd->mi[0]->ref_frame[1] = NONE;
// Initialize interp_filter here so we do not have to check for inter block
// modes in get_pred_context_switchable_interp()
xd->mi[0]->interp_filter = SWITCHABLE_FILTERS;
if (bsize >= BLOCK_8X8) {
if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
&y_skip, bsize, best_rd) >= best_rd) {
rd_cost->rate = INT_MAX;
return;
}
} else {
y_skip = 0;
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
&dist_y, best_rd) >= best_rd) {
rd_cost->rate = INT_MAX;
return;
}
}
max_uv_tx_size = uv_txsize_lookup[bsize][xd->mi[0]->tx_size]
[pd[1].subsampling_x][pd[1].subsampling_y];
rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly, &dist_uv,
&uv_skip, VPXMAX(BLOCK_8X8, bsize), max_uv_tx_size);
if (y_skip && uv_skip) {
rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
rd_cost->dist = dist_y + dist_uv;
} else {
rd_cost->rate =
rate_y + rate_uv + vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
rd_cost->dist = dist_y + dist_uv;
}
ctx->mic = *xd->mi[0];
ctx->mbmi_ext = *x->mbmi_ext;
rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
}
// This function is designed to apply a bias or adjustment to an rd value based
// on the relative variance of the source and reconstruction.
#define VERY_LOW_VAR_THRESH 2
#define LOW_VAR_THRESH 5
#define VAR_MULT 100
static unsigned int max_var_adjust[VP9E_CONTENT_INVALID] = { 16, 16, 100 };
static void rd_variance_adjustment(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int64_t *this_rd,
MV_REFERENCE_FRAME ref_frame,
unsigned int source_variance) {
MACROBLOCKD *const xd = &x->e_mbd;
unsigned int rec_variance;
unsigned int src_variance;
unsigned int src_rec_min;
unsigned int absvar_diff = 0;
unsigned int var_factor = 0;
unsigned int adj_max;
vp9e_tune_content content_type = cpi->oxcf.content;
if (*this_rd == INT64_MAX) return;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
if (source_variance > 0) {
rec_variance = vp9_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst,
bsize, xd->bd);
src_variance = source_variance;
} else {
rec_variance =
vp9_high_get_sby_variance(cpi, &xd->plane[0].dst, bsize, xd->bd);
src_variance =
vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, xd->bd);
}
} else {
if (source_variance > 0) {
rec_variance =
vp9_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
src_variance = source_variance;
} else {
rec_variance = vp9_get_sby_variance(cpi, &xd->plane[0].dst, bsize);
src_variance = vp9_get_sby_variance(cpi, &x->plane[0].src, bsize);
}
}
#else
if (source_variance > 0) {
rec_variance = vp9_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
src_variance = source_variance;
} else {
rec_variance = vp9_get_sby_variance(cpi, &xd->plane[0].dst, bsize);
src_variance = vp9_get_sby_variance(cpi, &x->plane[0].src, bsize);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
// Lower of source (raw per pixel value) and recon variance. Note that
// if the source per pixel is 0 then the recon value here will not be per
// pixel (see above) so will likely be much larger.
src_rec_min = VPXMIN(source_variance, rec_variance);
if (src_rec_min > LOW_VAR_THRESH) return;
absvar_diff = (src_variance > rec_variance) ? (src_variance - rec_variance)
: (rec_variance - src_variance);
adj_max = max_var_adjust[content_type];
var_factor =
(unsigned int)((int64_t)VAR_MULT * absvar_diff) / VPXMAX(1, src_variance);
var_factor = VPXMIN(adj_max, var_factor);
*this_rd += (*this_rd * var_factor) / 100;
if (content_type == VP9E_CONTENT_FILM) {
if (src_rec_min <= VERY_LOW_VAR_THRESH) {
if (ref_frame == INTRA_FRAME) *this_rd *= 2;
if (bsize > 6) *this_rd *= 2;
}
}
}
// Do we have an internal image edge (e.g. formatting bars).
