blob: b1fbb2d04e3f03d048197d66309e41ee80ed2845 [file] [log] [blame]
/*
Copyright 2005-2007 Adobe Systems Incorporated
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
See http://opensource.adobe.com/gil for most recent version including documentation.
*/
/*************************************************************************************************/
#ifndef GIL_REDUCE_HPP
#define GIL_REDUCE_HPP
#include <boost/mpl/insert_range.hpp>
#include <boost/mpl/range_c.hpp>
#include <boost/mpl/vector_c.hpp>
#include <boost/mpl/back.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/mpl/long.hpp>
#include <boost/mpl/logical.hpp>
#include <boost/mpl/transform.hpp>
#include <boost/mpl/insert.hpp>
#include <boost/mpl/transform.hpp>
#include "../../metafunctions.hpp"
#include "../../typedefs.hpp"
#include "dynamic_at_c.hpp"
////////////////////////////////////////////////////////////////////////////////////////
/// \file
/// \brief Constructs for static-to-dynamic integer convesion
/// \author Lubomir Bourdev and Hailin Jin \n
/// Adobe Systems Incorporated
/// \date 2005-2007 \n Last updated on May 4, 2006
///
////////////////////////////////////////////////////////////////////////////////////////
#ifdef GIL_REDUCE_CODE_BLOAT
// Max number of cases in the cross-expension of binary operation for it to be reduced as unary
#define GIL_BINARY_REDUCE_LIMIT 226
namespace boost { namespace mpl {
///////////////////////////////////////////////////////
/// Mapping vector - represents the mapping of one type vector to another
/// It is not a full-blown MPL Random Access Type sequence; just has at_c and size implemented
///
/// SrcTypes, DstTypes: MPL Random Access Type Sequences
///
/// Implements size and at_c to behave as if this is an MPL vector of integers
///////////////////////////////////////////////////////
template <typename SrcTypes, typename DstTypes>
struct mapping_vector {};
template <typename SrcTypes, typename DstTypes, long K>
struct at_c<mapping_vector<SrcTypes,DstTypes>, K> {
static const std::size_t value=size<DstTypes>::value - order<DstTypes, typename at_c<SrcTypes,K>::type>::type::value +1;
typedef size_t<value> type;
};
template <typename SrcTypes, typename DstTypes>
struct size<mapping_vector<SrcTypes,DstTypes> > {
typedef typename size<SrcTypes>::type type;
static const std::size_t value=type::value;
};
///////////////////////////////////////////////////////
/// copy_to_vector - copies a sequence (mpl::set) to vector.
///
/// Temporary solution because I couldn't get mpl::copy to do this.
/// This is what I tried:
/// mpl::copy<SET, mpl::back_inserter<mpl::vector<> > >::type;
/// It works when SET is mpl::vector, but not when SET is mpl::set...
///////////////////////////////////////////////////////
namespace detail {
template <typename SFirst, std::size_t NLeft>
struct copy_to_vector_impl {
private:
typedef typename deref<SFirst>::type T;
typedef typename next<SFirst>::type next;
typedef typename copy_to_vector_impl<next, NLeft-1>::type rest;
public:
typedef typename push_front<rest, T>::type type;
};
template <typename SFirst>
struct copy_to_vector_impl<SFirst,1> {
typedef vector<typename deref<SFirst>::type> type;
};
}
template <typename Src>
struct copy_to_vector {
typedef typename detail::copy_to_vector_impl<typename begin<Src>::type, size<Src>::value>::type type;
};
template <>
struct copy_to_vector<set<> > {
typedef vector0<> type;
};
} } // boost::mpl
namespace boost { namespace gil {
///////////////////////////////////////////////////////
///
/// unary_reduce, binary_reduce - given an MPL Random Access Sequence,
/// dynamically specified index to that container, the bits of an instance of the corresponding type and
/// a generic operation, invokes the operation on the given type
///
///////////////////////////////////////////////////////
///////////////////////////////////////////////////////
///
/// \brief Unary reduce.
///
/// Given a set of types and an operation, reduces each type in the set (to reduced_t), then removes duplicates (to unique_t)
/// To apply the operation, first constructs a lookup table that maps each element from Types to its place in unique_t and uses it to map
/// the index to anther index (in map_index). Then invokes apply_operation_base on the unique types with the new index.
