blob: 5fba70025081ae7f7365b184c883076e7b53047d [file] [log] [blame]
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "third_party/googletest/src/include/gtest/gtest.h"
extern "C" {
#include "./vpx_config.h"
#include "./vp8_rtcd.h"
#include "vp8/common/blockd.h"
#include "vpx_mem/vpx_mem.h"
}
namespace {
using libvpx_test::ACMRandom;
class IntraPredBase {
public:
virtual ~IntraPredBase() {}
virtual void TearDown() {
libvpx_test::ClearSystemState();
}
protected:
void SetupMacroblock(MACROBLOCKD *mbptr,
MODE_INFO *miptr,
uint8_t *data,
int block_size,
int stride,
int num_planes) {
mbptr_ = mbptr;
miptr_ = miptr;
mbptr_->up_available = 1;
mbptr_->left_available = 1;
mbptr_->mode_info_context = miptr_;
stride_ = stride;
block_size_ = block_size;
num_planes_ = num_planes;
for (int p = 0; p < num_planes; p++)
data_ptr_[p] = data + stride * (block_size + 1) * p +
stride + block_size;
}
void FillRandom() {
// Fill edges with random data
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int p = 0; p < num_planes_; p++) {
for (int x = -1 ; x <= block_size_; x++)
data_ptr_[p][x - stride_] = rnd.Rand8();
for (int y = 0; y < block_size_; y++)
data_ptr_[p][y * stride_ - 1] = rnd.Rand8();
}
}
virtual void Predict(MB_PREDICTION_MODE mode) = 0;
void SetLeftUnavailable() {
mbptr_->left_available = 0;
for (int p = 0; p < num_planes_; p++)
for (int i = -1; i < block_size_; ++i)
data_ptr_[p][stride_ * i - 1] = 129;
}
void SetTopUnavailable() {
mbptr_->up_available = 0;
for (int p = 0; p < num_planes_; p++)
memset(&data_ptr_[p][-1 - stride_], 127, block_size_ + 2);
}
void SetTopLeftUnavailable() {
SetLeftUnavailable();
SetTopUnavailable();
}
int BlockSizeLog2Min1() const {
switch (block_size_) {
case 16:
return 3;
case 8:
return 2;
default:
return 0;
}
}
// check DC prediction output against a reference
void CheckDCPrediction() const {
for (int p = 0; p < num_planes_; p++) {
// calculate expected DC
int expected;
if (mbptr_->up_available || mbptr_->left_available) {
int sum = 0, shift = BlockSizeLog2Min1() + mbptr_->up_available +
mbptr_->left_available;
if (mbptr_->up_available)
for (int x = 0; x < block_size_; x++)
sum += data_ptr_[p][x - stride_];
if (mbptr_->left_available)
for (int y = 0; y < block_size_; y++)
sum += data_ptr_[p][y * stride_ - 1];
expected = (sum + (1 << (shift - 1))) >> shift;
} else {
expected = 0x80;
}
// check that all subsequent lines are equal to the first
for (int y = 1; y < block_size_; ++y)
ASSERT_EQ(0, memcmp(data_ptr_[p], &data_ptr_[p][y * stride_],
block_size_));
// within the first line, ensure that each pixel has the same value
for (int x = 1; x < block_size_; ++x)
ASSERT_EQ(data_ptr_[p][0], data_ptr_[p][x]);
// now ensure that that pixel has the expected (DC) value
ASSERT_EQ(expected, data_ptr_[p][0]);
}
}
// check V prediction output against a reference
void CheckVPrediction() const {
// check that all lines equal the top border
