| #!/usr/bin/python |
| # |
| # Copyright (C) 2009 Google Inc. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| """Converts Python data into data for Google Visualization API clients. |
| |
| This library can be used to create a google.visualization.DataTable usable by |
| visualizations built on the Google Visualization API. Output formats are raw |
| JSON, JSON response, JavaScript, CSV, and HTML table. |
| |
| See http://code.google.com/apis/visualization/ for documentation on the |
| Google Visualization API. |
| """ |
| |
| __author__ = "Amit Weinstein, Misha Seltzer, Jacob Baskin" |
| |
| import cgi |
| import cStringIO |
| import csv |
| import datetime |
| try: |
| import json |
| except ImportError: |
| import simplejson as json |
| import types |
| |
| |
| class DataTableException(Exception): |
| """The general exception object thrown by DataTable.""" |
| pass |
| |
| |
| class DataTableJSONEncoder(json.JSONEncoder): |
| """JSON encoder that handles date/time/datetime objects correctly.""" |
| |
| def __init__(self): |
| json.JSONEncoder.__init__(self, |
| separators=(",", ":"), |
| ensure_ascii=False) |
| |
| def default(self, o): |
| if isinstance(o, datetime.datetime): |
| if o.microsecond == 0: |
| # If the time doesn't have ms-resolution, leave it out to keep |
| # things smaller. |
| return "Date(%d,%d,%d,%d,%d,%d)" % ( |
| o.year, o.month - 1, o.day, o.hour, o.minute, o.second) |
| else: |
| return "Date(%d,%d,%d,%d,%d,%d,%d)" % ( |
| o.year, o.month - 1, o.day, o.hour, o.minute, o.second, |
| o.microsecond / 1000) |
| elif isinstance(o, datetime.date): |
| return "Date(%d,%d,%d)" % (o.year, o.month - 1, o.day) |
| elif isinstance(o, datetime.time): |
| return [o.hour, o.minute, o.second] |
| else: |
| return super(DataTableJSONEncoder, self).default(o) |
| |
| |
| class DataTable(object): |
| """Wraps the data to convert to a Google Visualization API DataTable. |
| |
| Create this object, populate it with data, then call one of the ToJS... |
| methods to return a string representation of the data in the format described. |
| |
| You can clear all data from the object to reuse it, but you cannot clear |
| individual cells, rows, or columns. You also cannot modify the table schema |
| specified in the class constructor. |
| |
| You can add new data one or more rows at a time. All data added to an |
| instantiated DataTable must conform to the schema passed in to __init__(). |
| |
| You can reorder the columns in the output table, and also specify row sorting |
| order by column. The default column order is according to the original |
| table_description parameter. Default row sort order is ascending, by column |
| 1 values. For a dictionary, we sort the keys for order. |
| |
| The data and the table_description are closely tied, as described here: |
| |
| The table schema is defined in the class constructor's table_description |
| parameter. The user defines each column using a tuple of |
| (id[, type[, label[, custom_properties]]]). The default value for type is |
| string, label is the same as ID if not specified, and custom properties is |
| an empty dictionary if not specified. |
| |
| table_description is a dictionary or list, containing one or more column |
| descriptor tuples, nested dictionaries, and lists. Each dictionary key, list |
| element, or dictionary element must eventually be defined as |
| a column description tuple. Here's an example of a dictionary where the key |
| is a tuple, and the value is a list of two tuples: |
| {('a', 'number'): [('b', 'number'), ('c', 'string')]} |
| |
| This flexibility in data entry enables you to build and manipulate your data |
| in a Python structure that makes sense for your program. |
| |
| Add data to the table using the same nested design as the table's |
| table_description, replacing column descriptor tuples with cell data, and |
| each row is an element in the top level collection. This will be a bit |
| clearer after you look at the following examples showing the |
| table_description, matching data, and the resulting table: |
| |
| Columns as list of tuples [col1, col2, col3] |
| table_description: [('a', 'number'), ('b', 'string')] |
| AppendData( [[1, 'z'], [2, 'w'], [4, 'o'], [5, 'k']] ) |
| Table: |
| a b <--- these are column ids/labels |
| 1 z |
| 2 w |
| 4 o |
| 5 k |
| |
| Dictionary of columns, where key is a column, and value is a list of |
| columns {col1: [col2, col3]} |
| table_description: {('a', 'number'): [('b', 'number'), ('c', 'string')]} |
| AppendData( data: {1: [2, 'z'], 3: [4, 'w']} |
| Table: |
| a b c |
| 1 2 z |
| 3 4 w |
| |
| Dictionary where key is a column, and the value is itself a dictionary of |
| columns {col1: {col2, col3}} |
| table_description: {('a', 'number'): {'b': 'number', 'c': 'string'}} |
| AppendData( data: {1: {'b': 2, 'c': 'z'}, 3: {'b': 4, 'c': 'w'}} |
| Table: |
| a b c |
| 1 2 z |
| 3 4 w |
| """ |
| |
| def __init__(self, table_description, data=None, custom_properties=None): |
| """Initialize the data table from a table schema and (optionally) data. |
| |
| See the class documentation for more information on table schema and data |
| values. |
| |
| Args: |
| table_description: A table schema, following one of the formats described |