///
///////////////////////////////////////////////////////
template <typename Types, typename Op>
struct unary_reduce_impl {
typedef typename mpl::transform<Types, detail::reduce<Op, mpl::_1> >::type reduced_t;
typedef typename mpl::copy<reduced_t, mpl::inserter<mpl::set<>, mpl::insert<mpl::_1,mpl::_2> > >::type unique_t;
static const bool is_single=mpl::size<unique_t>::value==1;
};
template <typename Types, typename Op, bool IsSingle=unary_reduce_impl<Types,Op>::is_single>
struct unary_reduce : public unary_reduce_impl<Types,Op> {
typedef typename unary_reduce_impl<Types,Op>::reduced_t reduced_t;
typedef typename unary_reduce_impl<Types,Op>::unique_t unique_t;
static unsigned short inline map_index(std::size_t index) {
typedef typename mpl::mapping_vector<reduced_t, unique_t> indices_t;
return gil::at_c<indices_t, unsigned short>(index);
}
template <typename Bits> GIL_FORCEINLINE static typename Op::result_type applyc(const Bits& bits, std::size_t index, Op op) {
return apply_operation_basec<unique_t>(bits,map_index(index),op);
}
template <typename Bits> GIL_FORCEINLINE static typename Op::result_type apply(Bits& bits, std::size_t index, Op op) {
return apply_operation_base<unique_t>(bits,map_index(index),op);
}
};
template <typename Types, typename Op>
struct unary_reduce<Types,Op,true> : public unary_reduce_impl<Types,Op> {
typedef typename unary_reduce_impl<Types,Op>::unique_t unique_t;
static unsigned short inline map_index(std::size_t index) { return 0; }
template <typename Bits> GIL_FORCEINLINE static typename Op::result_type applyc(const Bits& bits, std::size_t index, Op op) {
return op(*gil_reinterpret_cast_c<const typename mpl::front<unique_t>::type*>(&bits));
}
template <typename Bits> GIL_FORCEINLINE static typename Op::result_type apply(Bits& bits, std::size_t index, Op op) {
return op(*gil_reinterpret_cast<typename mpl::front<unique_t>::type*>(&bits));
}
};
///////////////////////////////////////////////////////
///
/// \brief Binary reduce.
///
/// Given two sets of types, Types1 and Types2, first performs unary reduction on each. Then checks if the product of their sizes is above
/// the GIL_BINARY_REDUCE_LIMIT limit. If so, the operation is too complex to be binary-reduced and uses a specialization of binary_reduce_impl
/// to simply call the binary apply_operation_base (which performs two nested 1D apply operations)
/// If the operation is not too complex, uses the other specialization of binary_reduce_impl to create a cross-product of the input types
/// and performs unary reduction on the result (bin_reduced_t). To apply the binary operation, it simply invokes a unary apply_operation_base
/// on the reduced cross-product types
///
///////////////////////////////////////////////////////
namespace detail {
struct pair_generator {
template <typename Vec2> struct apply {
typedef std::pair<const typename mpl::at_c<Vec2,0>::type*, const typename mpl::at_c<Vec2,1>::type*> type;
};
};
// When the types are not too large, applies reduce on their cross product
template <typename Unary1, typename Unary2, typename Op, bool IsComplex>
struct binary_reduce_impl {
//private:
typedef typename mpl::copy_to_vector<typename Unary1::unique_t>::type vec1_types;
typedef typename mpl::copy_to_vector<typename Unary2::unique_t>::type vec2_types;
typedef mpl::cross_vector<mpl::vector2<vec1_types, vec2_types>, pair_generator> BIN_TYPES;
typedef unary_reduce<BIN_TYPES,Op> bin_reduced_t;
static unsigned short inline map_index(std::size_t index1, std::size_t index2) {
unsigned short r1=Unary1::map_index(index1);
unsigned short r2=Unary2::map_index(index2);
return bin_reduced_t::map_index(r2*mpl::size<vec1_types>::value + r1);
}
public:
typedef typename bin_reduced_t::unique_t unique_t;
template <typename Bits1, typename Bits2>
static typename Op::result_type inline apply(const Bits1& bits1, std::size_t index1, const Bits2& bits2, std::size_t index2, Op op) {
std::pair<const void*,const void*> pr(&bits1, &bits2);
return apply_operation_basec<unique_t>(pr, map_index(index1,index2),op);
}
};
// When the types are large performs a double-dispatch. Binary reduction is not done.