for (int p = 0; p < num_planes_; p++)
for (int y = 0; y < block_size_; y++)
ASSERT_EQ(0, memcmp(&data_ptr_[p][-stride_],
&data_ptr_[p][y * stride_], block_size_));
}
// check H prediction output against a reference
void CheckHPrediction() const {
// for each line, ensure that each pixel is equal to the left border
for (int p = 0; p < num_planes_; p++)
for (int y = 0; y < block_size_; y++)
for (int x = 0; x < block_size_; x++)
ASSERT_EQ(data_ptr_[p][-1 + y * stride_],
data_ptr_[p][x + y * stride_]);
}
static int ClipByte(int value) {
if (value > 255)
return 255;
else if (value < 0)
return 0;
return value;
}
// check TM prediction output against a reference
void CheckTMPrediction() const {
for (int p = 0; p < num_planes_; p++)
for (int y = 0; y < block_size_; y++)
for (int x = 0; x < block_size_; x++) {
const int expected = ClipByte(data_ptr_[p][x - stride_]
+ data_ptr_[p][stride_ * y - 1]
- data_ptr_[p][-1 - stride_]);
ASSERT_EQ(expected, data_ptr_[p][y * stride_ + x]);
}
}
// Actual test
void RunTest() {
{
SCOPED_TRACE("DC_PRED");
FillRandom();
Predict(DC_PRED);
CheckDCPrediction();
}
{
SCOPED_TRACE("DC_PRED LEFT");
FillRandom();
SetLeftUnavailable();
Predict(DC_PRED);
CheckDCPrediction();
}
{
SCOPED_TRACE("DC_PRED TOP");
FillRandom();
SetTopUnavailable();
Predict(DC_PRED);
CheckDCPrediction();
}
{
SCOPED_TRACE("DC_PRED TOP_LEFT");
FillRandom();
SetTopLeftUnavailable();
Predict(DC_PRED);
CheckDCPrediction();
}
{
SCOPED_TRACE("H_PRED");
FillRandom();
Predict(H_PRED);
CheckHPrediction();
}
{
SCOPED_TRACE("V_PRED");
FillRandom();
Predict(V_PRED);
CheckVPrediction();
}
{
SCOPED_TRACE("TM_PRED");
FillRandom();
Predict(TM_PRED);
CheckTMPrediction();
}
}
MACROBLOCKD *mbptr_;
MODE_INFO *miptr_;
uint8_t *data_ptr_[2]; // in the case of Y, only [0] is used
int stride_;
int block_size_;
int num_planes_;
};
typedef void (*intra_pred_y_fn_t)(MACROBLOCKD *x,
uint8_t *yabove_row,
uint8_t *yleft,
int left_stride,
uint8_t *ypred_ptr,
int y_stride);
class IntraPredYTest : public ::testing::TestWithParam<intra_pred_y_fn_t>,
protected IntraPredBase {
public:
static void SetUpTestCase() {
mb_ = reinterpret_cast<MACROBLOCKD*>(
vpx_memalign(32, sizeof(MACROBLOCKD)));
mi_ = reinterpret_cast<MODE_INFO*>(
vpx_memalign(32, sizeof(MODE_INFO)));
data_array_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kDataBufferSize));
}
static void TearDownTestCase() {
vpx_free(data_array_);
vpx_free(mi_);
vpx_free(mb_);
data_array_ = NULL;
}
protected:
static const int kBlockSize = 16;
static const int kDataAlignment = 16;
static const int kStride = kBlockSize * 3;
// We use 48 so that the data pointer of the first pixel in each row of
// each macroblock is 16-byte aligned, and this gives us access to the
// top-left and top-right corner pixels belonging to the top-left/right
// macroblocks.
// We use 17 lines so we have one line above us for top-prediction.