| in TableDescriptionParser(). Schemas describe the |
| column names, data types, and labels. See |
| TableDescriptionParser() for acceptable formats. |
| data: Optional. If given, fills the table with the given data. The data |
| structure must be consistent with schema in table_description. See |
| the class documentation for more information on acceptable data. You |
| can add data later by calling AppendData(). |
| custom_properties: Optional. A dictionary from string to string that |
| goes into the table's custom properties. This can be |
| later changed by changing self.custom_properties. |
| |
| Raises: |
| DataTableException: Raised if the data and the description did not match, |
| or did not use the supported formats. |
| """ |
| self.__columns = self.TableDescriptionParser(table_description) |
| self.__data = [] |
| self.custom_properties = {} |
| if custom_properties is not None: |
| self.custom_properties = custom_properties |
| if data: |
| self.LoadData(data) |
| |
| @staticmethod |
| def CoerceValue(value, value_type): |
| """Coerces a single value into the type expected for its column. |
| |
| Internal helper method. |
| |
| Args: |
| value: The value which should be converted |
| value_type: One of "string", "number", "boolean", "date", "datetime" or |
| "timeofday". |
| |
| Returns: |
| An item of the Python type appropriate to the given value_type. Strings |
| are also converted to Unicode using UTF-8 encoding if necessary. |
| If a tuple is given, it should be in one of the following forms: |
| - (value, formatted value) |
| - (value, formatted value, custom properties) |
| where the formatted value is a string, and custom properties is a |
| dictionary of the custom properties for this cell. |
| To specify custom properties without specifying formatted value, one can |
| pass None as the formatted value. |
| One can also have a null-valued cell with formatted value and/or custom |
| properties by specifying None for the value. |
| This method ignores the custom properties except for checking that it is a |
| dictionary. The custom properties are handled in the ToJSon and ToJSCode |
| methods. |
| The real type of the given value is not strictly checked. For example, |
| any type can be used for string - as we simply take its str( ) and for |
| boolean value we just check "if value". |
| Examples: |
| CoerceValue(None, "string") returns None |
| CoerceValue((5, "5$"), "number") returns (5, "5$") |
| CoerceValue(100, "string") returns "100" |
| CoerceValue(0, "boolean") returns False |
| |
| Raises: |
| DataTableException: The value and type did not match in a not-recoverable |
| way, for example given value 'abc' for type 'number'. |
| """ |
| if isinstance(value, tuple): |
| # In case of a tuple, we run the same function on the value itself and |
| # add the formatted value. |
| if (len(value) not in [2, 3] or |
| (len(value) == 3 and not isinstance(value[2], dict))): |
| raise DataTableException("Wrong format for value and formatting - %s." % |
| str(value)) |
| if not isinstance(value[1], types.StringTypes + (types.NoneType,)): |
| raise DataTableException("Formatted value is not string, given %s." % |
| type(value[1])) |
| js_value = DataTable.CoerceValue(value[0], value_type) |
| return (js_value,) + value[1:] |
| |
| t_value = type(value) |
| if value is None: |
| return value |
| if value_type == "boolean": |
| return bool(value) |
| |
| elif value_type == "number": |
| if isinstance(value, (int, long, float)): |
| return value |
| raise DataTableException("Wrong type %s when expected number" % t_value) |
| |
| elif value_type == "string": |
| if isinstance(value, unicode): |
| return value |
| else: |
| return str(value).decode("utf-8") |
| |
| elif value_type == "date": |
| if isinstance(value, datetime.datetime): |
| return datetime.date(value.year, value.month, value.day) |
| elif isinstance(value, datetime.date): |
| return value |
| else: |
| raise DataTableException("Wrong type %s when expected date" % t_value) |
| |
| elif value_type == "timeofday": |
| if isinstance(value, datetime.datetime): |
| return datetime.time(value.hour, value.minute, value.second) |
| elif isinstance(value, datetime.time): |
| return value |
| else: |
| raise DataTableException("Wrong type %s when expected time" % t_value) |
| |
| elif value_type == "datetime": |
| if isinstance(value, datetime.datetime): |
| return value |
| else: |
| raise DataTableException("Wrong type %s when expected datetime" % |
| t_value) |
| # If we got here, it means the given value_type was not one of the |
| # supported types. |
| raise DataTableException("Unsupported type %s" % value_type) |
| |
| @staticmethod |
| def EscapeForJSCode(encoder, value): |
| if value is None: |
| return "null" |
| elif isinstance(value, datetime.datetime): |
| if value.microsecond == 0: |
| # If it's not ms-resolution, leave that out to save space. |
| return "new Date(%d,%d,%d,%d,%d,%d)" % (value.year, |
| value.month - 1, # To match JS |
| value.day, |
| value.hour, |
| value.minute, |
| value.second) |
| else: |
| return "new Date(%d,%d,%d,%d,%d,%d,%d)" % (value.year, |
| value.month - 1, # match JS |
| value.day, |
| value.hour, |
| value.minute, |
| value.second, |