int vp9_internal_image_edge(VP9_COMP *cpi) {
return (cpi->oxcf.pass == 2) &&
((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) ||
(cpi->twopass.this_frame_stats.inactive_zone_cols > 0));
}
// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int vp9_active_h_edge(VP9_COMP *cpi, int mi_row, int mi_step) {
int top_edge = 0;
int bottom_edge = cpi->common.mi_rows;
int is_active_h_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
TWO_PASS *twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge = VPXMAX(top_edge, bottom_edge);
}
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
is_active_h_edge = 1;
}
return is_active_h_edge;
}
// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int vp9_active_v_edge(VP9_COMP *cpi, int mi_col, int mi_step) {
int left_edge = 0;
int right_edge = cpi->common.mi_cols;
int is_active_v_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
TWO_PASS *twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge = VPXMAX(left_edge, right_edge);
}
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
is_active_v_edge = 1;
}
return is_active_v_edge;
}
// Checks to see if a super block is at the edge of the active image.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int vp9_active_edge_sb(VP9_COMP *cpi, int mi_row, int mi_col) {
return vp9_active_h_edge(cpi, mi_row, MI_BLOCK_SIZE) ||
vp9_active_v_edge(cpi, mi_col, MI_BLOCK_SIZE);
}
void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *x, int mi_row, int mi_col,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) {
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
RD_OPT *const rd_opt = &cpi->rd;
SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const struct segmentation *const seg = &cm->seg;
PREDICTION_MODE this_mode;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mi->segment_id;
int comp_pred, i, k;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } };
INTERP_FILTER single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES];
int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int64_t best_rd = best_rd_so_far;
int64_t best_pred_diff[REFERENCE_MODES];
int64_t best_pred_rd[REFERENCE_MODES];
int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
MODE_INFO best_mbmode;
int best_mode_skippable = 0;
int midx, best_mode_index = -1;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vpx_prob comp_mode_p;
int64_t best_intra_rd = INT64_MAX;
unsigned int best_pred_sse = UINT_MAX;
PREDICTION_MODE best_intra_mode = DC_PRED;
int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
int64_t dist_uv[TX_SIZES];
int skip_uv[TX_SIZES];
PREDICTION_MODE mode_uv[TX_SIZES];
const int intra_cost_penalty =
vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q);
int best_skip2 = 0;
uint8_t ref_frame_skip_mask[2] = { 0 };
uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 };
int mode_skip_start = sf->mode_skip_start + 1;
const int *const rd_threshes = rd_opt->threshes[segment_id][bsize];
const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
int64_t mode_threshold[MAX_MODES];
int8_t *tile_mode_map = tile_data->mode_map[bsize];
int8_t mode_map[MAX_MODES]; // Maintain mode_map information locally to avoid
// lock mechanism involved with reads from
// tile_mode_map
const int mode_search_skip_flags = sf->mode_search_skip_flags;
const int is_rect_partition =
num_4x4_blocks_wide_lookup[bsize] != num_4x4_blocks_high_lookup[bsize];
int64_t mask_filter = 0;
int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
vp9_zero(best_mbmode);
x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX;
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
best_filter_rd[i] = INT64_MAX;
for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX;
for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
for (i = 0; i < MB_MODE_COUNT; ++i) {
for (k = 0; k < MAX_REF_FRAMES; ++k) {
single_inter_filter[i][k] = SWITCHABLE;
single_skippable[i][k] = 0;
}
}
rd_cost->rate = INT_MAX;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
x->pred_mv_sad[ref_frame] = INT_MAX;
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (!(cpi->ref_frame_flags & flag_list[ref_frame])) {
// Skip checking missing references in both single and compound reference
// modes. Note that a mode will be skipped if both reference frames
// are masked out.
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
} else if (sf->reference_masking) {
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
// Skip fixed mv modes for poor references
if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) {
mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
break;
}
}
}
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
}
}
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << GOLDEN_FRAME);
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0)
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
}
}
if (cpi->rc.is_src_frame_alt_ref) {
if (sf->alt_ref_search_fp) {
mode_skip_mask[ALTREF_FRAME] = 0;
ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
}
}
if (sf->alt_ref_search_fp)
if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;
if (sf->adaptive_mode_search) {
if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
cpi->rc.frames_since_golden >= 3)
if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1))
mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
}
if (bsize > sf->max_intra_bsize) {
ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
}
mode_skip_mask[INTRA_FRAME] |=
~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);
for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0;
for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5;
midx = sf->schedule_mode_search ? mode_skip_start : 0;
while (midx > 4) {
uint8_t end_pos = 0;
for (i = 5; i < midx; ++i) {
if (mode_threshold[tile_mode_map[i - 1]] >
mode_threshold[tile_mode_map[i]]) {
uint8_t tmp = tile_mode_map[i];
tile_mode_map[i] = tile_mode_map[i - 1];
tile_mode_map[i - 1] = tmp;
end_pos = i;
}
}
midx = end_pos;
}
memcpy(mode_map, tile_mode_map, sizeof(mode_map));
for (midx = 0; midx < MAX_MODES; ++midx) {
int mode_index = mode_map[midx];
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable = 0;
int this_skip2 = 0;
int64_t total_sse = INT64_MAX;
int early_term = 0;
this_mode = vp9_mode_order[mode_index].mode;
ref_frame = vp9_mode_order[mode_index].ref_frame[0];
second_ref_frame = vp9_mode_order[mode_index].ref_frame[1];
vp9_zero(x->sum_y_eobs);
if (is_rect_partition) {
if (ctx->skip_ref_frame_mask & (1 << ref_frame)) continue;
if (second_ref_frame > 0 &&
(ctx->skip_ref_frame_mask & (1 << second_ref_frame)))
continue;
}
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
if (midx == mode_skip_start && best_mode_index >= 0) {
switch (best_mbmode.ref_frame[0]) {
case INTRA_FRAME: break;
case LAST_FRAME:
ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case GOLDEN_FRAME:
ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK;
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALT_REF_MODE_MASK; break;
case NONE:
case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break;
}
}
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
continue;
if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue;
// Test best rd so far against threshold for trying this mode.
