| // Copyright 2012 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // Utilities for building and looking up Huffman trees. |
| // |
| // Author: Urvang Joshi (urvang@google.com) |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include "src/utils/huffman_utils.h" |
| #include "src/utils/utils.h" |
| #include "src/webp/format_constants.h" |
| |
| // Huffman data read via DecodeImageStream is represented in two (red and green) |
| // bytes. |
| #define MAX_HTREE_GROUPS 0x10000 |
| |
| HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) { |
| HTreeGroup* const htree_groups = |
| (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups)); |
| if (htree_groups == NULL) { |
| return NULL; |
| } |
| assert(num_htree_groups <= MAX_HTREE_GROUPS); |
| return htree_groups; |
| } |
| |
| void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) { |
| if (htree_groups != NULL) { |
| WebPSafeFree(htree_groups); |
| } |
| } |
| |
| // Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the |
| // bit-wise reversal of the len least significant bits of key. |
| static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) { |
| uint32_t step = 1 << (len - 1); |
| while (key & step) { |
| step >>= 1; |
| } |
| return step ? (key & (step - 1)) + step : key; |
| } |
| |
| // Stores code in table[0], table[step], table[2*step], ..., table[end]. |
| // Assumes that end is an integer multiple of step. |
| static WEBP_INLINE void ReplicateValue(HuffmanCode* table, |
| int step, int end, |
| HuffmanCode code) { |
| assert(end % step == 0); |
| do { |
| end -= step; |
| table[end] = code; |
| } while (end > 0); |
| } |
| |
| // Returns the table width of the next 2nd level table. count is the histogram |
| // of bit lengths for the remaining symbols, len is the code length of the next |
| // processed symbol |
| static WEBP_INLINE int NextTableBitSize(const int* const count, |
| int len, int root_bits) { |
| int left = 1 << (len - root_bits); |
| while (len < MAX_ALLOWED_CODE_LENGTH) { |
| left -= count[len]; |
| if (left <= 0) break; |
| ++len; |
| left <<= 1; |
| } |
| return len - root_bits; |
| } |
| |
| // sorted[code_lengths_size] is a pre-allocated array for sorting symbols |
| // by code length. |
| static int BuildHuffmanTable(HuffmanCode* const root_table, int root_bits, |
| const int code_lengths[], int code_lengths_size, |
| uint16_t sorted[]) { |
| HuffmanCode* table = root_table; // next available space in table |
| int total_size = 1 << root_bits; // total size root table + 2nd level table |
| int len; // current code length |
| int symbol; // symbol index in original or sorted table |
| // number of codes of each length: |
| int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
| // offsets in sorted table for each length: |
| int offset[MAX_ALLOWED_CODE_LENGTH + 1]; |
| |
| assert(code_lengths_size != 0); |
| assert(code_lengths != NULL); |
| assert((root_table != NULL && sorted != NULL) || |
| (root_table == NULL && sorted == NULL)); |
| assert(root_bits > 0); |
| |
| // Build histogram of code lengths. |
| for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) { |
| return 0; |
| } |
| ++count[code_lengths[symbol]]; |
| } |
| |
| // Error, all code lengths are zeros. |
| if (count[0] == code_lengths_size) { |
| return 0; |
| } |
| |
| // Generate offsets into sorted symbol table by code length. |
| offset[1] = 0; |
| for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) { |
| if (count[len] > (1 << len)) { |
| return 0; |
| } |
| offset[len + 1] = offset[len] + count[len]; |
| } |
| |
| // Sort symbols by length, by symbol order within each length. |
| for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| const int symbol_code_length = code_lengths[symbol]; |
| if (code_lengths[symbol] > 0) { |
| if (sorted != NULL) { |
| sorted[offset[symbol_code_length]++] = symbol; |
| } else { |
| offset[symbol_code_length]++; |
| } |
| } |
| } |
| |
| // Special case code with only one value. |
| if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) { |
| if (sorted != NULL) { |
| HuffmanCode code; |
| code.bits = 0; |
| code.value = (uint16_t)sorted[0]; |
| ReplicateValue(table, 1, total_size, code); |
| } |
| return total_size; |
| } |
| |
| { |
| int step; // step size to replicate values in current table |
| uint32_t low = 0xffffffffu; // low bits for current root entry |
| uint32_t mask = total_size - 1; // mask for low bits |
| uint32_t key = 0; // reversed prefix code |
| int num_nodes = 1; // number of Huffman tree nodes |
| int num_open = 1; // number of open branches in current tree level |
| int table_bits = root_bits; // key length of current table |
| int table_size = 1 << table_bits; // size of current table |
| symbol = 0; |
| // Fill in root table. |
| for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) { |
| num_open <<= 1; |
| num_nodes += num_open; |
| num_open -= count[len]; |
| if (num_open < 0) { |
| return 0; |