| value.microsecond / 1000) |
| elif isinstance(value, datetime.date): |
| return "new Date(%d,%d,%d)" % (value.year, value.month - 1, value.day) |
| else: |
| return encoder.encode(value) |
| |
| @staticmethod |
| def ToString(value): |
| if value is None: |
| return "(empty)" |
| elif isinstance(value, (datetime.datetime, |
| datetime.date, |
| datetime.time)): |
| return str(value) |
| elif isinstance(value, unicode): |
| return value |
| elif isinstance(value, bool): |
| return str(value).lower() |
| else: |
| return str(value).decode("utf-8") |
| |
| @staticmethod |
| def ColumnTypeParser(description): |
| """Parses a single column description. Internal helper method. |
| |
| Args: |
| description: a column description in the possible formats: |
| 'id' |
| ('id',) |
| ('id', 'type') |
| ('id', 'type', 'label') |
| ('id', 'type', 'label', {'custom_prop1': 'custom_val1'}) |
| Returns: |
| Dictionary with the following keys: id, label, type, and |
| custom_properties where: |
| - If label not given, it equals the id. |
| - If type not given, string is used by default. |
| - If custom properties are not given, an empty dictionary is used by |
| default. |
| |
| Raises: |
| DataTableException: The column description did not match the RE, or |
| unsupported type was passed. |
| """ |
| if not description: |
| raise DataTableException("Description error: empty description given") |
| |
| if not isinstance(description, (types.StringTypes, tuple)): |
| raise DataTableException("Description error: expected either string or " |
| "tuple, got %s." % type(description)) |
| |
| if isinstance(description, types.StringTypes): |
| description = (description,) |
| |
| # According to the tuple's length, we fill the keys |
| # We verify everything is of type string |
| for elem in description[:3]: |
| if not isinstance(elem, types.StringTypes): |
| raise DataTableException("Description error: expected tuple of " |
| "strings, current element of type %s." % |
| type(elem)) |
| desc_dict = {"id": description[0], |
| "label": description[0], |
| "type": "string", |
| "custom_properties": {}} |
| if len(description) > 1: |
| desc_dict["type"] = description[1].lower() |
| if len(description) > 2: |
| desc_dict["label"] = description[2] |
| if len(description) > 3: |
| if not isinstance(description[3], dict): |
| raise DataTableException("Description error: expected custom " |
| "properties of type dict, current element " |
| "of type %s." % type(description[3])) |
| desc_dict["custom_properties"] = description[3] |
| if len(description) > 4: |
| raise DataTableException("Description error: tuple of length > 4") |
| if desc_dict["type"] not in ["string", "number", "boolean", |
| "date", "datetime", "timeofday"]: |
| raise DataTableException( |
| "Description error: unsupported type '%s'" % desc_dict["type"]) |
| return desc_dict |
| |
| @staticmethod |
| def TableDescriptionParser(table_description, depth=0): |
| """Parses the table_description object for internal use. |
| |
| Parses the user-submitted table description into an internal format used |
| by the Python DataTable class. Returns the flat list of parsed columns. |
| |
| Args: |
| table_description: A description of the table which should comply |
| with one of the formats described below. |
| depth: Optional. The depth of the first level in the current description. |
| Used by recursive calls to this function. |
| |
| Returns: |
| List of columns, where each column represented by a dictionary with the |
| keys: id, label, type, depth, container which means the following: |
| - id: the id of the column |
| - name: The name of the column |
| - type: The datatype of the elements in this column. Allowed types are |
| described in ColumnTypeParser(). |
| - depth: The depth of this column in the table description |
| - container: 'dict', 'iter' or 'scalar' for parsing the format easily. |
| - custom_properties: The custom properties for this column. |
| The returned description is flattened regardless of how it was given. |
| |
| Raises: |
| DataTableException: Error in a column description or in the description |
| structure. |
| |
| Examples: |
| A column description can be of the following forms: |
| 'id' |
| ('id',) |
| ('id', 'type') |
| ('id', 'type', 'label') |
| ('id', 'type', 'label', {'custom_prop1': 'custom_val1'}) |
| or as a dictionary: |
| 'id': 'type' |
| 'id': ('type',) |
| 'id': ('type', 'label') |
| 'id': ('type', 'label', {'custom_prop1': 'custom_val1'}) |
| If the type is not specified, we treat it as string. |
| If no specific label is given, the label is simply the id. |
| If no custom properties are given, we use an empty dictionary. |
| |
| input: [('a', 'date'), ('b', 'timeofday', 'b', {'foo': 'bar'})] |
| output: [{'id': 'a', 'label': 'a', 'type': 'date', |
| 'depth': 0, 'container': 'iter', 'custom_properties': {}}, |
| {'id': 'b', 'label': 'b', 'type': 'timeofday', |
| 'depth': 0, 'container': 'iter', |
| 'custom_properties': {'foo': 'bar'}}] |
| |
| input: {'a': [('b', 'number'), ('c', 'string', 'column c')]} |
| output: [{'id': 'a', 'label': 'a', 'type': 'string', |
| 'depth': 0, 'container': 'dict', 'custom_properties': {}}, |
| {'id': 'b', 'label': 'b', 'type': 'number', |
