blob: 06270fecb11c743cedbeec829e983d0fc028683b [file] [log] [blame]
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This is an example demonstrating how to implement a multi-layer VP8
* encoding scheme based on temporal scalability for video applications
* that benefit from a scalable bitstream.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#define VPX_CODEC_DISABLE_COMPAT 1
#include "vpx/vpx_encoder.h"
#include "vpx/vp8cx.h"
#define interface (vpx_codec_vp8_cx())
#define fourcc 0x30385056
#define IVF_FILE_HDR_SZ (32)
#define IVF_FRAME_HDR_SZ (12)
static void mem_put_le16(char *mem, unsigned int val) {
mem[0] = val;
mem[1] = val>>8;
}
static void mem_put_le32(char *mem, unsigned int val) {
mem[0] = val;
mem[1] = val>>8;
mem[2] = val>>16;
mem[3] = val>>24;
}
static void die(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
if(fmt[strlen(fmt)-1] != '\n')
printf("\n");
exit(EXIT_FAILURE);
}
static void die_codec(vpx_codec_ctx_t *ctx, const char *s) {
const char *detail = vpx_codec_error_detail(ctx);
printf("%s: %s\n", s, vpx_codec_error(ctx));
if(detail)
printf(" %s\n",detail);
exit(EXIT_FAILURE);
}
static int read_frame(FILE *f, vpx_image_t *img) {
size_t nbytes, to_read;
int res = 1;
to_read = img->w*img->h*3/2;
nbytes = fread(img->planes[0], 1, to_read, f);
if(nbytes != to_read) {
res = 0;
if(nbytes > 0)
printf("Warning: Read partial frame. Check your width & height!\n");
}
return res;
}
static void write_ivf_file_header(FILE *outfile,
const vpx_codec_enc_cfg_t *cfg,
int frame_cnt) {
char header[32];
if(cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS)
return;
header[0] = 'D';
header[1] = 'K';
header[2] = 'I';
header[3] = 'F';
mem_put_le16(header+4, 0); /* version */
mem_put_le16(header+6, 32); /* headersize */
mem_put_le32(header+8, fourcc); /* headersize */
mem_put_le16(header+12, cfg->g_w); /* width */
mem_put_le16(header+14, cfg->g_h); /* height */
mem_put_le32(header+16, cfg->g_timebase.den); /* rate */
mem_put_le32(header+20, cfg->g_timebase.num); /* scale */
mem_put_le32(header+24, frame_cnt); /* length */
mem_put_le32(header+28, 0); /* unused */
(void) fwrite(header, 1, 32, outfile);
}
static void write_ivf_frame_header(FILE *outfile,
const vpx_codec_cx_pkt_t *pkt)
{
char header[12];
vpx_codec_pts_t pts;
if(pkt->kind != VPX_CODEC_CX_FRAME_PKT)
return;
pts = pkt->data.frame.pts;
mem_put_le32(header, pkt->data.frame.sz);
mem_put_le32(header+4, pts&0xFFFFFFFF);
mem_put_le32(header+8, pts >> 32);
(void) fwrite(header, 1, 12, outfile);
}
static int mode_to_num_layers[12] = {1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3};
int main(int argc, char **argv) {
FILE *infile, *outfile[VPX_TS_MAX_LAYERS];
vpx_codec_ctx_t codec;
vpx_codec_enc_cfg_t cfg;
int frame_cnt = 0;
vpx_image_t raw;
vpx_codec_err_t res;
unsigned int width;
unsigned int height;
int frame_avail;
int got_data;
int flags = 0;
int i;
int pts = 0; /* PTS starts at 0 */
int frame_duration = 1; /* 1 timebase tick per frame */
int layering_mode = 0;
int frames_in_layer[VPX_TS_MAX_LAYERS] = {0};
int layer_flags[VPX_TS_MAX_PERIODICITY] = {0};
int flag_periodicity;
int max_intra_size_pct;
/* Check usage and arguments */
if (argc < 9)
die("Usage: %s <infile> <outfile> <width> <height> <rate_num> "
" <rate_den> <mode> <Rate_0> ... <Rate_nlayers-1>\n", argv[0]);
width = strtol (argv[3], NULL, 0);
height = strtol (argv[4], NULL, 0);
if (width < 16 || width%2 || height <16 || height%2)
die ("Invalid resolution: %d x %d", width, height);
if (!sscanf(argv[7], "%d", &layering_mode))
die ("Invalid mode %s", argv[7]);
if (layering_mode<0 || layering_mode>11)
die ("Invalid mode (0..11) %s", argv[7]);
if (argc != 8+mode_to_num_layers[layering_mode])
die ("Invalid number of arguments");
if (!vpx_img_alloc (&raw, VPX_IMG_FMT_I420, width, height, 32))
die ("Failed to allocate image", width, height);
printf("Using %s\n",vpx_codec_iface_name(interface));
