blob: e8cac079710d675b40f198f950a0bf040d076b3e [file] [log] [blame]
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vpx/vpx_codec.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/vpx_timer.h"
using libvpx_test::ACMRandom;
namespace {
template <typename Pixel>
class AverageTestBase : public ::testing::Test {
public:
AverageTestBase(int width, int height)
: width_(width), height_(height), source_data_(NULL), source_stride_(0),
bit_depth_(8) {}
virtual void TearDown() {
vpx_free(source_data_);
source_data_ = NULL;
libvpx_test::ClearSystemState();
}
protected:
// Handle blocks up to 4 blocks 64x64 with stride up to 128
static const int kDataAlignment = 16;
static const int kDataBlockSize = 64 * 128;
virtual void SetUp() {
source_data_ = reinterpret_cast<Pixel *>(
vpx_memalign(kDataAlignment, kDataBlockSize * sizeof(source_data_[0])));
ASSERT_TRUE(source_data_ != NULL);
source_stride_ = (width_ + 31) & ~31;
bit_depth_ = 8;
rnd_.Reset(ACMRandom::DeterministicSeed());
}
// Sum Pixels
static unsigned int ReferenceAverage8x8(const Pixel *source, int pitch) {
unsigned int average = 0;
for (int h = 0; h < 8; ++h) {
for (int w = 0; w < 8; ++w) average += source[h * pitch + w];
}
return ((average + 32) >> 6);
}
static unsigned int ReferenceAverage4x4(const Pixel *source, int pitch) {
unsigned int average = 0;
for (int h = 0; h < 4; ++h) {
for (int w = 0; w < 4; ++w) average += source[h * pitch + w];
}
return ((average + 8) >> 4);
}
void FillConstant(Pixel fill_constant) {
for (int i = 0; i < width_ * height_; ++i) {
source_data_[i] = fill_constant;
}
}
void FillRandom() {
for (int i = 0; i < width_ * height_; ++i) {
source_data_[i] = rnd_.Rand16() & ((1 << bit_depth_) - 1);
}
}
int width_, height_;
Pixel *source_data_;
int source_stride_;
int bit_depth_;
ACMRandom rnd_;
};
typedef unsigned int (*AverageFunction)(const uint8_t *s, int pitch);
typedef ::testing::tuple<int, int, int, int, AverageFunction> AvgFunc;
class AverageTest : public AverageTestBase<uint8_t>,
public ::testing::WithParamInterface<AvgFunc> {
public:
AverageTest() : AverageTestBase(GET_PARAM(0), GET_PARAM(1)) {}
protected:
void CheckAverages() {
const int block_size = GET_PARAM(3);
unsigned int expected = 0;
if (block_size == 8) {
expected =
ReferenceAverage8x8(source_data_ + GET_PARAM(2), source_stride_);
} else if (block_size == 4) {
expected =
ReferenceAverage4x4(source_data_ + GET_PARAM(2), source_stride_);
}
ASM_REGISTER_STATE_CHECK(
GET_PARAM(4)(source_data_ + GET_PARAM(2), source_stride_));
unsigned int actual =
GET_PARAM(4)(source_data_ + GET_PARAM(2), source_stride_);
EXPECT_EQ(expected, actual);
}
};
#if CONFIG_VP9_HIGHBITDEPTH
class AverageTestHBD : public AverageTestBase<uint16_t>,
public ::testing::WithParamInterface<AvgFunc> {
public:
AverageTestHBD() : AverageTestBase(GET_PARAM(0), GET_PARAM(1)) {}
protected:
void CheckAverages() {