| 'depth': 1, 'container': 'iter', 'custom_properties': {}}, |
| {'id': 'c', 'label': 'column c', 'type': 'string', |
| 'depth': 1, 'container': 'iter', 'custom_properties': {}}] |
| |
| input: {('a', 'number', 'column a'): { 'b': 'number', 'c': 'string'}} |
| output: [{'id': 'a', 'label': 'column a', 'type': 'number', |
| 'depth': 0, 'container': 'dict', 'custom_properties': {}}, |
| {'id': 'b', 'label': 'b', 'type': 'number', |
| 'depth': 1, 'container': 'dict', 'custom_properties': {}}, |
| {'id': 'c', 'label': 'c', 'type': 'string', |
| 'depth': 1, 'container': 'dict', 'custom_properties': {}}] |
| |
| input: { ('w', 'string', 'word'): ('c', 'number', 'count') } |
| output: [{'id': 'w', 'label': 'word', 'type': 'string', |
| 'depth': 0, 'container': 'dict', 'custom_properties': {}}, |
| {'id': 'c', 'label': 'count', 'type': 'number', |
| 'depth': 1, 'container': 'scalar', 'custom_properties': {}}] |
| |
| input: {'a': ('number', 'column a'), 'b': ('string', 'column b')} |
| output: [{'id': 'a', 'label': 'column a', 'type': 'number', 'depth': 0, |
| 'container': 'dict', 'custom_properties': {}}, |
| {'id': 'b', 'label': 'column b', 'type': 'string', 'depth': 0, |
| 'container': 'dict', 'custom_properties': {}} |
| |
| NOTE: there might be ambiguity in the case of a dictionary representation |
| of a single column. For example, the following description can be parsed |
| in 2 different ways: {'a': ('b', 'c')} can be thought of a single column |
| with the id 'a', of type 'b' and the label 'c', or as 2 columns: one named |
| 'a', and the other named 'b' of type 'c'. We choose the first option by |
| default, and in case the second option is the right one, it is possible to |
| make the key into a tuple (i.e. {('a',): ('b', 'c')}) or add more info |
| into the tuple, thus making it look like this: {'a': ('b', 'c', 'b', {})} |
| -- second 'b' is the label, and {} is the custom properties field. |
| """ |
| # For the recursion step, we check for a scalar object (string or tuple) |
| if isinstance(table_description, (types.StringTypes, tuple)): |
| parsed_col = DataTable.ColumnTypeParser(table_description) |
| parsed_col["depth"] = depth |
| parsed_col["container"] = "scalar" |
| return [parsed_col] |
| |
| # Since it is not scalar, table_description must be iterable. |
| if not hasattr(table_description, "__iter__"): |
| raise DataTableException("Expected an iterable object, got %s" % |
| type(table_description)) |
| if not isinstance(table_description, dict): |
| # We expects a non-dictionary iterable item. |
| columns = [] |
| for desc in table_description: |
| parsed_col = DataTable.ColumnTypeParser(desc) |
| parsed_col["depth"] = depth |
| parsed_col["container"] = "iter" |
| columns.append(parsed_col) |
| if not columns: |
| raise DataTableException("Description iterable objects should not" |
| " be empty.") |
| return columns |
| # The other case is a dictionary |
| if not table_description: |
| raise DataTableException("Empty dictionaries are not allowed inside" |
| " description") |
| |
| # To differentiate between the two cases of more levels below or this is |
| # the most inner dictionary, we consider the number of keys (more then one |
| # key is indication for most inner dictionary) and the type of the key and |
| # value in case of only 1 key (if the type of key is string and the type of |
| # the value is a tuple of 0-3 items, we assume this is the most inner |
| # dictionary). |
| # NOTE: this way of differentiating might create ambiguity. See docs. |
| if (len(table_description) != 1 or |
| (isinstance(table_description.keys()[0], types.StringTypes) and |
| isinstance(table_description.values()[0], tuple) and |
| len(table_description.values()[0]) < 4)): |
| # This is the most inner dictionary. Parsing types. |
| columns = [] |
| # We sort the items, equivalent to sort the keys since they are unique |
| for key, value in sorted(table_description.items()): |
| # We parse the column type as (key, type) or (key, type, label) using |
| # ColumnTypeParser. |
| if isinstance(value, tuple): |
| parsed_col = DataTable.ColumnTypeParser((key,) + value) |
| else: |
| parsed_col = DataTable.ColumnTypeParser((key, value)) |
| parsed_col["depth"] = depth |
| parsed_col["container"] = "dict" |
| columns.append(parsed_col) |
| return columns |
| # This is an outer dictionary, must have at most one key. |
| parsed_col = DataTable.ColumnTypeParser(table_description.keys()[0]) |
| parsed_col["depth"] = depth |
| parsed_col["container"] = "dict" |
| return ([parsed_col] + |
| DataTable.TableDescriptionParser(table_description.values()[0], |
| depth=depth + 1)) |
| |
| @property |
| def columns(self): |
| """Returns the parsed table description.""" |
| return self.__columns |
| |
| def NumberOfRows(self): |
| """Returns the number of rows in the current data stored in the table.""" |
| return len(self.__data) |
| |
| def SetRowsCustomProperties(self, rows, custom_properties): |
| """Sets the custom properties for given row(s). |
| |
| Can accept a single row or an iterable of rows. |
| Sets the given custom properties for all specified rows. |
| |
| Args: |
| rows: The row, or rows, to set the custom properties for. |
| custom_properties: A string to string dictionary of custom properties to |