if (best_mode_skippable && sf->schedule_mode_search)
mode_threshold[mode_index] <<= 1;
if (best_rd < mode_threshold[mode_index]) continue;
// This is only used in motion vector unit test.
if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue;
if (sf->motion_field_mode_search) {
const int mi_width = VPXMIN(num_8x8_blocks_wide_lookup[bsize],
tile_info->mi_col_end - mi_col);
const int mi_height = VPXMIN(num_8x8_blocks_high_lookup[bsize],
tile_info->mi_row_end - mi_row);
const int bsl = mi_width_log2_lookup[bsize];
int cb_partition_search_ctrl =
(((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_video_frame)) &
0x1;
MODE_INFO *ref_mi;
int const_motion = 1;
int skip_ref_frame = !cb_partition_search_ctrl;
MV_REFERENCE_FRAME rf = NONE;
int_mv ref_mv;
ref_mv.as_int = INVALID_MV;
if ((mi_row - 1) >= tile_info->mi_row_start) {
ref_mv = xd->mi[-xd->mi_stride]->mv[0];
rf = xd->mi[-xd->mi_stride]->ref_frame[0];
for (i = 0; i < mi_width; ++i) {
ref_mi = xd->mi[-xd->mi_stride + i];
const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) &&
(ref_frame == ref_mi->ref_frame[0]);
skip_ref_frame &= (rf == ref_mi->ref_frame[0]);
}
}
if ((mi_col - 1) >= tile_info->mi_col_start) {
if (ref_mv.as_int == INVALID_MV) ref_mv = xd->mi[-1]->mv[0];
if (rf == NONE) rf = xd->mi[-1]->ref_frame[0];
for (i = 0; i < mi_height; ++i) {
ref_mi = xd->mi[i * xd->mi_stride - 1];
const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) &&
(ref_frame == ref_mi->ref_frame[0]);
skip_ref_frame &= (rf == ref_mi->ref_frame[0]);
}
}
if (skip_ref_frame && this_mode != NEARESTMV && this_mode != NEWMV)
if (rf > INTRA_FRAME)
if (ref_frame != rf) continue;
if (const_motion)
if (this_mode == NEARMV || this_mode == ZEROMV) continue;
}
comp_pred = second_ref_frame > INTRA_FRAME;
if (comp_pred) {
if (!cpi->allow_comp_inter_inter) continue;
// Skip compound inter modes if ARF is not available.
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME)
continue;
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
} else {
if (ref_frame != INTRA_FRAME)
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
}
if (ref_frame == INTRA_FRAME) {
if (sf->adaptive_mode_search)
if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse)
continue;
if (this_mode != DC_PRED) {
// Disable intra modes other than DC_PRED for blocks with low variance
// Threshold for intra skipping based on source variance
// TODO(debargha): Specialize the threshold for super block sizes
const unsigned int skip_intra_var_thresh = 64;
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
x->source_variance < skip_intra_var_thresh)
continue;
// Only search the oblique modes if the best so far is
// one of the neighboring directional modes
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
(this_mode >= D45_PRED && this_mode <= TM_PRED)) {
if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME)
continue;
}
if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(this_mode, best_intra_mode)) continue;
}
}
} else {
const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame };
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, this_mode,
ref_frames))
continue;
}
mi->mode = this_mode;
mi->uv_mode = DC_PRED;
mi->ref_frame[0] = ref_frame;
mi->ref_frame[1] = second_ref_frame;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
mi->interp_filter =
cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter;
mi->mv[0].as_int = mi->mv[1].as_int = 0;
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
if (ref_frame == INTRA_FRAME) {
TX_SIZE uv_tx;
struct macroblockd_plane *const pd = &xd->plane[1];
memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize,
best_rd);
if (rate_y == INT_MAX) continue;
uv_tx = uv_txsize_lookup[bsize][mi->tx_size][pd->subsampling_x]
[pd->subsampling_y];
if (rate_uv_intra[uv_tx] == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx],
&rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx],
&skip_uv[uv_tx], &mode_uv[uv_tx]);
}
rate_uv = rate_uv_tokenonly[uv_tx];
distortion_uv = dist_uv[uv_tx];
skippable = skippable && skip_uv[uv_tx];
mi->uv_mode = mode_uv[uv_tx];
rate2 = rate_y + cpi->mbmode_cost[mi->mode] + rate_uv_intra[uv_tx];
if (this_mode != DC_PRED && this_mode != TM_PRED)
rate2 += intra_cost_penalty;
distortion2 = distortion_y + distortion_uv;
} else {
this_rd = handle_inter_mode(
cpi, x, bsize, &rate2, &distortion2, &skippable, &rate_y, &rate_uv,
&disable_skip, frame_mv, mi_row, mi_col, single_newmv,
single_inter_filter, single_skippable, &total_sse, best_rd,
&mask_filter, filter_cache);
if (this_rd == INT64_MAX) continue;
compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred);
if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
}
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (comp_pred) {
rate2 += ref_costs_comp[ref_frame];
} else {
rate2 += ref_costs_single[ref_frame];
}
if (!disable_skip) {
const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd);
const int skip_cost0 = vp9_cost_bit(skip_prob, 0);
const int skip_cost1 = vp9_cost_bit(skip_prob, 1);
if (skippable) {
// Back out the coefficient coding costs
rate2 -= (rate_y + rate_uv);
// Cost the skip mb case
rate2 += skip_cost1;
} else if (ref_frame != INTRA_FRAME && !xd->lossless) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + skip_cost0,
distortion2) <
RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) {
// Add in the cost of the no skip flag.