const int block_size = GET_PARAM(3);
unsigned int expected = 0;
if (block_size == 8) {
expected =
ReferenceAverage8x8(source_data_ + GET_PARAM(2), source_stride_);
} else if (block_size == 4) {
expected =
ReferenceAverage4x4(source_data_ + GET_PARAM(2), source_stride_);
}
ASM_REGISTER_STATE_CHECK(GET_PARAM(4)(
CONVERT_TO_BYTEPTR(source_data_ + GET_PARAM(2)), source_stride_));
unsigned int actual = GET_PARAM(4)(
CONVERT_TO_BYTEPTR(source_data_ + GET_PARAM(2)), source_stride_);
EXPECT_EQ(expected, actual);
}
};
#endif // CONFIG_VP9_HIGHBITDEPTH
typedef void (*IntProRowFunc)(int16_t hbuf[16], uint8_t const *ref,
const int ref_stride, const int height);
typedef ::testing::tuple<int, IntProRowFunc, IntProRowFunc> IntProRowParam;
class IntProRowTest : public AverageTestBase<uint8_t>,
public ::testing::WithParamInterface<IntProRowParam> {
public:
IntProRowTest()
: AverageTestBase(16, GET_PARAM(0)), hbuf_asm_(NULL), hbuf_c_(NULL) {
asm_func_ = GET_PARAM(1);
c_func_ = GET_PARAM(2);
}
protected:
virtual void SetUp() {
source_data_ = reinterpret_cast<uint8_t *>(
vpx_memalign(kDataAlignment, kDataBlockSize * sizeof(source_data_[0])));
ASSERT_TRUE(source_data_ != NULL);
hbuf_asm_ = reinterpret_cast<int16_t *>(
vpx_memalign(kDataAlignment, sizeof(*hbuf_asm_) * 16));
hbuf_c_ = reinterpret_cast<int16_t *>(
vpx_memalign(kDataAlignment, sizeof(*hbuf_c_) * 16));
}
virtual void TearDown() {
vpx_free(source_data_);
source_data_ = NULL;
vpx_free(hbuf_c_);
hbuf_c_ = NULL;
vpx_free(hbuf_asm_);
hbuf_asm_ = NULL;
}
void RunComparison() {
ASM_REGISTER_STATE_CHECK(c_func_(hbuf_c_, source_data_, 0, height_));
ASM_REGISTER_STATE_CHECK(asm_func_(hbuf_asm_, source_data_, 0, height_));
EXPECT_EQ(0, memcmp(hbuf_c_, hbuf_asm_, sizeof(*hbuf_c_) * 16))
<< "Output mismatch";
}
private:
IntProRowFunc asm_func_;
IntProRowFunc c_func_;
int16_t *hbuf_asm_;
int16_t *hbuf_c_;
};
typedef int16_t (*IntProColFunc)(uint8_t const *ref, const int width);
typedef ::testing::tuple<int, IntProColFunc, IntProColFunc> IntProColParam;
class IntProColTest : public AverageTestBase<uint8_t>,
public ::testing::WithParamInterface<IntProColParam> {
public:
IntProColTest() : AverageTestBase(GET_PARAM(0), 1), sum_asm_(0), sum_c_(0) {
asm_func_ = GET_PARAM(1);
c_func_ = GET_PARAM(2);
}
protected:
void RunComparison() {
ASM_REGISTER_STATE_CHECK(sum_c_ = c_func_(source_data_, width_));
ASM_REGISTER_STATE_CHECK(sum_asm_ = asm_func_(source_data_, width_));
EXPECT_EQ(sum_c_, sum_asm_) << "Output mismatch";
}
private:
IntProColFunc asm_func_;
IntProColFunc c_func_;
int16_t sum_asm_;
int16_t sum_c_;
};
typedef int (*SatdFunc)(const tran_low_t *coeffs, int length);
typedef ::testing::tuple<int, SatdFunc> SatdTestParam;
class SatdTest : public ::testing::Test,
public ::testing::WithParamInterface<SatdTestParam> {
protected:
virtual void SetUp() {
satd_size_ = GET_PARAM(0);
