blob: 37aefdf7f83e3067429f1e6d40df1eb62ad51658 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./aom_config.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/entropymode.h"
#include "av1/common/thread_common.h"
#include "av1/common/reconinter.h"
#if CONFIG_MULTITHREAD
static INLINE void mutex_lock(pthread_mutex_t *const mutex) {
const int kMaxTryLocks = 4000;
int locked = 0;
int i;
for (i = 0; i < kMaxTryLocks; ++i) {
if (!pthread_mutex_trylock(mutex)) {
locked = 1;
break;
}
}
if (!locked) pthread_mutex_lock(mutex);
}
#endif // CONFIG_MULTITHREAD
static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c) {
#if CONFIG_MULTITHREAD
const int nsync = lf_sync->sync_range;
if (r && !(c & (nsync - 1))) {
pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1];
mutex_lock(mutex);
while (c > lf_sync->cur_sb_col[r - 1] - nsync) {
pthread_cond_wait(&lf_sync->cond_[r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)lf_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
const int sb_cols) {
#if CONFIG_MULTITHREAD
const int nsync = lf_sync->sync_range;
int cur;
// Only signal when there are enough filtered SB for next row to run.
int sig = 1;
if (c < sb_cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = sb_cols + nsync;
}
if (sig) {
mutex_lock(&lf_sync->mutex_[r]);
lf_sync->cur_sb_col[r] = cur;
pthread_cond_signal(&lf_sync->cond_[r]);
pthread_mutex_unlock(&lf_sync->mutex_[r]);
}
#else
(void)lf_sync;
(void)r;
(void)c;
(void)sb_cols;
#endif // CONFIG_MULTITHREAD
}
#if !CONFIG_EXT_PARTITION_TYPES
static INLINE enum lf_path get_loop_filter_path(
int y_only, struct macroblockd_plane planes[MAX_MB_PLANE]) {
if (y_only)
return LF_PATH_444;
else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
return LF_PATH_420;
else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
return LF_PATH_444;
else
return LF_PATH_SLOW;
}
static INLINE void loop_filter_block_plane_ver(
AV1_COMMON *cm, struct macroblockd_plane planes[MAX_MB_PLANE], int plane,
MODE_INFO **mi, int mi_row, int mi_col, enum lf_path path,
LoopFilterMask *lfm) {
if (plane == 0) {
av1_filter_block_plane_ss00_ver(cm, &planes[0], mi_row, lfm);
} else {
switch (path) {
case LF_PATH_420:
av1_filter_block_plane_ss11_ver(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_444:
av1_filter_block_plane_ss00_ver(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_SLOW:
av1_filter_block_plane_non420_ver(cm, &planes[plane], mi, mi_row,
mi_col, plane);
break;
}
}
}
static INLINE void loop_filter_block_plane_hor(
AV1_COMMON *cm, struct macroblockd_plane planes[MAX_MB_PLANE], int plane,
MODE_INFO **mi, int mi_row, int mi_col, enum lf_path path,
LoopFilterMask *lfm) {
if (plane == 0) {
av1_filter_block_plane_ss00_hor(cm, &planes[0], mi_row, lfm);
} else {
switch (path) {
case LF_PATH_420:
av1_filter_block_plane_ss11_hor(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_444:
av1_filter_block_plane_ss00_hor(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_SLOW:
av1_filter_block_plane_non420_hor(cm, &planes[plane], mi, mi_row,
mi_col, plane);
break;
}
}
}
#endif
// Row-based multi-threaded loopfilter hook
#if CONFIG_PARALLEL_DEBLOCKING
static int loop_filter_ver_row_worker(AV1LfSync *const lf_sync,
LFWorkerData *const lf_data) {
const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE;
int mi_row, mi_col;
#if !CONFIG_EXT_PARTITION_TYPES
enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes);
#endif
for (mi_row = lf_data->start; mi_row < lf_data->stop;
mi_row += lf_sync->num_workers * lf_data->cm->mib_size) {
MODE_INFO **const mi =
lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride;