/* Populate encoder configuration */
res = vpx_codec_enc_config_default(interface, &cfg, 0);
if(res) {
printf("Failed to get config: %s\n", vpx_codec_err_to_string(res));
return EXIT_FAILURE;
}
/* Update the default configuration with our settings */
cfg.g_w = width;
cfg.g_h = height;
/* Timebase format e.g. 30fps: numerator=1, demoninator=30 */
if (!sscanf (argv[5], "%d", &cfg.g_timebase.num ))
die ("Invalid timebase numerator %s", argv[5]);
if (!sscanf (argv[6], "%d", &cfg.g_timebase.den ))
die ("Invalid timebase denominator %s", argv[6]);
for (i=8; i<8+mode_to_num_layers[layering_mode]; i++)
if (!sscanf(argv[i], "%ud", &cfg.ts_target_bitrate[i-8]))
die ("Invalid data rate %s", argv[i]);
/* Real time parameters */
cfg.rc_dropframe_thresh = 0;
cfg.rc_end_usage = VPX_CBR;
cfg.rc_resize_allowed = 0;
cfg.rc_min_quantizer = 2;
cfg.rc_max_quantizer = 56;
cfg.rc_undershoot_pct = 100;
cfg.rc_overshoot_pct = 15;
cfg.rc_buf_initial_sz = 500;
cfg.rc_buf_optimal_sz = 600;
cfg.rc_buf_sz = 1000;
/* Enable error resilient mode */
cfg.g_error_resilient = 1;
cfg.g_lag_in_frames = 0;
cfg.kf_mode = VPX_KF_DISABLED;
/* Disable automatic keyframe placement */
cfg.kf_min_dist = cfg.kf_max_dist = 3000;
/* Default setting for bitrate: used in special case of 1 layer (case 0). */
cfg.rc_target_bitrate = cfg.ts_target_bitrate[0];
/* Temporal scaling parameters: */
/* NOTE: The 3 prediction frames cannot be used interchangeably due to
* differences in the way they are handled throughout the code. The
* frames should be allocated to layers in the order LAST, GF, ARF.
* Other combinations work, but may produce slightly inferior results.
*/
switch (layering_mode)
{
case 0:
{
/* 1-layer */
int ids[1] = {0};
cfg.ts_number_layers = 1;
cfg.ts_periodicity = 1;
cfg.ts_rate_decimator[0] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = cfg.ts_periodicity;
// Update L only.
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
break;
}
case 1:
{
/* 2-layers, 2-frame period */
int ids[2] = {0,1};
cfg.ts_number_layers = 2;
cfg.ts_periodicity = 2;
cfg.ts_rate_decimator[0] = 2;
cfg.ts_rate_decimator[1] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = cfg.ts_periodicity;
#if 1
/* 0=L, 1=GF, Intra-layer prediction enabled */
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF;
layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_REF_ARF;
#else
/* 0=L, 1=GF, Intra-layer prediction disabled */
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF;
layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST;
#endif
break;
}
case 2:
{
/* 2-layers, 3-frame period */
int ids[3] = {0,1,1};
cfg.ts_number_layers = 2;
cfg.ts_periodicity = 3;
cfg.ts_rate_decimator[0] = 3;
cfg.ts_rate_decimator[1] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = cfg.ts_periodicity;
/* 0=L, 1=GF, Intra-layer prediction enabled */
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[1] =
layer_flags[2] = VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST;
break;
}
case 3:
{
/* 3-layers, 6-frame period */
int ids[6] = {0,2,2,1,2,2};
cfg.ts_number_layers = 3;
cfg.ts_periodicity = 6;
cfg.ts_rate_decimator[0] = 6;
cfg.ts_rate_decimator[1] = 3;
cfg.ts_rate_decimator[2] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = cfg.ts_periodicity;
/* 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled */
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST;
layer_flags[1] =
layer_flags[2] =
layer_flags[4] =
layer_flags[5] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST;
break;
}
case 4:
{
/* 3-layers, 4-frame period */
int ids[4] = {0,2,1,2};
cfg.ts_number_layers = 3;
cfg.ts_periodicity = 4;
cfg.ts_rate_decimator[0] = 4;
cfg.ts_rate_decimator[1] = 2;
cfg.ts_rate_decimator[2] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = cfg.ts_periodicity;
/* 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled */
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST;
layer_flags[1] =
layer_flags[3] = VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
break;
}
case 5:
{
/* 3-layers, 4-frame period */
int ids[4] = {0,2,1,2};
cfg.ts_number_layers = 3;
cfg.ts_periodicity = 4;
cfg.ts_rate_decimator[0] = 4;
cfg.ts_rate_decimator[1] = 2;
cfg.ts_rate_decimator[2] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = cfg.ts_periodicity;
/* 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1,
* disabled in layer 2
*/
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[2] = VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
layer_flags[1] =
layer_flags[3] = VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
break;
}
case 6:
{
/* 3-layers, 4-frame period */
int ids[4] = {0,2,1,2};
cfg.ts_number_layers = 3;
cfg.ts_periodicity = 4;
cfg.ts_rate_decimator[0] = 4;
cfg.ts_rate_decimator[1] = 2;
cfg.ts_rate_decimator[2] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = cfg.ts_periodicity;
/* 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled */
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[2] = VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
layer_flags[1] =
layer_flags[3] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
break;
}
case 7:
{
/* NOTE: Probably of academic interest only */
/* 5-layers, 16-frame period */
int ids[16] = {0,4,3,4,2,4,3,4,1,4,3,4,2,4,3,4};
cfg.ts_number_layers = 5;
cfg.ts_periodicity = 16;
cfg.ts_rate_decimator[0] = 16;
cfg.ts_rate_decimator[1] = 8;
cfg.ts_rate_decimator[2] = 4;
cfg.ts_rate_decimator[3] = 2;
cfg.ts_rate_decimator[4] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = cfg.ts_periodicity;
layer_flags[0] = VPX_EFLAG_FORCE_KF;
layer_flags[1] =
layer_flags[3] =
layer_flags[5] =
layer_flags[7] =
layer_flags[9] =
layer_flags[11] =
layer_flags[13] =
layer_flags[15] = VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
layer_flags[2] =
layer_flags[6] =
layer_flags[10] =
layer_flags[14] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF;
layer_flags[4] =
layer_flags[12] = VP8_EFLAG_NO_REF_LAST |
VP8_EFLAG_NO_UPD_ARF;
layer_flags[8] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF;
break;
}
case 8:
{
/* 2-layers, with sync point at first frame of layer 1. */
int ids[2] = {0,1};
cfg.ts_number_layers = 2;
cfg.ts_periodicity = 2;
cfg.ts_rate_decimator[0] = 2;
cfg.ts_rate_decimator[1] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = 8;
/* 0=L, 1=GF */
// ARF is used as predictor for all frames, and is only updated on
// key frame. Sync point every 8 frames.
// Layer 0: predict from L and ARF, update L and G.
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_UPD_ARF;
// Layer 1: sync point: predict from L and ARF, and update G.
layer_flags[1] = VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ARF;
// Layer 0, predict from L and ARF, update L.
layer_flags[2] = VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
// Layer 1: predict from L, G and ARF, and update G.
layer_flags[3] = VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ENTROPY;
// Layer 0
layer_flags[4] = layer_flags[2];
// Layer 1
layer_flags[5] = layer_flags[3];
// Layer 0
layer_flags[6] = layer_flags[4];
// Layer 1
layer_flags[7] = layer_flags[5];
break;
}
case 9:
{
/* 3-layers */
// Sync points for layer 1 and 2 every 8 frames.
int ids[4] = {0,2,1,2};
cfg.ts_number_layers = 3;
cfg.ts_periodicity = 4;
cfg.ts_rate_decimator[0] = 4;
cfg.ts_rate_decimator[1] = 2;
cfg.ts_rate_decimator[2] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = 8;
/* 0=L, 1=GF, 2=ARF */
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
layer_flags[3] =
layer_flags[5] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[6] = VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_ENTROPY;
break;
}
case 10:
{
// 3-layers structure where ARF is used as predictor for all frames,
// and is only updated on key frame.