satd_func_ = GET_PARAM(1);
rnd_.Reset(ACMRandom::DeterministicSeed());
src_ = reinterpret_cast<tran_low_t *>(
vpx_memalign(16, sizeof(*src_) * satd_size_));
ASSERT_TRUE(src_ != NULL);
}
virtual void TearDown() {
libvpx_test::ClearSystemState();
vpx_free(src_);
}
void FillConstant(const tran_low_t val) {
for (int i = 0; i < satd_size_; ++i) src_[i] = val;
}
void FillRandom() {
for (int i = 0; i < satd_size_; ++i) {
const int16_t tmp = rnd_.Rand16();
src_[i] = (tran_low_t)tmp;
}
}
void Check(const int expected) {
int total;
ASM_REGISTER_STATE_CHECK(total = satd_func_(src_, satd_size_));
EXPECT_EQ(expected, total);
}
int satd_size_;
private:
tran_low_t *src_;
SatdFunc satd_func_;
ACMRandom rnd_;
};
typedef int64_t (*BlockErrorFunc)(const tran_low_t *coeff,
const tran_low_t *dqcoeff, int block_size);
typedef ::testing::tuple<int, BlockErrorFunc> BlockErrorTestFPParam;
class BlockErrorTestFP
: public ::testing::Test,
public ::testing::WithParamInterface<BlockErrorTestFPParam> {
protected:
virtual void SetUp() {
txfm_size_ = GET_PARAM(0);
block_error_func_ = GET_PARAM(1);
rnd_.Reset(ACMRandom::DeterministicSeed());
coeff_ = reinterpret_cast<tran_low_t *>(
vpx_memalign(16, sizeof(*coeff_) * txfm_size_));
dqcoeff_ = reinterpret_cast<tran_low_t *>(
vpx_memalign(16, sizeof(*dqcoeff_) * txfm_size_));
ASSERT_TRUE(coeff_ != NULL);
ASSERT_TRUE(dqcoeff_ != NULL);
}
virtual void TearDown() {
libvpx_test::ClearSystemState();
vpx_free(coeff_);
vpx_free(dqcoeff_);
}
void FillConstant(const tran_low_t coeff_val, const tran_low_t dqcoeff_val) {
for (int i = 0; i < txfm_size_; ++i) coeff_[i] = coeff_val;
for (int i = 0; i < txfm_size_; ++i) dqcoeff_[i] = dqcoeff_val;
}
void FillRandom() {
// Just two fixed seeds
rnd_.Reset(0xb0b9);
for (int i = 0; i < txfm_size_; ++i) coeff_[i] = rnd_.Rand16() >> 1;
rnd_.Reset(0xb0c8);
for (int i = 0; i < txfm_size_; ++i) dqcoeff_[i] = rnd_.Rand16() >> 1;
}
void Check(const int64_t expected) {
int64_t total;
ASM_REGISTER_STATE_CHECK(
total = block_error_func_(coeff_, dqcoeff_, txfm_size_));
EXPECT_EQ(expected, total);
}
int txfm_size_;
private:
tran_low_t *coeff_;
tran_low_t *dqcoeff_;
BlockErrorFunc block_error_func_;
ACMRandom rnd_;
};
TEST_P(AverageTest, MinValue) {
FillConstant(0);
CheckAverages();
}
TEST_P(AverageTest, MaxValue) {
FillConstant(255);
CheckAverages();
}
TEST_P(AverageTest, Random) {
// The reference frame, but not the source frame, may be unaligned for
// certain types of searches.
for (int i = 0; i < 1000; i++) {
FillRandom();
CheckAverages();
}
}
#if CONFIG_VP9_HIGHBITDEPTH
TEST_P(AverageTestHBD, MinValue) {
FillConstant(0);
CheckAverages();
}
TEST_P(AverageTestHBD, MaxValue) {
FillConstant((1 << VPX_BITS_12) - 1);
CheckAverages();
}
TEST_P(AverageTestHBD, Random) {
bit_depth_ = VPX_BITS_12;
// The reference frame, but not the source frame, may be unaligned for
// certain types of searches.