template <typename Unary1, typename Unary2, typename Op>
struct binary_reduce_impl<Unary1,Unary2,Op,true> {
template <typename Bits1, typename Bits2>
static typename Op::result_type inline apply(const Bits1& bits1, std::size_t index1, const Bits2& bits2, std::size_t index2, Op op) {
return apply_operation_base<Unary1::unique_t,Unary2::unique_t>(bits1, index1, bits2, index2, op);
}
};
}
template <typename Types1, typename Types2, typename Op>
struct binary_reduce {
//private:
typedef unary_reduce<Types1,Op> unary1_t;
typedef unary_reduce<Types2,Op> unary2_t;
static const std::size_t CROSS_SIZE = mpl::size<typename unary1_t::unique_t>::value *
mpl::size<typename unary2_t::unique_t>::value;
typedef detail::binary_reduce_impl<unary1_t,unary2_t,Op, (CROSS_SIZE>GIL_BINARY_REDUCE_LIMIT)> impl;
public:
template <typename Bits1, typename Bits2>
static typename Op::result_type inline apply(const Bits1& bits1, std::size_t index1, const Bits2& bits2, std::size_t index2, Op op) {
return impl::apply(bits1,index1,bits2,index2,op);
}
};
template <typename Types, typename UnaryOp>
GIL_FORCEINLINE typename UnaryOp::result_type apply_operation(variant<Types>& arg, UnaryOp op) {
return unary_reduce<Types,UnaryOp>::template apply(arg._bits, arg._index ,op);
}
template <typename Types, typename UnaryOp>
GIL_FORCEINLINE typename UnaryOp::result_type apply_operation(const variant<Types>& arg, UnaryOp op) {
return unary_reduce<Types,UnaryOp>::template applyc(arg._bits, arg._index ,op);
}
template <typename Types1, typename Types2, typename BinaryOp>
GIL_FORCEINLINE typename BinaryOp::result_type apply_operation(const variant<Types1>& arg1, const variant<Types2>& arg2, BinaryOp op) {
return binary_reduce<Types1,Types2,BinaryOp>::template apply(arg1._bits, arg1._index, arg2._bits, arg2._index, op);
}
#undef GIL_BINARY_REDUCE_LIMIT
} } // namespace gil
namespace boost { namespace mpl {
///////////////////////////////////////////////////////
/// \brief Represents the virtual cross-product of the types generated from VecOfVecs.
/// \ingroup CrossVector
/// INPUT:
/// VecOfVecs - a vector of vector types. For example [ [A1,A2,A3], [B1,B2], [C1,C2,C3,C4] ]
/// Each element must be a non-empty mpl vector
/// TypeGen - a metafunction that generates a type from a vector of types, each of which can be
/// selected from the corresponding vector in VecOfVecs. For example, [A1, B2, C4]
///
/// Represents the virtual cross-product of the types generated from VecOfVecs.
/// For example, [ TypeGen[A1,B1,C1], TypeGen[A2,B1,C1], TypeGen[A3,B1,C1],
/// TypeGen[A1,B2,C1], TypeGen[A2,B2,C1], TypeGen[A3,B2,C1],
/// TypeGen[A1,B1,C2], TypeGen[A2,B1,C2], TypeGen[A3,B1,C2], ... ]
///
/// Models an immutable MPL Random Access Sequence
/// Traversal, random-access, etc, is defined, but mutable operations,
/// such as push_back and pop_front are not supported
///////////////////////////////////////////////////////
template <typename VecOfVecs, typename TypeGen>
struct cross_vector {};
/// \brief Iterator of cross_vector
/// \ingroup CrossVectorIterator
template <typename VecOfVecs, typename TypeGen, std::size_t K>
struct cross_iterator {
typedef mpl::random_access_iterator_tag category;
};
///////////////////////////////////////////////////////
/// Implementation of the iterator functions of cross vector
///////////////////////////////////////////////////////
/// \brief Dereferences a cross-vector iterator
/// \ingroup CrossVectorIterator
/// Creates a vector of the sizes of each type vector in VecOfVecs, then uses it as a basis
/// to represent the iterator's position K as a vector of indices. Extracts the corresponding type of
/// each input vector and passes the element types to the type generation function, which returns the dereferenced type
template <typename VecOfVecs, typename TypeGen, std::size_t K>
struct deref<cross_iterator<VecOfVecs,TypeGen,K> > {
private:
typedef typename detail::select_subvector_c<VecOfVecs, K>::type DerefTypes;
public:
typedef typename TypeGen::template apply<DerefTypes>::type type;
};
/// \brief Increments a cross-vector iterator.
/// \ingroup CrossVectorIterator
template <typename VecOfVecs, typename TypeGen, std::size_t K>
struct next<cross_iterator<VecOfVecs,TypeGen,K> > {
typedef cross_iterator<VecOfVecs,TypeGen,K+1> type;
};
/// \brief Decrements a cross-vector iterator.