| set for all rows. |
| """ |
| if not hasattr(rows, "__iter__"): |
| rows = [rows] |
| for row in rows: |
| self.__data[row] = (self.__data[row][0], custom_properties) |
| |
| def LoadData(self, data, custom_properties=None): |
| """Loads new rows to the data table, clearing existing rows. |
| |
| May also set the custom_properties for the added rows. The given custom |
| properties dictionary specifies the dictionary that will be used for *all* |
| given rows. |
| |
| Args: |
| data: The rows that the table will contain. |
| custom_properties: A dictionary of string to string to set as the custom |
| properties for all rows. |
| """ |
| self.__data = [] |
| self.AppendData(data, custom_properties) |
| |
| def AppendData(self, data, custom_properties=None): |
| """Appends new data to the table. |
| |
| Data is appended in rows. Data must comply with |
| the table schema passed in to __init__(). See CoerceValue() for a list |
| of acceptable data types. See the class documentation for more information |
| and examples of schema and data values. |
| |
| Args: |
| data: The row to add to the table. The data must conform to the table |
| description format. |
| custom_properties: A dictionary of string to string, representing the |
| custom properties to add to all the rows. |
| |
| Raises: |
| DataTableException: The data structure does not match the description. |
| """ |
| # If the maximal depth is 0, we simply iterate over the data table |
| # lines and insert them using _InnerAppendData. Otherwise, we simply |
| # let the _InnerAppendData handle all the levels. |
| if not self.__columns[-1]["depth"]: |
| for row in data: |
| self._InnerAppendData(({}, custom_properties), row, 0) |
| else: |
| self._InnerAppendData(({}, custom_properties), data, 0) |
| |
| def _InnerAppendData(self, prev_col_values, data, col_index): |
| """Inner function to assist LoadData.""" |
| # We first check that col_index has not exceeded the columns size |
| if col_index >= len(self.__columns): |
| raise DataTableException("The data does not match description, too deep") |
| |
| # Dealing with the scalar case, the data is the last value. |
| if self.__columns[col_index]["container"] == "scalar": |
| prev_col_values[0][self.__columns[col_index]["id"]] = data |
| self.__data.append(prev_col_values) |
| return |
| |
| if self.__columns[col_index]["container"] == "iter": |
| if not hasattr(data, "__iter__") or isinstance(data, dict): |
| raise DataTableException("Expected iterable object, got %s" % |
| type(data)) |
| # We only need to insert the rest of the columns |
| # If there are less items than expected, we only add what there is. |
| for value in data: |
| if col_index >= len(self.__columns): |
| raise DataTableException("Too many elements given in data") |
| prev_col_values[0][self.__columns[col_index]["id"]] = value |
| col_index += 1 |
| self.__data.append(prev_col_values) |
| return |
| |
| # We know the current level is a dictionary, we verify the type. |
| if not isinstance(data, dict): |
| raise DataTableException("Expected dictionary at current level, got %s" % |
| type(data)) |
| # We check if this is the last level |
| if self.__columns[col_index]["depth"] == self.__columns[-1]["depth"]: |
| # We need to add the keys in the dictionary as they are |
| for col in self.__columns[col_index:]: |
| if col["id"] in data: |
| prev_col_values[0][col["id"]] = data[col["id"]] |
| self.__data.append(prev_col_values) |
| return |
| |
| # We have a dictionary in an inner depth level. |
| if not data.keys(): |
| # In case this is an empty dictionary, we add a record with the columns |
| # filled only until this point. |
| self.__data.append(prev_col_values) |
| else: |
| for key in sorted(data): |
| col_values = dict(prev_col_values[0]) |
| col_values[self.__columns[col_index]["id"]] = key |
| self._InnerAppendData((col_values, prev_col_values[1]), |
| data[key], col_index + 1) |
| |
| def _PreparedData(self, order_by=()): |
| """Prepares the data for enumeration - sorting it by order_by. |
| |
| Args: |
| order_by: Optional. Specifies the name of the column(s) to sort by, and |
| (optionally) which direction to sort in. Default sort direction |
| is asc. Following formats are accepted: |
| "string_col_name" -- For a single key in default (asc) order. |
| ("string_col_name", "asc|desc") -- For a single key. |
| [("col_1","asc|desc"), ("col_2","asc|desc")] -- For more than |
| one column, an array of tuples of (col_name, "asc|desc"). |
| |
| Returns: |
| The data sorted by the keys given. |
| |
| Raises: |
| DataTableException: Sort direction not in 'asc' or 'desc' |
| """ |
| if not order_by: |
| return self.__data |
| |
| proper_sort_keys = [] |
| if isinstance(order_by, types.StringTypes) or ( |
| isinstance(order_by, tuple) and len(order_by) == 2 and |
| order_by[1].lower() in ["asc", "desc"]): |
| order_by = (order_by,) |
| for key in order_by: |
| if isinstance(key, types.StringTypes): |
| proper_sort_keys.append((key, 1)) |
| elif (isinstance(key, (list, tuple)) and len(key) == 2 and |
| key[1].lower() in ("asc", "desc")): |
| proper_sort_keys.append((key[0], key[1].lower() == "asc" and 1 or -1)) |
| else: |