for (mi_col = 0; mi_col < lf_data->cm->mi_cols;
mi_col += lf_data->cm->mib_size) {
LpfMask lfm;
int plane;
av1_setup_dst_planes(lf_data->planes, lf_data->cm->sb_size,
lf_data->frame_buffer, mi_row, mi_col,
av1_num_planes(lf_data->cm));
av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col,
lf_data->cm->mi_stride, &lfm);
#if CONFIG_EXT_PARTITION_TYPES
for (plane = 0; plane < num_planes; ++plane)
av1_filter_block_plane_non420_ver(lf_data->cm, &lf_data->planes[plane],
mi + mi_col, mi_row, mi_col, plane);
#else
for (plane = 0; plane < num_planes; ++plane)
loop_filter_block_plane_ver(lf_data->cm, lf_data->planes, plane,
mi + mi_col, mi_row, mi_col, path, &lfm);
#endif
}
}
return 1;
}
static int loop_filter_hor_row_worker(AV1LfSync *const lf_sync,
LFWorkerData *const lf_data) {
const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE;
const int sb_cols =
mi_cols_aligned_to_sb(lf_data->cm) >> lf_data->cm->mib_size_log2;
int mi_row, mi_col;
#if !CONFIG_EXT_PARTITION_TYPES
enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes);
#endif
for (mi_row = lf_data->start; mi_row < lf_data->stop;
mi_row += lf_sync->num_workers * lf_data->cm->mib_size) {
MODE_INFO **const mi =
lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride;
for (mi_col = 0; mi_col < lf_data->cm->mi_cols;
mi_col += lf_data->cm->mib_size) {
const int r = mi_row >> lf_data->cm->mib_size_log2;
const int c = mi_col >> lf_data->cm->mib_size_log2;
LpfMask lfm;
int plane;
// TODO(wenhao.zhang@intel.com): For better parallelization, reorder
// the outer loop to column-based and remove the synchronizations here.
sync_read(lf_sync, r, c);
av1_setup_dst_planes(lf_data->planes, lf_data->cm->sb_size,
lf_data->frame_buffer, mi_row, mi_col,
av1_num_planes(lf_data->cm));
av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col,
lf_data->cm->mi_stride, &lfm);
#if CONFIG_EXT_PARTITION_TYPES
for (plane = 0; plane < num_planes; ++plane)
av1_filter_block_plane_non420_hor(lf_data->cm, &lf_data->planes[plane],
mi + mi_col, mi_row, mi_col, plane);
#else
for (plane = 0; plane < num_planes; ++plane)
loop_filter_block_plane_hor(lf_data->cm, lf_data->planes, plane,
mi + mi_col, mi_row, mi_col, path, &lfm);
#endif
sync_write(lf_sync, r, c, sb_cols);
}
}
return 1;
}
#else // CONFIG_PARALLEL_DEBLOCKING
static int loop_filter_row_worker(AV1LfSync *const lf_sync,
LFWorkerData *const lf_data) {
const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE;
const int sb_cols =
mi_cols_aligned_to_sb(lf_data->cm) >> lf_data->cm->mib_size_log2;
int mi_row, mi_col;
#if !CONFIG_EXT_PARTITION_TYPES
enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes);
#endif // !CONFIG_EXT_PARTITION_TYPES
#if CONFIG_EXT_PARTITION
printf(
"STOPPING: This code has not been modified to work with the "
"extended coding unit size experiment");
exit(EXIT_FAILURE);
#endif // CONFIG_EXT_PARTITION
for (mi_row = lf_data->start; mi_row < lf_data->stop;
mi_row += lf_sync->num_workers * lf_data->cm->mib_size) {
MODE_INFO **const mi =
lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride;
for (mi_col = 0; mi_col < lf_data->cm->mi_cols;
mi_col += lf_data->cm->mib_size) {
const int r = mi_row >> lf_data->cm->mib_size_log2;
const int c = mi_col >> lf_data->cm->mib_size_log2;
#if !CONFIG_EXT_PARTITION_TYPES
LpfMask lfm;
#endif
int plane;
sync_read(lf_sync, r, c);
av1_setup_dst_planes(lf_data->planes, lf_data->cm->sb_size,
lf_data->frame_buffer, mi_row, mi_col);
#if CONFIG_EXT_PARTITION_TYPES
for (plane = 0; plane < num_planes; ++plane) {
av1_filter_block_plane_non420_ver(lf_data->cm, &lf_data->planes[plane],
mi + mi_col, mi_row, mi_col, plane);