for (int i = 0; i < 1000; i++) {
FillRandom();
CheckAverages();
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
TEST_P(IntProRowTest, MinValue) {
FillConstant(0);
RunComparison();
}
TEST_P(IntProRowTest, MaxValue) {
FillConstant(255);
RunComparison();
}
TEST_P(IntProRowTest, Random) {
FillRandom();
RunComparison();
}
TEST_P(IntProColTest, MinValue) {
FillConstant(0);
RunComparison();
}
TEST_P(IntProColTest, MaxValue) {
FillConstant(255);
RunComparison();
}
TEST_P(IntProColTest, Random) {
FillRandom();
RunComparison();
}
TEST_P(SatdTest, MinValue) {
const int kMin = -32640;
const int expected = -kMin * satd_size_;
FillConstant(kMin);
Check(expected);
}
TEST_P(SatdTest, MaxValue) {
const int kMax = 32640;
const int expected = kMax * satd_size_;
FillConstant(kMax);
Check(expected);
}
TEST_P(SatdTest, Random) {
int expected;
switch (satd_size_) {
case 16: expected = 205298; break;
case 64: expected = 1113950; break;
case 256: expected = 4268415; break;
case 1024: expected = 16954082; break;
default:
FAIL() << "Invalid satd size (" << satd_size_
<< ") valid: 16/64/256/1024";
}
FillRandom();
Check(expected);
}
TEST_P(SatdTest, DISABLED_Speed) {
const int kCountSpeedTestBlock = 20000;
vpx_usec_timer timer;
DECLARE_ALIGNED(16, tran_low_t, coeff[1024]);
const int blocksize = GET_PARAM(0);
vpx_usec_timer_start(&timer);
for (int i = 0; i < kCountSpeedTestBlock; ++i) {
GET_PARAM(1)(coeff, blocksize);
}
vpx_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer));
printf("blocksize: %4d time: %4d us\n", blocksize, elapsed_time);
}
TEST_P(BlockErrorTestFP, MinValue) {
const int64_t kMin = -32640;
const int64_t expected = kMin * kMin * txfm_size_;
FillConstant(kMin, 0);
Check(expected);
}
TEST_P(BlockErrorTestFP, MaxValue) {
const int64_t kMax = 32640;
const int64_t expected = kMax * kMax * txfm_size_;
FillConstant(kMax, 0);
Check(expected);
}
TEST_P(BlockErrorTestFP, Random) {
int64_t expected;
switch (txfm_size_) {
case 16: expected = 2051681432; break;
case 64: expected = 11075114379; break;
case 256: expected = 44386271116; break;
case 1024: expected = 184774996089; break;
default:
FAIL() << "Invalid satd size (" << txfm_size_
<< ") valid: 16/64/256/1024";
}
FillRandom();
Check(expected);
}
TEST_P(BlockErrorTestFP, DISABLED_Speed) {
const int kCountSpeedTestBlock = 20000;
vpx_usec_timer timer;
DECLARE_ALIGNED(16, tran_low_t, coeff[1024]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff[1024]);
const int blocksize = GET_PARAM(0);
vpx_usec_timer_start(&timer);
for (int i = 0; i < kCountSpeedTestBlock; ++i) {
GET_PARAM(1)(coeff, dqcoeff, blocksize);
}
vpx_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer));
printf("blocksize: %4d time: %4d us\n", blocksize, elapsed_time);