rate2 += skip_cost0;
} else {
// FIXME(rbultje) make this work for splitmv also
assert(total_sse >= 0);
rate2 += skip_cost1;
distortion2 = total_sse;
rate2 -= (rate_y + rate_uv);
this_skip2 = 1;
}
} else {
// Add in the cost of the no skip flag.
rate2 += skip_cost0;
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
// Apply an adjustment to the rd value based on the similarity of the
// source variance and reconstructed variance.
rd_variance_adjustment(cpi, x, bsize, &this_rd, ref_frame,
x->source_variance);
if (ref_frame == INTRA_FRAME) {
// Keep record of best intra rd
if (this_rd < best_intra_rd) {
best_intra_rd = this_rd;
best_intra_mode = mi->mode;
}
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
int max_plane = MAX_MB_PLANE;
if (!mode_excluded) {
// Note index of best mode so far
best_mode_index = mode_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mi->mv[0].as_int = 0;
max_plane = 1;
// Initialize interp_filter here so we do not have to check for
// inter block modes in get_pred_context_switchable_interp()
mi->interp_filter = SWITCHABLE_FILTERS;
} else {
best_pred_sse = x->pred_sse[ref_frame];
}
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_mbmode = *mi;
best_skip2 = this_skip2;
best_mode_skippable = skippable;
if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mi->tx_size],
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
ctx->sum_y_eobs = x->sum_y_eobs[mi->tx_size];
// TODO(debargha): enhance this test with a better distortion prediction
// based on qp, activity mask and history
if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
(mode_index > MIN_EARLY_TERM_INDEX)) {
int qstep = xd->plane[0].dequant[1];
// TODO(debargha): Enhance this by specializing for each mode_index
int scale = 4;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
qstep >>= (xd->bd - 8);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (x->source_variance < UINT_MAX) {
const int var_adjust = (x->source_variance < 16);
scale -= var_adjust;
}
if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) {
early_term = 1;
}
}
}
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (!comp_pred) {
if (single_rd < best_pred_rd[SINGLE_REFERENCE])
best_pred_rd[SINGLE_REFERENCE] = single_rd;
} else {
if (single_rd < best_pred_rd[COMPOUND_REFERENCE])
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
}
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
/* keep record of best filter type */
if (!mode_excluded && cm->interp_filter != BILINEAR) {
int64_t ref =
filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS
: cm->interp_filter];
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
int64_t adj_rd;
if (ref == INT64_MAX)
adj_rd = 0;
else if (filter_cache[i] == INT64_MAX)
// when early termination is triggered, the encoder does not have
// access to the rate-distortion cost. it only knows that the cost
// should be above the maximum valid value. hence it takes the known
// maximum plus an arbitrary constant as the rate-distortion cost.
adj_rd = mask_filter - ref + 10;
else
adj_rd = filter_cache[i] - ref;
adj_rd += this_rd;
best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
}
}
}
if (early_term) break;
if (x->skip && !comp_pred) break;
}
// The inter modes' rate costs are not calculated precisely in some cases.
// Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and
// ZEROMV. Here, checks are added for those cases, and the mode decisions
// are corrected.
if (best_mbmode.mode == NEWMV) {
const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0],
best_mbmode.ref_frame[1] };
int comp_pred_mode = refs[1] > INTRA_FRAME;
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
((comp_pred_mode &&
frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) ||
!comp_pred_mode))
best_mbmode.mode = NEARESTMV;
else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
((comp_pred_mode &&
frame_mv[NEARMV][refs[1]].as_int == best_mbmode.mv[1].as_int) ||
!comp_pred_mode))
best_mbmode.mode = NEARMV;
else if (best_mbmode.mv[0].as_int == 0 &&
((comp_pred_mode && best_mbmode.mv[1].as_int == 0) ||
!comp_pred_mode))
best_mbmode.mode = ZEROMV;
}
if (best_mode_index < 0 || best_rd >= best_rd_so_far) {
// If adaptive interp filter is enabled, then the current leaf node of 8x8
// data is needed for sub8x8. Hence preserve the context.