| raise DataTableException("Expected tuple with second value: " |
| "'asc' or 'desc'") |
| |
| def SortCmpFunc(row1, row2): |
| """cmp function for sorted. Compares by keys and 'asc'/'desc' keywords.""" |
| for key, asc_mult in proper_sort_keys: |
| cmp_result = asc_mult * cmp(row1[0].get(key), row2[0].get(key)) |
| if cmp_result: |
| return cmp_result |
| return 0 |
| |
| return sorted(self.__data, cmp=SortCmpFunc) |
| |
| def ToJSCode(self, name, columns_order=None, order_by=()): |
| """Writes the data table as a JS code string. |
| |
| This method writes a string of JS code that can be run to |
| generate a DataTable with the specified data. Typically used for debugging |
| only. |
| |
| Args: |
| name: The name of the table. The name would be used as the DataTable's |
| variable name in the created JS code. |
| columns_order: Optional. Specifies the order of columns in the |
| output table. Specify a list of all column IDs in the order |
| in which you want the table created. |
| Note that you must list all column IDs in this parameter, |
| if you use it. |
| order_by: Optional. Specifies the name of the column(s) to sort by. |
| Passed as is to _PreparedData. |
| |
| Returns: |
| A string of JS code that, when run, generates a DataTable with the given |
| name and the data stored in the DataTable object. |
| Example result: |
| "var tab1 = new google.visualization.DataTable(); |
| tab1.addColumn("string", "a", "a"); |
| tab1.addColumn("number", "b", "b"); |
| tab1.addColumn("boolean", "c", "c"); |
| tab1.addRows(10); |
| tab1.setCell(0, 0, "a"); |
| tab1.setCell(0, 1, 1, null, {"foo": "bar"}); |
| tab1.setCell(0, 2, true); |
| ... |
| tab1.setCell(9, 0, "c"); |
| tab1.setCell(9, 1, 3, "3$"); |
| tab1.setCell(9, 2, false);" |
| |
| Raises: |
| DataTableException: The data does not match the type. |
| """ |
| |
| encoder = DataTableJSONEncoder() |
| |
| if columns_order is None: |
| columns_order = [col["id"] for col in self.__columns] |
| col_dict = dict([(col["id"], col) for col in self.__columns]) |
| |
| # We first create the table with the given name |
| jscode = "var %s = new google.visualization.DataTable();\n" % name |
| if self.custom_properties: |
| jscode += "%s.setTableProperties(%s);\n" % ( |
| name, encoder.encode(self.custom_properties)) |
| |
| # We add the columns to the table |
| for i, col in enumerate(columns_order): |
| jscode += "%s.addColumn(%s, %s, %s);\n" % ( |
| name, |
| encoder.encode(col_dict[col]["type"]), |
| encoder.encode(col_dict[col]["label"]), |
| encoder.encode(col_dict[col]["id"])) |
| if col_dict[col]["custom_properties"]: |
| jscode += "%s.setColumnProperties(%d, %s);\n" % ( |
| name, i, encoder.encode(col_dict[col]["custom_properties"])) |
| jscode += "%s.addRows(%d);\n" % (name, len(self.__data)) |
| |
| # We now go over the data and add each row |
| for (i, (row, cp)) in enumerate(self._PreparedData(order_by)): |
| # We add all the elements of this row by their order |
| for (j, col) in enumerate(columns_order): |
| if col not in row or row[col] is None: |
| continue |
| value = self.CoerceValue(row[col], col_dict[col]["type"]) |
| if isinstance(value, tuple): |
| cell_cp = "" |
| if len(value) == 3: |
| cell_cp = ", %s" % encoder.encode(row[col][2]) |
| # We have a formatted value or custom property as well |
| jscode += ("%s.setCell(%d, %d, %s, %s%s);\n" % |
| (name, i, j, |
| self.EscapeForJSCode(encoder, value[0]), |
| self.EscapeForJSCode(encoder, value[1]), cell_cp)) |
| else: |
| jscode += "%s.setCell(%d, %d, %s);\n" % ( |
| name, i, j, self.EscapeForJSCode(encoder, value)) |
| if cp: |
| jscode += "%s.setRowProperties(%d, %s);\n" % ( |
| name, i, encoder.encode(cp)) |
| return jscode |
| |
| def ToHtml(self, columns_order=None, order_by=()): |
| """Writes the data table as an HTML table code string. |
| |
| Args: |
| columns_order: Optional. Specifies the order of columns in the |
| output table. Specify a list of all column IDs in the order |
| in which you want the table created. |
| Note that you must list all column IDs in this parameter, |
| if you use it. |
| order_by: Optional. Specifies the name of the column(s) to sort by. |
| Passed as is to _PreparedData. |
| |
| Returns: |
| An HTML table code string. |
| Example result (the result is without the newlines): |
| <html><body><table border="1"> |
| <thead><tr><th>a</th><th>b</th><th>c</th></tr></thead> |
| <tbody> |
| <tr><td>1</td><td>"z"</td><td>2</td></tr> |
| <tr><td>"3$"</td><td>"w"</td><td></td></tr> |
| </tbody> |
| </table></body></html> |
| |
| Raises: |
| DataTableException: The data does not match the type. |
| """ |
| table_template = "<html><body><table border=\"1\">%s</table></body></html>" |
| columns_template = "<thead><tr>%s</tr></thead>" |
| rows_template = "<tbody>%s</tbody>" |
| row_template = "<tr>%s</tr>" |
| header_cell_template = "<th>%s</th>" |
| cell_template = "<td>%s</td>" |
| |
| if columns_order is None: |
| columns_order = [col["id"] for col in self.__columns] |
| col_dict = dict([(col["id"], col) for col in self.__columns]) |
| |
| columns_list = [] |
| for col in columns_order: |
| columns_list.append(header_cell_template % |
| cgi.escape(col_dict[col]["label"])) |
| columns_html = columns_template % "".join(columns_list) |
| |