}
using ::testing::make_tuple;
INSTANTIATE_TEST_CASE_P(
C, AverageTest,
::testing::Values(make_tuple(16, 16, 1, 8, &vpx_avg_8x8_c),
make_tuple(16, 16, 1, 4, &vpx_avg_4x4_c)));
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
C, AverageTestHBD,
::testing::Values(make_tuple(16, 16, 1, 8, &vpx_highbd_avg_8x8_c),
make_tuple(16, 16, 1, 4, &vpx_highbd_avg_4x4_c)));
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, AverageTestHBD,
::testing::Values(make_tuple(16, 16, 1, 8, &vpx_highbd_avg_8x8_sse2),
make_tuple(16, 16, 1, 4, &vpx_highbd_avg_4x4_sse2)));
#endif // HAVE_SSE2
#endif // CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(C, SatdTest,
::testing::Values(make_tuple(16, &vpx_satd_c),
make_tuple(64, &vpx_satd_c),
make_tuple(256, &vpx_satd_c),
make_tuple(1024, &vpx_satd_c)));
INSTANTIATE_TEST_CASE_P(
C, BlockErrorTestFP,
::testing::Values(make_tuple(16, &vp9_block_error_fp_c),
make_tuple(64, &vp9_block_error_fp_c),
make_tuple(256, &vp9_block_error_fp_c),
make_tuple(1024, &vp9_block_error_fp_c)));
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, AverageTest,
::testing::Values(make_tuple(16, 16, 0, 8, &vpx_avg_8x8_sse2),
make_tuple(16, 16, 5, 8, &vpx_avg_8x8_sse2),
make_tuple(32, 32, 15, 8, &vpx_avg_8x8_sse2),
make_tuple(16, 16, 0, 4, &vpx_avg_4x4_sse2),
make_tuple(16, 16, 5, 4, &vpx_avg_4x4_sse2),
make_tuple(32, 32, 15, 4, &vpx_avg_4x4_sse2)));
INSTANTIATE_TEST_CASE_P(
SSE2, IntProRowTest,
::testing::Values(make_tuple(16, &vpx_int_pro_row_sse2, &vpx_int_pro_row_c),
make_tuple(32, &vpx_int_pro_row_sse2, &vpx_int_pro_row_c),
make_tuple(64, &vpx_int_pro_row_sse2,
&vpx_int_pro_row_c)));
INSTANTIATE_TEST_CASE_P(
SSE2, IntProColTest,
::testing::Values(make_tuple(16, &vpx_int_pro_col_sse2, &vpx_int_pro_col_c),
make_tuple(32, &vpx_int_pro_col_sse2, &vpx_int_pro_col_c),
make_tuple(64, &vpx_int_pro_col_sse2,
&vpx_int_pro_col_c)));
INSTANTIATE_TEST_CASE_P(SSE2, SatdTest,
::testing::Values(make_tuple(16, &vpx_satd_sse2),
make_tuple(64, &vpx_satd_sse2),
make_tuple(256, &vpx_satd_sse2),
make_tuple(1024, &vpx_satd_sse2)));
INSTANTIATE_TEST_CASE_P(
SSE2, BlockErrorTestFP,
::testing::Values(make_tuple(16, &vp9_block_error_fp_sse2),
make_tuple(64, &vp9_block_error_fp_sse2),
make_tuple(256, &vp9_block_error_fp_sse2),
make_tuple(1024, &vp9_block_error_fp_sse2)));
#endif // HAVE_SSE2
#if HAVE_AVX2
INSTANTIATE_TEST_CASE_P(AVX2, SatdTest,
::testing::Values(make_tuple(16, &vpx_satd_avx2),
make_tuple(64, &vpx_satd_avx2),
make_tuple(256, &vpx_satd_avx2),
make_tuple(1024, &vpx_satd_avx2)));
INSTANTIATE_TEST_CASE_P(
AVX2, BlockErrorTestFP,
::testing::Values(make_tuple(16, &vp9_block_error_fp_avx2),
make_tuple(64, &vp9_block_error_fp_avx2),
make_tuple(256, &vp9_block_error_fp_avx2),