#if CONFIG_CONSISTENT_RECODE
if (bsize == BLOCK_8X8) ctx->mic = *xd->mi[0];
#else
if (cpi->row_mt && bsize == BLOCK_8X8) ctx->mic = *xd->mi[0];
#endif
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
// If we used an estimate for the uv intra rd in the loop above...
if (sf->use_uv_intra_rd_estimate) {
// Do Intra UV best rd mode selection if best mode choice above was intra.
if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
TX_SIZE uv_tx_size;
*mi = best_mbmode;
uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]);
rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra[uv_tx_size],
&rate_uv_tokenonly[uv_tx_size],
&dist_uv[uv_tx_size], &skip_uv[uv_tx_size],
bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize,
uv_tx_size);
}
}
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter) ||
!is_inter_block(&best_mbmode));
if (!cpi->rc.is_src_frame_alt_ref)
vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact,
sf->adaptive_rd_thresh, bsize, best_mode_index);
// macroblock modes
*mi = best_mbmode;
x->skip |= best_skip2;
for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
if (!x->skip) {
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
if (best_filter_rd[i] == INT64_MAX)
best_filter_diff[i] = 0;
else
best_filter_diff[i] = best_rd - best_filter_rd[i];
}
if (cm->interp_filter == SWITCHABLE)
assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
} else {
vp9_zero(best_filter_diff);
}
// TODO(yunqingwang): Moving this line in front of the above best_filter_diff
// updating code causes PSNR loss. Need to figure out the confliction.
x->skip |= best_mode_skippable;
if (!x->skip && !x->select_tx_size) {
int has_high_freq_coeff = 0;
int plane;
int max_plane = is_inter_block(xd->mi[0]) ? MAX_MB_PLANE : 1;
for (plane = 0; plane < max_plane; ++plane) {
x->plane[plane].eobs = ctx->eobs_pbuf[plane][1];
has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane);
}
for (plane = max_plane; plane < MAX_MB_PLANE; ++plane) {
x->plane[plane].eobs = ctx->eobs_pbuf[plane][2];
has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane);
}
best_mode_skippable |= !has_high_freq_coeff;
}
assert(best_mode_index >= 0);
store_coding_context(x, ctx, best_mode_index, best_pred_diff,
best_filter_diff, best_mode_skippable);
}
void vp9_rd_pick_inter_mode_sb_seg_skip(VP9_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *x, RD_COST *rd_cost,
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
unsigned char segment_id = mi->segment_id;
const int comp_pred = 0;
int i;
int64_t best_pred_diff[REFERENCE_MODES];
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vpx_prob comp_mode_p;
INTERP_FILTER best_filter = SWITCHABLE;
int64_t this_rd = INT64_MAX;
int rate2 = 0;
const int64_t distortion2 = 0;
x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX;
rd_cost->rate = INT_MAX;
assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
mi->mode = ZEROMV;
mi->uv_mode = DC_PRED;
mi->ref_frame[0] = LAST_FRAME;
mi->ref_frame[1] = NONE;
mi->mv[0].as_int = 0;
x->skip = 1;
ctx->sum_y_eobs = 0;
if (cm->interp_filter != BILINEAR) {
best_filter = EIGHTTAP;
if (cm->interp_filter == SWITCHABLE &&
x->source_variance >= cpi->sf.disable_filter_search_var_thresh) {
int rs;
int best_rs = INT_MAX;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
mi->interp_filter = i;
rs = vp9_get_switchable_rate(cpi, xd);
if (rs < best_rs) {
best_rs = rs;
best_filter = mi->interp_filter;
}
}
}
}
// Set the appropriate filter
if (cm->interp_filter == SWITCHABLE) {
mi->interp_filter = best_filter;
rate2 += vp9_get_switchable_rate(cpi, xd);
} else {
mi->interp_filter = cm->interp_filter;
}
if (cm->reference_mode == REFERENCE_MODE_SELECT)
rate2 += vp9_cost_bit(comp_mode_p, comp_pred);
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs_single[LAST_FRAME];
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
if (this_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == mi->interp_filter));
vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact,
cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV);
vp9_zero(best_pred_diff);
vp9_zero(best_filter_diff);
if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, MAX_MB_PLANE);
store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, best_filter_diff, 0);
}
void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *x, int mi_row, int mi_col,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
VP9_COMMON *const cm = &cpi->common;
RD_OPT *const rd_opt = &cpi->rd;
SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
unsigned char segment_id = mi->segment_id;
int comp_pred, i;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int64_t best_rd = best_rd_so_far;
int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise
int64_t best_pred_diff[REFERENCE_MODES];
int64_t best_pred_rd[REFERENCE_MODES];
int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
MODE_INFO best_mbmode;
int ref_index, best_ref_index = 0;
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
vpx_prob comp_mode_p;
INTERP_FILTER tmp_best_filter = SWITCHABLE;
int rate_uv_intra, rate_uv_tokenonly;
int64_t dist_uv;
int skip_uv;
PREDICTION_MODE mode_uv = DC_PRED;
const int intra_cost_penalty =
vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q);
int_mv seg_mvs[4][MAX_REF_FRAMES];
b_mode_info best_bmodes[4];
int best_skip2 = 0;
int ref_frame_skip_mask[2] = { 0 };
int64_t mask_filter = 0;
int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
int internal_active_edge =
vp9_active_edge_sb(cpi, mi_row, mi_col) && vp9_internal_image_edge(cpi);
const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
memset(x->zcoeff_blk[TX_4X4], 0, 4);
vp9_zero(best_mbmode);
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX;
for (i = 0; i < 4; i++) {
int j;
for (j = 0; j < MAX_REF_FRAMES; j++) seg_mvs[i][j].as_int = INVALID_MV;
}
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
&comp_mode_p);
for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
best_filter_rd[i] = INT64_MAX;
rate_uv_intra = INT_MAX;
rd_cost->rate = INT_MAX;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
} else {
ref_frame_skip_mask[0] |= (1 << ref_frame);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
}
for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) {
int mode_excluded = 0;
int64_t this_rd = INT64_MAX;
int disable_skip = 0;
int compmode_cost = 0;
int rate2 = 0, rate_y = 0, rate_uv = 0;
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
int skippable = 0;
int i;
int this_skip2 = 0;
int64_t total_sse = INT_MAX;
int early_term = 0;
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
ref_frame = vp9_ref_order[ref_index].ref_frame[0];
second_ref_frame = vp9_ref_order[ref_index].ref_frame[1];
vp9_zero(x->sum_y_eobs);
#if CONFIG_BETTER_HW_COMPATIBILITY
// forbid 8X4 and 4X8 partitions if any reference frame is scaled.