av1_filter_block_plane_non420_hor(lf_data->cm, &lf_data->planes[plane],
mi + mi_col, mi_row, mi_col, plane);
}
#else
av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col,
lf_data->cm->mi_stride, &lfm);
for (plane = 0; plane < num_planes; ++plane) {
loop_filter_block_plane_ver(lf_data->cm, lf_data->planes, plane,
mi + mi_col, mi_row, mi_col, path, &lfm);
loop_filter_block_plane_hor(lf_data->cm, lf_data->planes, plane,
mi + mi_col, mi_row, mi_col, path, &lfm);
}
#endif // CONFIG_EXT_PARTITION_TYPES
sync_write(lf_sync, r, c, sb_cols);
}
}
return 1;
}
#endif // CONFIG_PARALLEL_DEBLOCKING
static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
struct macroblockd_plane *planes, int start,
int stop, int y_only, AVxWorker *workers,
int nworkers, AV1LfSync *lf_sync) {
#if CONFIG_EXT_PARTITION
printf(
"STOPPING: This code has not been modified to work with the "
"extended coding unit size experiment");
exit(EXIT_FAILURE);
#endif // CONFIG_EXT_PARTITION
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
// Number of superblock rows and cols
const int sb_rows = mi_rows_aligned_to_sb(cm) >> cm->mib_size_log2;
// Decoder may allocate more threads than number of tiles based on user's
// input.
const int tile_cols = cm->tile_cols;
const int num_workers = AOMMIN(nworkers, tile_cols);
int i;
if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
num_workers > lf_sync->num_workers) {
av1_loop_filter_dealloc(lf_sync);
av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
}
// Set up loopfilter thread data.
// The decoder is capping num_workers because it has been observed that
// using more threads on the loopfilter than there are cores will hurt
// performance on Android. This is because the system will only schedule the
// tile decode workers on cores equal to the number of tile columns. Then if
// the decoder tries to use more threads for the loopfilter, it will hurt
// performance because of contention. If the multithreading code changes in
// the future then the number of workers used by the loopfilter should be
// revisited.
#if CONFIG_PARALLEL_DEBLOCKING
// Initialize cur_sb_col to -1 for all SB rows.
memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
// Filter all the vertical edges in the whole frame
for (i = 0; i < num_workers; ++i) {
AVxWorker *const worker = &workers[i];
LFWorkerData *const lf_data = &lf_sync->lfdata[i];
worker->hook = (AVxWorkerHook)loop_filter_ver_row_worker;
worker->data1 = lf_sync;
worker->data2 = lf_data;
// Loopfilter data
av1_loop_filter_data_reset(lf_data, frame, cm, planes);
lf_data->start = start + i * cm->mib_size;
lf_data->stop = stop;
lf_data->y_only = y_only;
// Start loopfiltering
if (i == num_workers - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait till all rows are finished
for (i = 0; i < num_workers; ++i) {
winterface->sync(&workers[i]);
}
memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
// Filter all the horizontal edges in the whole frame
for (i = 0; i < num_workers; ++i) {
AVxWorker *const worker = &workers[i];
LFWorkerData *const lf_data = &lf_sync->lfdata[i];
worker->hook = (AVxWorkerHook)loop_filter_hor_row_worker;
worker->data1 = lf_sync;
worker->data2 = lf_data;
// Loopfilter data
av1_loop_filter_data_reset(lf_data, frame, cm, planes);
lf_data->start = start + i * cm->mib_size;
lf_data->stop = stop;
lf_data->y_only = y_only;
// Start loopfiltering
if (i == num_workers - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait till all rows are finished
for (i = 0; i < num_workers; ++i) {
winterface->sync(&workers[i]);
}
#else // CONFIG_PARALLEL_DEBLOCKING
// Initialize cur_sb_col to -1 for all SB rows.
memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
for (i = 0; i < num_workers; ++i) {
AVxWorker *const worker = &workers[i];
LFWorkerData *const lf_data = &lf_sync->lfdata[i];
worker->hook = (AVxWorkerHook)loop_filter_row_worker;
worker->data1 = lf_sync;
worker->data2 = lf_data;
// Loopfilter data
av1_loop_filter_data_reset(lf_data, frame, cm, planes);
lf_data->start = start + i * cm->mib_size;
lf_data->stop = stop;
lf_data->y_only = y_only;
// Start loopfiltering
if (i == num_workers - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait till all rows are finished
for (i = 0; i < num_workers; ++i) {
winterface->sync(&workers[i]);
}
#endif // CONFIG_PARALLEL_DEBLOCKING
}
void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
struct macroblockd_plane *planes,
int frame_filter_level,
#if CONFIG_LOOPFILTER_LEVEL
int frame_filter_level_r,
#endif
int y_only, int partial_frame, AVxWorker *workers,
int num_workers, AV1LfSync *lf_sync) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
if (!frame_filter_level) return;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
#if CONFIG_LOOPFILTER_LEVEL
av1_loop_filter_frame_init(cm, frame_filter_level, frame_filter_level_r,
y_only);
#else
av1_loop_filter_frame_init(cm, frame_filter_level, frame_filter_level);
#endif // CONFIG_LOOPFILTER_LEVEL
loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only,
workers, num_workers, lf_sync);
}
// Set up nsync by width.
static INLINE int get_sync_range(int width) {
// nsync numbers are picked by testing. For example, for 4k
// video, using 4 gives best performance.
if (width < 640)
return 1;
else if (width <= 1280)
return 2;
else if (width <= 4096)
return 4;
else
return 8;
}
// Allocate memory for lf row synchronization
void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
int width, int num_workers) {
lf_sync->rows = rows;
#if CONFIG_MULTITHREAD
{
int i;
CHECK_MEM_ERROR(cm, lf_sync->mutex_,
aom_malloc(sizeof(*lf_sync->mutex_) * rows));
if (lf_sync->mutex_) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&lf_sync->mutex_[i], NULL);
}
}
CHECK_MEM_ERROR(cm, lf_sync->cond_,
aom_malloc(sizeof(*lf_sync->cond_) * rows));
if (lf_sync->cond_) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&lf_sync->cond_[i], NULL);
}
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, lf_sync->lfdata,
aom_malloc(num_workers * sizeof(*lf_sync->lfdata)));
lf_sync->num_workers = num_workers;
CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col,
aom_malloc(sizeof(*lf_sync->cur_sb_col) * rows));
// Set up nsync.
lf_sync->sync_range = get_sync_range(width);
}
// Deallocate lf synchronization related mutex and data
void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
if (lf_sync != NULL) {
#if CONFIG_MULTITHREAD
int i;
if (lf_sync->mutex_ != NULL) {
for (i = 0; i < lf_sync->rows; ++i) {
pthread_mutex_destroy(&lf_sync->mutex_[i]);
}
aom_free(lf_sync->mutex_);
}
if (lf_sync->cond_ != NULL) {
for (i = 0; i < lf_sync->rows; ++i) {
pthread_cond_destroy(&lf_sync->cond_[i]);
}
aom_free(lf_sync->cond_);
}
#endif // CONFIG_MULTITHREAD
aom_free(lf_sync->lfdata);
aom_free(lf_sync->cur_sb_col);
// clear the structure as the source of this call may be a resize in which
// case this call will be followed by an _alloc() which may fail.
av1_zero(*lf_sync);
}
}
// Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
// members, so we treat it as an array, and sum over the whole length.
void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
FRAME_COUNTS *counts) {
unsigned int *const acc = (unsigned int *)acc_counts;
const unsigned int *const cnt = (unsigned int *)counts;
const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
unsigned int i;
for (i = 0; i < n_counts; i++) acc[i] += cnt[i];
}