make_tuple(1024, &vp9_block_error_fp_avx2)));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_CASE_P(
NEON, AverageTest,
::testing::Values(make_tuple(16, 16, 0, 8, &vpx_avg_8x8_neon),
make_tuple(16, 16, 5, 8, &vpx_avg_8x8_neon),
make_tuple(32, 32, 15, 8, &vpx_avg_8x8_neon),
make_tuple(16, 16, 0, 4, &vpx_avg_4x4_neon),
make_tuple(16, 16, 5, 4, &vpx_avg_4x4_neon),
make_tuple(32, 32, 15, 4, &vpx_avg_4x4_neon)));
INSTANTIATE_TEST_CASE_P(
NEON, IntProRowTest,
::testing::Values(make_tuple(16, &vpx_int_pro_row_neon, &vpx_int_pro_row_c),
make_tuple(32, &vpx_int_pro_row_neon, &vpx_int_pro_row_c),
make_tuple(64, &vpx_int_pro_row_neon,
&vpx_int_pro_row_c)));
INSTANTIATE_TEST_CASE_P(
NEON, IntProColTest,
::testing::Values(make_tuple(16, &vpx_int_pro_col_neon, &vpx_int_pro_col_c),
make_tuple(32, &vpx_int_pro_col_neon, &vpx_int_pro_col_c),
make_tuple(64, &vpx_int_pro_col_neon,
&vpx_int_pro_col_c)));
INSTANTIATE_TEST_CASE_P(NEON, SatdTest,
::testing::Values(make_tuple(16, &vpx_satd_neon),
make_tuple(64, &vpx_satd_neon),
make_tuple(256, &vpx_satd_neon),
make_tuple(1024, &vpx_satd_neon)));
// TODO(jianj): Remove the highbitdepth flag once the SIMD functions are
// in place.
#if !CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
NEON, BlockErrorTestFP,
::testing::Values(make_tuple(16, &vp9_block_error_fp_neon),
make_tuple(64, &vp9_block_error_fp_neon),
make_tuple(256, &vp9_block_error_fp_neon),
make_tuple(1024, &vp9_block_error_fp_neon)));
#endif // !CONFIG_VP9_HIGHBITDEPTH
#endif // HAVE_NEON
#if HAVE_MSA
INSTANTIATE_TEST_CASE_P(
MSA, AverageTest,
::testing::Values(make_tuple(16, 16, 0, 8, &vpx_avg_8x8_msa),
make_tuple(16, 16, 5, 8, &vpx_avg_8x8_msa),
make_tuple(32, 32, 15, 8, &vpx_avg_8x8_msa),
make_tuple(16, 16, 0, 4, &vpx_avg_4x4_msa),
make_tuple(16, 16, 5, 4, &vpx_avg_4x4_msa),
make_tuple(32, 32, 15, 4, &vpx_avg_4x4_msa)));
INSTANTIATE_TEST_CASE_P(
MSA, IntProRowTest,
::testing::Values(make_tuple(16, &vpx_int_pro_row_msa, &vpx_int_pro_row_c),
make_tuple(32, &vpx_int_pro_row_msa, &vpx_int_pro_row_c),
make_tuple(64, &vpx_int_pro_row_msa,
&vpx_int_pro_row_c)));
INSTANTIATE_TEST_CASE_P(
MSA, IntProColTest,
::testing::Values(make_tuple(16, &vpx_int_pro_col_msa, &vpx_int_pro_col_c),
make_tuple(32, &vpx_int_pro_col_msa, &vpx_int_pro_col_c),
make_tuple(64, &vpx_int_pro_col_msa,
&vpx_int_pro_col_c)));
// TODO(jingning): Remove the highbitdepth flag once the SIMD functions are
// in place.
#if !CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(MSA, SatdTest,
::testing::Values(make_tuple(16, &vpx_satd_msa),
make_tuple(64, &vpx_satd_msa),
make_tuple(256, &vpx_satd_msa),
make_tuple(1024, &vpx_satd_msa)));
#endif // !CONFIG_VP9_HIGHBITDEPTH
#endif // HAVE_MSA
} // namespace