static const int kDataBufferSize = kStride * (kBlockSize + 1);
virtual void SetUp() {
pred_fn_ = GetParam();
SetupMacroblock(mb_, mi_, data_array_, kBlockSize, kStride, 1);
}
virtual void Predict(MB_PREDICTION_MODE mode) {
mbptr_->mode_info_context->mbmi.mode = mode;
REGISTER_STATE_CHECK(pred_fn_(mbptr_,
data_ptr_[0] - kStride,
data_ptr_[0] - 1, kStride,
data_ptr_[0], kStride));
}
intra_pred_y_fn_t pred_fn_;
static uint8_t* data_array_;
static MACROBLOCKD * mb_;
static MODE_INFO *mi_;
};
MACROBLOCKD* IntraPredYTest::mb_ = NULL;
MODE_INFO* IntraPredYTest::mi_ = NULL;
uint8_t* IntraPredYTest::data_array_ = NULL;
TEST_P(IntraPredYTest, IntraPredTests) {
RunTest();
}
INSTANTIATE_TEST_CASE_P(C, IntraPredYTest,
::testing::Values(
vp8_build_intra_predictors_mby_s_c));
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(SSE2, IntraPredYTest,
::testing::Values(
vp8_build_intra_predictors_mby_s_sse2));
#endif
#if HAVE_SSSE3
INSTANTIATE_TEST_CASE_P(SSSE3, IntraPredYTest,
::testing::Values(
vp8_build_intra_predictors_mby_s_ssse3));
#endif
typedef void (*intra_pred_uv_fn_t)(MACROBLOCKD *x,
uint8_t *uabove_row,
uint8_t *vabove_row,
uint8_t *uleft,
uint8_t *vleft,
int left_stride,
uint8_t *upred_ptr,
uint8_t *vpred_ptr,
int pred_stride);
class IntraPredUVTest : public ::testing::TestWithParam<intra_pred_uv_fn_t>,
protected IntraPredBase {
public:
static void SetUpTestCase() {
mb_ = reinterpret_cast<MACROBLOCKD*>(
vpx_memalign(32, sizeof(MACROBLOCKD)));
mi_ = reinterpret_cast<MODE_INFO*>(
vpx_memalign(32, sizeof(MODE_INFO)));
data_array_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kDataBufferSize));
}
static void TearDownTestCase() {
vpx_free(data_array_);
vpx_free(mi_);
vpx_free(mb_);
data_array_ = NULL;
}
protected:
static const int kBlockSize = 8;
static const int kDataAlignment = 8;
static const int kStride = kBlockSize * 3;
// We use 24 so that the data pointer of the first pixel in each row of
// each macroblock is 8-byte aligned, and this gives us access to the
// top-left and top-right corner pixels belonging to the top-left/right
// macroblocks.
// We use 9 lines so we have one line above us for top-prediction.
// [0] = U, [1] = V
static const int kDataBufferSize = 2 * kStride * (kBlockSize + 1);
virtual void SetUp() {
pred_fn_ = GetParam();
SetupMacroblock(mb_, mi_, data_array_, kBlockSize, kStride, 2);
}
virtual void Predict(MB_PREDICTION_MODE mode) {
mbptr_->mode_info_context->mbmi.uv_mode = mode;
pred_fn_(mbptr_, data_ptr_[0] - kStride, data_ptr_[1] - kStride,
data_ptr_[0] - 1, data_ptr_[1] - 1, kStride,
data_ptr_[0], data_ptr_[1], kStride);
}
intra_pred_uv_fn_t pred_fn_;
// We use 24 so that the data pointer of the first pixel in each row of
// each macroblock is 8-byte aligned, and this gives us access to the
// top-left and top-right corner pixels belonging to the top-left/right
// macroblocks.
// We use 9 lines so we have one line above us for top-prediction.
// [0] = U, [1] = V
static uint8_t* data_array_;
static MACROBLOCKD* mb_;
static MODE_INFO* mi_;
};
MACROBLOCKD* IntraPredUVTest::mb_ = NULL;
MODE_INFO* IntraPredUVTest::mi_ = NULL;
uint8_t* IntraPredUVTest::data_array_ = NULL;
TEST_P(IntraPredUVTest, IntraPredTests) {
RunTest();
}
INSTANTIATE_TEST_CASE_P(C, IntraPredUVTest,
::testing::Values(
vp8_build_intra_predictors_mbuv_s_c));
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(SSE2, IntraPredUVTest,
::testing::Values(
vp8_build_intra_predictors_mbuv_s_sse2));
#endif
#if HAVE_SSSE3
INSTANTIATE_TEST_CASE_P(SSSE3, IntraPredUVTest,
::testing::Values(
vp8_build_intra_predictors_mbuv_s_ssse3));
#endif
} // namespace