if (bsize == BLOCK_8X4 || bsize == BLOCK_4X8) {
int ref_scaled = vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf);
if (second_ref_frame > INTRA_FRAME)
ref_scaled += vp9_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf);
if (ref_scaled) continue;
}
#endif
// Look at the reference frame of the best mode so far and set the
// skip mask to look at a subset of the remaining modes.
if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) {
if (ref_index == 3) {
switch (best_mbmode.ref_frame[0]) {
case INTRA_FRAME: break;
case LAST_FRAME:
ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case GOLDEN_FRAME:
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << ALTREF_FRAME);
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
break;
case ALTREF_FRAME:
ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << LAST_FRAME);
break;
case NONE:
case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break;
}
}
}
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
continue;
// Test best rd so far against threshold for trying this mode.
if (!internal_active_edge &&
rd_less_than_thresh(best_rd,
rd_opt->threshes[segment_id][bsize][ref_index],
&rd_thresh_freq_fact[ref_index]))
continue;
// This is only used in motion vector unit test.
if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue;
comp_pred = second_ref_frame > INTRA_FRAME;
if (comp_pred) {
if (!cpi->allow_comp_inter_inter) continue;
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
best_mbmode.ref_frame[0] == INTRA_FRAME)
continue;
}
if (comp_pred)
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
else if (ref_frame != INTRA_FRAME)
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
continue;
// Disable this drop out case if the ref frame
// segment level feature is enabled for this segment. This is to
// prevent the possibility that we end up unable to pick any mode.
} else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
continue;
}
mi->tx_size = TX_4X4;
mi->uv_mode = DC_PRED;
mi->ref_frame[0] = ref_frame;
mi->ref_frame[1] = second_ref_frame;
// Evaluate all sub-pel filters irrespective of whether we can use
// them for this frame.
mi->interp_filter =
cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter;
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
if (ref_frame == INTRA_FRAME) {
int rate;
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y,
best_rd) >= best_rd)
continue;
rate2 += rate;
rate2 += intra_cost_penalty;
distortion2 += distortion_y;
if (rate_uv_intra == INT_MAX) {
choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra,
&rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv);
}
rate2 += rate_uv_intra;
rate_uv = rate_uv_tokenonly;
distortion2 += dist_uv;
distortion_uv = dist_uv;
mi->uv_mode = mode_uv;
} else {
int rate;
int64_t distortion;
int64_t this_rd_thresh;
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse;
int tmp_best_skippable = 0;
int switchable_filter_index;
int_mv *second_ref =
comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL;
b_mode_info tmp_best_bmodes[16];
MODE_INFO tmp_best_mbmode;
BEST_SEG_INFO bsi[SWITCHABLE_FILTERS];
int pred_exists = 0;
int uv_skippable;
YV12_BUFFER_CONFIG *scaled_ref_frame[2] = { NULL, NULL };
int ref;
for (ref = 0; ref < 2; ++ref) {
scaled_ref_frame[ref] =
mi->ref_frame[ref] > INTRA_FRAME
? vp9_get_scaled_ref_frame(cpi, mi->ref_frame[ref])
: NULL;
if (scaled_ref_frame[ref]) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[ref][i] = xd->plane[i].pre[ref];
vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
NULL);
}
}
this_rd_thresh = (ref_frame == LAST_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_LAST]
: rd_opt->threshes[segment_id][bsize][THR_ALTR];
this_rd_thresh = (ref_frame == GOLDEN_FRAME)
? rd_opt->threshes[segment_id][bsize][THR_GOLD]
: this_rd_thresh;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
filter_cache[i] = INT64_MAX;
if (cm->interp_filter != BILINEAR) {
tmp_best_filter = EIGHTTAP;
if (x->source_variance < sf->disable_filter_search_var_thresh) {
tmp_best_filter = EIGHTTAP;
} else if (sf->adaptive_pred_interp_filter == 1 &&
ctx->pred_interp_filter < SWITCHABLE) {
tmp_best_filter = ctx->pred_interp_filter;
} else if (sf->adaptive_pred_interp_filter == 2) {
tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE
? ctx->pred_interp_filter
: 0;
} else {
for (switchable_filter_index = 0;
switchable_filter_index < SWITCHABLE_FILTERS;
++switchable_filter_index) {
int newbest, rs;
int64_t rs_rd;
MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext;
mi->interp_filter = switchable_filter_index;
tmp_rd = rd_pick_best_sub8x8_mode(
cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
&rate, &rate_y, &distortion, &skippable, &total_sse,
(int)this_rd_thresh, seg_mvs, bsi, switchable_filter_index,
mi_row, mi_col);
if (tmp_rd == INT64_MAX) continue;
rs = vp9_get_switchable_rate(cpi, xd);
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
filter_cache[switchable_filter_index] = tmp_rd;
filter_cache[SWITCHABLE_FILTERS] =
VPXMIN(filter_cache[SWITCHABLE_FILTERS], tmp_rd + rs_rd);
if (cm->interp_filter == SWITCHABLE) tmp_rd += rs_rd;
mask_filter = VPXMAX(mask_filter, tmp_rd);
newbest = (tmp_rd < tmp_best_rd);
if (newbest) {
tmp_best_filter = mi->interp_filter;
tmp_best_rd = tmp_rd;
}
if ((newbest && cm->interp_filter == SWITCHABLE) ||
(mi->interp_filter == cm->interp_filter &&
cm->interp_filter != SWITCHABLE)) {
tmp_best_rdu = tmp_rd;
tmp_best_rate = rate;
tmp_best_ratey = rate_y;
tmp_best_distortion = distortion;
tmp_best_sse = total_sse;
tmp_best_skippable = skippable;
tmp_best_mbmode = *mi;
for (i = 0; i < 4; i++) {
tmp_best_bmodes[i] = xd->mi[0]->bmi[i];
x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i];
x->sum_y_eobs[TX_4X4] += x->plane[0].eobs[i];
}
pred_exists = 1;
if (switchable_filter_index == 0 && sf->use_rd_breakout &&
best_rd < INT64_MAX) {
if (tmp_best_rdu / 2 > best_rd) {
// skip searching the other filters if the first is
// already substantially larger than the best so far
tmp_best_filter = mi->interp_filter;
tmp_best_rdu = INT64_MAX;
break;
}
}
}
} // switchable_filter_index loop
}
}
if (tmp_best_rdu == INT64_MAX && pred_exists) continue;
mi->interp_filter = (cm->interp_filter == SWITCHABLE ? tmp_best_filter
: cm->interp_filter);
if (!pred_exists) {
// Handles the special case when a filter that is not in the
// switchable list (bilinear, 6-tap) is indicated at the frame level
tmp_rd = rd_pick_best_sub8x8_mode(
cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
&rate, &rate_y, &distortion, &skippable, &total_sse,
(int)this_rd_thresh, seg_mvs, bsi, 0, mi_row, mi_col);
if (tmp_rd == INT64_MAX) continue;
} else {
total_sse = tmp_best_sse;
rate = tmp_best_rate;
rate_y = tmp_best_ratey;
distortion = tmp_best_distortion;
skippable = tmp_best_skippable;
*mi = tmp_best_mbmode;
for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i];
}
rate2 += rate;
distortion2 += distortion;
if (cm->interp_filter == SWITCHABLE)
rate2 += vp9_get_switchable_rate(cpi, xd);
if (!mode_excluded)
mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE
: cm->reference_mode == COMPOUND_REFERENCE;
compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred);
tmp_best_rdu =
best_rd - VPXMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
if (tmp_best_rdu > 0) {
// If even the 'Y' rd value of split is higher than best so far
// then dont bother looking at UV
vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, BLOCK_8X8);
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable,
&uv_sse, BLOCK_8X8, tmp_best_rdu)) {
for (ref = 0; ref < 2; ++ref) {
if (scaled_ref_frame[ref]) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i)
xd->plane[i].pre[ref] = backup_yv12[ref][i];
}
}
continue;
}
rate2 += rate_uv;
distortion2 += distortion_uv;
skippable = skippable && uv_skippable;
total_sse += uv_sse;
}
for (ref = 0; ref < 2; ++ref) {
if (scaled_ref_frame[ref]) {
// Restore the prediction frame pointers to their unscaled versions.
int i;
for (i = 0; i < MAX_MB_PLANE; ++i)
xd->plane[i].pre[ref] = backup_yv12[ref][i];
}
}
}
if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
if (second_ref_frame > INTRA_FRAME) {
rate2 += ref_costs_comp[ref_frame];
} else {
rate2 += ref_costs_single[ref_frame];
}
if (!disable_skip) {
const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd);
const int skip_cost0 = vp9_cost_bit(skip_prob, 0);
const int skip_cost1 = vp9_cost_bit(skip_prob, 1);
// Skip is never coded at the segment level for sub8x8 blocks and instead
// always coded in the bitstream at the mode info level.