| } |
| if (root_table == NULL) continue; |
| for (; count[len] > 0; --count[len]) { |
| HuffmanCode code; |
| code.bits = (uint8_t)len; |
| code.value = (uint16_t)sorted[symbol++]; |
| ReplicateValue(&table[key], step, table_size, code); |
| key = GetNextKey(key, len); |
| } |
| } |
| |
| // Fill in 2nd level tables and add pointers to root table. |
| for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH; |
| ++len, step <<= 1) { |
| num_open <<= 1; |
| num_nodes += num_open; |
| num_open -= count[len]; |
| if (num_open < 0) { |
| return 0; |
| } |
| for (; count[len] > 0; --count[len]) { |
| HuffmanCode code; |
| if ((key & mask) != low) { |
| if (root_table != NULL) table += table_size; |
| table_bits = NextTableBitSize(count, len, root_bits); |
| table_size = 1 << table_bits; |
| total_size += table_size; |
| low = key & mask; |
| if (root_table != NULL) { |
| root_table[low].bits = (uint8_t)(table_bits + root_bits); |
| root_table[low].value = (uint16_t)((table - root_table) - low); |
| } |
| } |
| if (root_table != NULL) { |
| code.bits = (uint8_t)(len - root_bits); |
| code.value = (uint16_t)sorted[symbol++]; |
| ReplicateValue(&table[key >> root_bits], step, table_size, code); |
| } |
| key = GetNextKey(key, len); |
| } |
| } |
| |
| // Check if tree is full. |
| if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) { |
| return 0; |
| } |
| } |
| |
| return total_size; |
| } |
| |
| // Maximum code_lengths_size is 2328 (reached for 11-bit color_cache_bits). |
| // More commonly, the value is around ~280. |
| #define MAX_CODE_LENGTHS_SIZE \ |
| ((1 << MAX_CACHE_BITS) + NUM_LITERAL_CODES + NUM_LENGTH_CODES) |
| // Cut-off value for switching between heap and stack allocation. |
| #define SORTED_SIZE_CUTOFF 512 |
| int VP8LBuildHuffmanTable(HuffmanTables* const root_table, int root_bits, |
| const int code_lengths[], int code_lengths_size) { |
| const int total_size = |
| BuildHuffmanTable(NULL, root_bits, code_lengths, code_lengths_size, NULL); |
| assert(code_lengths_size <= MAX_CODE_LENGTHS_SIZE); |
| if (total_size == 0 || root_table == NULL) return total_size; |
| |
| if (root_table->curr_segment->curr_table + total_size >= |
| root_table->curr_segment->start + root_table->curr_segment->size) { |
| // If 'root_table' does not have enough memory, allocate a new segment. |
| // The available part of root_table->curr_segment is left unused because we |
| // need a contiguous buffer. |
| const int segment_size = root_table->curr_segment->size; |
| struct HuffmanTablesSegment* next = |
| (HuffmanTablesSegment*)WebPSafeMalloc(1, sizeof(*next)); |
| if (next == NULL) return 0; |
| // Fill the new segment. |
| // We need at least 'total_size' but if that value is small, it is better to |
| // allocate a big chunk to prevent more allocations later. 'segment_size' is |
| // therefore chosen (any other arbitrary value could be chosen). |
| next->size = total_size > segment_size ? total_size : segment_size; |
| next->start = |
| (HuffmanCode*)WebPSafeMalloc(next->size, sizeof(*next->start)); |
| if (next->start == NULL) { |
| WebPSafeFree(next); |
| return 0; |
| } |
| next->curr_table = next->start; |
| next->next = NULL; |
| // Point to the new segment. |
| root_table->curr_segment->next = next; |
| root_table->curr_segment = next; |
| } |
| if (code_lengths_size <= SORTED_SIZE_CUTOFF) { |
| // use local stack-allocated array. |
| uint16_t sorted[SORTED_SIZE_CUTOFF]; |
| BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits, |
| code_lengths, code_lengths_size, sorted); |
| } else { // rare case. Use heap allocation. |
| uint16_t* const sorted = |
| (uint16_t*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted)); |
| if (sorted == NULL) return 0; |
| BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits, |
| code_lengths, code_lengths_size, sorted); |
| WebPSafeFree(sorted); |
| } |
| return total_size; |
| } |
| |
| int VP8LHuffmanTablesAllocate(int size, HuffmanTables* huffman_tables) { |
| // Have 'segment' point to the first segment for now, 'root'. |
| HuffmanTablesSegment* const root = &huffman_tables->root; |
| huffman_tables->curr_segment = root; |
| // Allocate root. |
| root->start = (HuffmanCode*)WebPSafeMalloc(size, sizeof(*root->start)); |
| if (root->start == NULL) return 0; |
| root->curr_table = root->start; |
| root->next = NULL; |
| root->size = size; |
| return 1; |
| } |
| |
| void VP8LHuffmanTablesDeallocate(HuffmanTables* const huffman_tables) { |
| HuffmanTablesSegment *current, *next; |
| if (huffman_tables == NULL) return; |
| // Free the root node. |
| current = &huffman_tables->root; |
| next = current->next; |
| WebPSafeFree(current->start); |
| current->start = NULL; |
| current->next = NULL; |
| current = next; |
| // Free the following nodes. |
| while (current != NULL) { |
| next = current->next; |
| WebPSafeFree(current->start); |
| WebPSafeFree(current); |
| current = next; |
| } |
| } |