// Sync points for layer 1 and 2 every 8 frames.
int ids[4] = {0,2,1,2};
cfg.ts_number_layers = 3;
cfg.ts_periodicity = 4;
cfg.ts_rate_decimator[0] = 4;
cfg.ts_rate_decimator[1] = 2;
cfg.ts_rate_decimator[2] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = 8;
/* 0=L, 1=GF, 2=ARF */
// Layer 0: predict from L and ARF; update L and G.
layer_flags[0] = VPX_EFLAG_FORCE_KF |
VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_REF_GF;
// Layer 2: sync point: predict from L and ARF; update none.
layer_flags[1] = VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ENTROPY;
// Layer 1: sync point: predict from L and ARF; update G.
layer_flags[2] = VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[3] = VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ENTROPY;
// Layer 0: predict from L and ARF; update L.
layer_flags[4] = VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_REF_GF;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[5] = layer_flags[3];
// Layer 1: predict from L, G, ARF; update G.
layer_flags[6] = VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[7] = layer_flags[3];
break;
}
case 11:
default:
{
// 3-layers structure as in case 10, but no sync/refresh points for
// layer 1 and 2.
int ids[4] = {0,2,1,2};
cfg.ts_number_layers = 3;
cfg.ts_periodicity = 4;
cfg.ts_rate_decimator[0] = 4;
cfg.ts_rate_decimator[1] = 2;
cfg.ts_rate_decimator[2] = 1;
memcpy(cfg.ts_layer_id, ids, sizeof(ids));
flag_periodicity = 8;
/* 0=L, 1=GF, 2=ARF */
// Layer 0: predict from L and ARF; update L.
layer_flags[0] = VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_REF_GF;
layer_flags[4] = layer_flags[0];
// Layer 1: predict from L, G, ARF; update G.
layer_flags[2] = VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST;
layer_flags[6] = layer_flags[2];
// Layer 2: predict from L, G, ARF; update none.
layer_flags[1] = VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ENTROPY;
layer_flags[3] = layer_flags[1];
layer_flags[5] = layer_flags[1];
layer_flags[7] = layer_flags[1];
break;
}
}
/* Open input file */
if(!(infile = fopen(argv[1], "rb")))
die("Failed to open %s for reading", argv[1]);
/* Open an output file for each stream */
for (i=0; i<cfg.ts_number_layers; i++)
{
char file_name[512];
sprintf (file_name, "%s_%d.ivf", argv[2], i);
if (!(outfile[i] = fopen(file_name, "wb")))
die("Failed to open %s for writing", file_name);
write_ivf_file_header(outfile[i], &cfg, 0);
}
/* Initialize codec */
if (vpx_codec_enc_init (&codec, interface, &cfg, 0))
die_codec (&codec, "Failed to initialize encoder");
/* Cap CPU & first I-frame size */
vpx_codec_control (&codec, VP8E_SET_CPUUSED, -6);
vpx_codec_control (&codec, VP8E_SET_STATIC_THRESHOLD, 1);
vpx_codec_control (&codec, VP8E_SET_NOISE_SENSITIVITY, 1);
vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1);
max_intra_size_pct = (int) (((double)cfg.rc_buf_optimal_sz * 0.5)
* ((double) cfg.g_timebase.den / cfg.g_timebase.num)
/ 10.0);
/* printf ("max_intra_size_pct=%d\n", max_intra_size_pct); */
vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT,
max_intra_size_pct);
frame_avail = 1;
while (frame_avail || got_data) {
vpx_codec_iter_t iter = NULL;
const vpx_codec_cx_pkt_t *pkt;
flags = layer_flags[frame_cnt % flag_periodicity];
frame_avail = read_frame(infile, &raw);
if (vpx_codec_encode(&codec, frame_avail? &raw : NULL, pts,
1, flags, VPX_DL_REALTIME))
die_codec(&codec, "Failed to encode frame");
/* Reset KF flag */
if (layering_mode != 7)
layer_flags[0] &= ~VPX_EFLAG_FORCE_KF;
got_data = 0;
while ( (pkt = vpx_codec_get_cx_data(&codec, &iter)) ) {
got_data = 1;
switch (pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT:
for (i=cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
i<cfg.ts_number_layers; i++)
{
write_ivf_frame_header(outfile[i], pkt);
(void) fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz,
outfile[i]);
frames_in_layer[i]++;
}
break;
default:
break;
}
}
frame_cnt++;
pts += frame_duration;
}
fclose (infile);
printf ("Processed %d frames.\n",frame_cnt-1);
if (vpx_codec_destroy(&codec))
die_codec (&codec, "Failed to destroy codec");
/* Try to rewrite the output file headers with the actual frame count */
for (i=0; i<cfg.ts_number_layers; i++)
{
if (!fseek(outfile[i], 0, SEEK_SET))
write_ivf_file_header (outfile[i], &cfg, frames_in_layer[i]);
fclose (outfile[i]);
}
return EXIT_SUCCESS;
}