if (ref_frame != INTRA_FRAME && !xd->lossless) {
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + skip_cost0,
distortion2) <
RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) {
// Add in the cost of the no skip flag.
rate2 += skip_cost0;
} else {
// FIXME(rbultje) make this work for splitmv also
rate2 += skip_cost1;
distortion2 = total_sse;
assert(total_sse >= 0);
rate2 -= (rate_y + rate_uv);
rate_y = 0;
rate_uv = 0;
this_skip2 = 1;
}
} else {
// Add in the cost of the no skip flag.
rate2 += skip_cost0;
}
// Calculate the final RD estimate for this mode.
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
}
if (!disable_skip && ref_frame == INTRA_FRAME) {
for (i = 0; i < REFERENCE_MODES; ++i)
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
}
// Did this mode help.. i.e. is it the new best mode
if (this_rd < best_rd || x->skip) {
if (!mode_excluded) {
int max_plane = MAX_MB_PLANE;
// Note index of best mode so far
best_ref_index = ref_index;
if (ref_frame == INTRA_FRAME) {
/* required for left and above block mv */
mi->mv[0].as_int = 0;
max_plane = 1;
// Initialize interp_filter here so we do not have to check for
// inter block modes in get_pred_context_switchable_interp()
mi->interp_filter = SWITCHABLE_FILTERS;
}
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
best_yrd =
best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
best_mbmode = *mi;
best_skip2 = this_skip2;
if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4],
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
ctx->sum_y_eobs = x->sum_y_eobs[TX_4X4];
for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i];
// TODO(debargha): enhance this test with a better distortion prediction
// based on qp, activity mask and history
if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
(ref_index > MIN_EARLY_TERM_INDEX)) {
int qstep = xd->plane[0].dequant[1];
// TODO(debargha): Enhance this by specializing for each mode_index
int scale = 4;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
qstep >>= (xd->bd - 8);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (x->source_variance < UINT_MAX) {
const int var_adjust = (x->source_variance < 16);
scale -= var_adjust;
}
if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) {
early_term = 1;
}
}
}
}
/* keep record of best compound/single-only prediction */
if (!disable_skip && ref_frame != INTRA_FRAME) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rate2 - compmode_cost;
hybrid_rate = rate2;
} else {
single_rate = rate2;
hybrid_rate = rate2 + compmode_cost;
}
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE])
best_pred_rd[SINGLE_REFERENCE] = single_rd;
else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE])
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
/* keep record of best filter type */
if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME &&
cm->interp_filter != BILINEAR) {
int64_t ref =
filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS
: cm->interp_filter];
int64_t adj_rd;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
if (ref == INT64_MAX)
adj_rd = 0;
else if (filter_cache[i] == INT64_MAX)
// when early termination is triggered, the encoder does not have
// access to the rate-distortion cost. it only knows that the cost
// should be above the maximum valid value. hence it takes the known
// maximum plus an arbitrary constant as the rate-distortion cost.
adj_rd = mask_filter - ref + 10;
else
adj_rd = filter_cache[i] - ref;
adj_rd += this_rd;
best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
}
}
if (early_term) break;
if (x->skip && !comp_pred) break;
}
if (best_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
// If we used an estimate for the uv intra rd in the loop above...
if (sf->use_uv_intra_rd_estimate) {
// Do Intra UV best rd mode selection if best mode choice above was intra.
if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
*mi = best_mbmode;
rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra, &rate_uv_tokenonly,
&dist_uv, &skip_uv, BLOCK_8X8, TX_4X4);
}
}
if (best_rd == INT64_MAX) {
rd_cost->rate = INT_MAX;
rd_cost->dist = INT64_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
assert((cm->interp_filter == SWITCHABLE) ||
(cm->interp_filter == best_mbmode.interp_filter) ||
!is_inter_block(&best_mbmode));
vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, sf->adaptive_rd_thresh,
bsize, best_ref_index);
// macroblock modes
*mi = best_mbmode;
x->skip |= best_skip2;
if (!is_inter_block(&best_mbmode)) {
for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
} else {
for (i = 0; i < 4; ++i)
memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
mi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int;
mi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int;
}
for (i = 0; i < REFERENCE_MODES; ++i) {
if (best_pred_rd[i] == INT64_MAX)
best_pred_diff[i] = INT_MIN;
else
best_pred_diff[i] = best_rd - best_pred_rd[i];
}
if (!x->skip) {
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
if (best_filter_rd[i] == INT64_MAX)
best_filter_diff[i] = 0;
else
best_filter_diff[i] = best_rd - best_filter_rd[i];
}
if (cm->interp_filter == SWITCHABLE)
assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
} else {
vp9_zero(best_filter_diff);
}
store_coding_context(x, ctx, best_ref_index, best_pred_diff, best_filter_diff,
0);
}