| rows_list = [] |
| # We now go over the data and add each row |
| for row, unused_cp in self._PreparedData(order_by): |
| cells_list = [] |
| # We add all the elements of this row by their order |
| for col in columns_order: |
| # For empty string we want empty quotes (""). |
| value = "" |
| if col in row and row[col] is not None: |
| value = self.CoerceValue(row[col], col_dict[col]["type"]) |
| if isinstance(value, tuple): |
| # We have a formatted value and we're going to use it |
| cells_list.append(cell_template % cgi.escape(self.ToString(value[1]))) |
| else: |
| cells_list.append(cell_template % cgi.escape(self.ToString(value))) |
| rows_list.append(row_template % "".join(cells_list)) |
| rows_html = rows_template % "".join(rows_list) |
| |
| return table_template % (columns_html + rows_html) |
| |
| def ToCsv(self, columns_order=None, order_by=(), separator=","): |
| """Writes the data table as a CSV string. |
| |
| Output is encoded in UTF-8 because the Python "csv" module can't handle |
| Unicode properly according to its documentation. |
| |
| Args: |
| columns_order: Optional. Specifies the order of columns in the |
| output table. Specify a list of all column IDs in the order |
| in which you want the table created. |
| Note that you must list all column IDs in this parameter, |
| if you use it. |
| order_by: Optional. Specifies the name of the column(s) to sort by. |
| Passed as is to _PreparedData. |
| separator: Optional. The separator to use between the values. |
| |
| Returns: |
| A CSV string representing the table. |
| Example result: |
| 'a','b','c' |
| 1,'z',2 |
| 3,'w','' |
| |
| Raises: |
| DataTableException: The data does not match the type. |
| """ |
| |
| csv_buffer = cStringIO.StringIO() |
| writer = csv.writer(csv_buffer, delimiter=separator) |
| |
| if columns_order is None: |
| columns_order = [col["id"] for col in self.__columns] |
| col_dict = dict([(col["id"], col) for col in self.__columns]) |
| |
| writer.writerow([col_dict[col]["label"].encode("utf-8") |
| for col in columns_order]) |
| |
| # We now go over the data and add each row |
| for row, unused_cp in self._PreparedData(order_by): |
| cells_list = [] |
| # We add all the elements of this row by their order |
| for col in columns_order: |
| value = "" |
| if col in row and row[col] is not None: |
| value = self.CoerceValue(row[col], col_dict[col]["type"]) |
| if isinstance(value, tuple): |
| # We have a formatted value. Using it only for date/time types. |
| if col_dict[col]["type"] in ["date", "datetime", "timeofday"]: |
| cells_list.append(self.ToString(value[1]).encode("utf-8")) |
| else: |
| cells_list.append(self.ToString(value[0]).encode("utf-8")) |
| else: |
| cells_list.append(self.ToString(value).encode("utf-8")) |
| writer.writerow(cells_list) |
| return csv_buffer.getvalue() |
| |
| def ToTsvExcel(self, columns_order=None, order_by=()): |
| """Returns a file in tab-separated-format readable by MS Excel. |
| |
| Returns a file in UTF-16 little endian encoding, with tabs separating the |
| values. |
| |
| Args: |
| columns_order: Delegated to ToCsv. |
| order_by: Delegated to ToCsv. |
| |
| Returns: |
| A tab-separated little endian UTF16 file representing the table. |
| """ |
| return (self.ToCsv(columns_order, order_by, separator="\t") |
| .decode("utf-8").encode("UTF-16LE")) |
| |
| def _ToJSonObj(self, columns_order=None, order_by=()): |
| """Returns an object suitable to be converted to JSON. |
| |
| Args: |
| columns_order: Optional. A list of all column IDs in the order in which |
| you want them created in the output table. If specified, |
| all column IDs must be present. |
| order_by: Optional. Specifies the name of the column(s) to sort by. |
| Passed as is to _PreparedData(). |
| |
| Returns: |
| A dictionary object for use by ToJSon or ToJSonResponse. |
| """ |
| if columns_order is None: |
| columns_order = [col["id"] for col in self.__columns] |
| col_dict = dict([(col["id"], col) for col in self.__columns]) |
| |
| # Creating the column JSON objects |
| col_objs = [] |
| for col_id in columns_order: |
| col_obj = {"id": col_dict[col_id]["id"], |
| "label": col_dict[col_id]["label"], |
| "type": col_dict[col_id]["type"]} |
| if col_dict[col_id]["custom_properties"]: |
| col_obj["p"] = col_dict[col_id]["custom_properties"] |
| col_objs.append(col_obj) |
| |
| # Creating the rows jsons |
| row_objs = [] |
| for row, cp in self._PreparedData(order_by): |
| cell_objs = [] |
| for col in columns_order: |
| value = self.CoerceValue(row.get(col, None), col_dict[col]["type"]) |
| if value is None: |
| cell_obj = None |
| elif isinstance(value, tuple): |
| cell_obj = {"v": value[0]} |
| if len(value) > 1 and value[1] is not None: |
| cell_obj["f"] = value[1] |
| if len(value) == 3: |
| cell_obj["p"] = value[2] |
| else: |
| cell_obj = {"v": value} |
| cell_objs.append(cell_obj) |
| row_obj = {"c": cell_objs} |
| if cp: |
| row_obj["p"] = cp |
| row_objs.append(row_obj) |
| |
| json_obj = {"cols": col_objs, "rows": row_objs} |
| if self.custom_properties: |
| json_obj["p"] = self.custom_properties |
| |
| return json_obj |
| |
| def ToJSon(self, columns_order=None, order_by=()): |
| """Returns a string that can be used in a JS DataTable constructor. |
| |
| This method writes a JSON string that can be passed directly into a Google |
| Visualization API DataTable constructor. Use this output if you are |
| hosting the visualization HTML on your site, and want to code the data |
| table in Python. Pass this string into the |
| google.visualization.DataTable constructor, e.g,: |
| ... on my page that hosts my visualization ... |
| google.setOnLoadCallback(drawTable); |
| function drawTable() { |
| var data = new google.visualization.DataTable(_my_JSon_string, 0.6); |
| myTable.draw(data); |
| } |
| |
| Args: |
| columns_order: Optional. Specifies the order of columns in the |
| output table. Specify a list of all column IDs in the order |
| in which you want the table created. |
| Note that you must list all column IDs in this parameter, |
| if you use it. |
| order_by: Optional. Specifies the name of the column(s) to sort by. |
| Passed as is to _PreparedData(). |
| |
| Returns: |
| A JSon constructor string to generate a JS DataTable with the data |
| stored in the DataTable object. |
| Example result (the result is without the newlines): |
| {cols: [{id:"a",label:"a",type:"number"}, |
| {id:"b",label:"b",type:"string"}, |
| {id:"c",label:"c",type:"number"}], |
| rows: [{c:[{v:1},{v:"z"},{v:2}]}, c:{[{v:3,f:"3$"},{v:"w"},{v:null}]}], |
| p: {'foo': 'bar'}} |
| |
| Raises: |
| DataTableException: The data does not match the type. |
| """ |
| |
| encoder = DataTableJSONEncoder() |
| return encoder.encode( |
| self._ToJSonObj(columns_order, order_by)).encode("utf-8") |
| |
| def ToJSonResponse(self, columns_order=None, order_by=(), req_id=0, |
| response_handler="google.visualization.Query.setResponse"): |
| """Writes a table as a JSON response that can be returned as-is to a client. |
| |
| This method writes a JSON response to return to a client in response to a |
| Google Visualization API query. This string can be processed by the calling |
| page, and is used to deliver a data table to a visualization hosted on |
| a different page. |
| |
| Args: |
| columns_order: Optional. Passed straight to self.ToJSon(). |
| order_by: Optional. Passed straight to self.ToJSon(). |
| req_id: Optional. The response id, as retrieved by the request. |
| response_handler: Optional. The response handler, as retrieved by the |
| request. |
| |
| Returns: |
| A JSON response string to be received by JS the visualization Query |
| object. This response would be translated into a DataTable on the |
| client side. |
| Example result (newlines added for readability): |
| google.visualization.Query.setResponse({ |
| 'version':'0.6', 'reqId':'0', 'status':'OK', |
| 'table': {cols: [...], rows: [...]}}); |
| |
| Note: The URL returning this string can be used as a data source by Google |
| Visualization Gadgets or from JS code. |
| """ |
| |
| response_obj = { |
| "version": "0.6", |
| "reqId": str(req_id), |
| "table": self._ToJSonObj(columns_order, order_by), |
| "status": "ok" |
| } |
| encoder = DataTableJSONEncoder() |
| return "%s(%s);" % (response_handler, |
| encoder.encode(response_obj).encode("utf-8")) |
| |
| def ToResponse(self, columns_order=None, order_by=(), tqx=""): |
| """Writes the right response according to the request string passed in tqx. |
| |
| This method parses the tqx request string (format of which is defined in |
| the documentation for implementing a data source of Google Visualization), |
| and returns the right response according to the request. |
| It parses out the "out" parameter of tqx, calls the relevant response |
| (ToJSonResponse() for "json", ToCsv() for "csv", ToHtml() for "html", |
| ToTsvExcel() for "tsv-excel") and passes the response function the rest of |
| the relevant request keys. |
| |
| Args: |
| columns_order: Optional. Passed as is to the relevant response function. |
| order_by: Optional. Passed as is to the relevant response function. |
| tqx: Optional. The request string as received by HTTP GET. Should be in |
| the format "key1:value1;key2:value2...". All keys have a default |
| value, so an empty string will just do the default (which is calling |
| ToJSonResponse() with no extra parameters). |
| |
| Returns: |
| A response string, as returned by the relevant response function. |
| |
| Raises: |
| DataTableException: One of the parameters passed in tqx is not supported. |
| """ |
| tqx_dict = {} |
| if tqx: |
| tqx_dict = dict(opt.split(":") for opt in tqx.split(";")) |
| if tqx_dict.get("version", "0.6") != "0.6": |
| raise DataTableException( |
| "Version (%s) passed by request is not supported." |
| % tqx_dict["version"]) |
| |
| if tqx_dict.get("out", "json") == "json": |
| response_handler = tqx_dict.get("responseHandler", |
| "google.visualization.Query.setResponse") |
| return self.ToJSonResponse(columns_order, order_by, |
| req_id=tqx_dict.get("reqId", 0), |
| response_handler=response_handler) |
| elif tqx_dict["out"] == "html": |
| return self.ToHtml(columns_order, order_by) |
| elif tqx_dict["out"] == "csv": |
| return self.ToCsv(columns_order, order_by) |
| elif tqx_dict["out"] == "tsv-excel": |
| return self.ToTsvExcel(columns_order, order_by) |
| else: |
| raise DataTableException( |
| "'out' parameter: '%s' is not supported" % tqx_dict["out"]) |