/// \ingroup CrossVectorIterator
template <typename VecOfVecs, typename TypeGen, std::size_t K>
struct prior<cross_iterator<VecOfVecs,TypeGen,K> > {
typedef cross_iterator<VecOfVecs,TypeGen,K-1> type;
};
/// \brief Advances a cross-vector iterator.
/// \ingroup CrossVectorIterator
template <typename VecOfVecs, typename TypeGen, std::size_t K, typename Distance>
struct advance<cross_iterator<VecOfVecs,TypeGen,K>, Distance > {
typedef cross_iterator<VecOfVecs,TypeGen,K+Distance::value> type;
};
/// \brief Computes the distance between two cross-vector iterator-s.
/// \ingroup CrossVectorIterator
// (shortened the names of the template arguments - otherwise doxygen cannot parse this...)
template <typename VecOfVecs, typename TypeGen, std::size_t K1, std::size_t K2>
struct distance<cross_iterator<VecOfVecs,TypeGen,K1>, cross_iterator<VecOfVecs,TypeGen,K2> > {
typedef size_t<K2-K1> type;
};
///////////////////////////////////////////////////////
/// Implementation of cross vector
///////////////////////////////////////////////////////
/// \brief Computes the size of a cross vector as the product of the sizes of all vectors in VecOfVecs
/// \ingroup CrossVector
template <typename VecOfVecs, typename TypeGen>
struct size<cross_vector<VecOfVecs,TypeGen> > {
typedef typename fold<VecOfVecs, size_t<1>, times<_1, size<_2> > >::type type;
static const std::size_t value=type::value;
};
/// \brief Determines whether a cross vector is empty
/// \ingroup CrossVector
template <typename VecOfVecs, typename TypeGen>
struct empty<cross_vector<VecOfVecs,TypeGen> > {
typedef typename empty<VecOfVecs>::type type;
};
/// \brief Returns the K-th element of a cross vector
/// \ingroup CrossVector
template <typename VecOfVecs, typename TypeGen, typename K>
struct at<cross_vector<VecOfVecs,TypeGen>, K> {
private:
typedef cross_iterator<VecOfVecs,TypeGen,K::value> KthIterator;
public:
typedef typename deref<KthIterator>::type type;
};
/// \brief Returns an iterator to the first element of a cross vector
/// \ingroup CrossVector
template <typename VecOfVecs, typename TypeGen>
struct begin<cross_vector<VecOfVecs,TypeGen> > {
typedef cross_iterator<VecOfVecs,TypeGen,0> type;
};
/// \brief Returns an iterator to the last element of a cross vector
/// \ingroup CrossVector
template <typename VecOfVecs, typename TypeGen>
struct end<cross_vector<VecOfVecs,TypeGen> > {
private:
typedef cross_vector<VecOfVecs,TypeGen> this_t;
public:
typedef cross_iterator<VecOfVecs,TypeGen,size<this_t>::value> type;
};
/// \brief Returns the first element of a cross vector
/// \ingroup CrossVector
template <typename VecOfVecs, typename TypeGen>
struct front<cross_vector<VecOfVecs,TypeGen> > {
private:
typedef cross_vector<VecOfVecs,TypeGen> this_t;
public:
typedef typename deref<typename begin<this_t>::type>::type type;
};
/// \brief Returns the last element of a cross vector
/// \ingroup CrossVector
template <typename VecOfVecs, typename TypeGen>
struct back<cross_vector<VecOfVecs,TypeGen> > {
private:
typedef cross_vector<VecOfVecs,TypeGen> this_t;
typedef typename size<this_t>::type size;
typedef typename minus<size, size_t<1> >::type last_index;
public:
typedef typename at<this_t, last_index>::type type;
};
/// \brief Transforms the elements of a cross vector
/// \ingroup CrossVector
template <typename VecOfVecs, typename TypeGen, typename OPP>
struct transform<cross_vector<VecOfVecs,TypeGen>, OPP > {
typedef typename lambda<OPP>::type Op;
struct adapter {
template <typename Elements>
struct apply {
typedef typename TypeGen::template apply<Elements>::type orig_t;
typedef typename Op::template apply<orig_t>::type type;
};
};
typedef cross_vector<VecOfVecs, adapter > type;
};
} } // boost::mpl
namespace boost { namespace gil {
template <typename Types, typename T> struct type_to_index;
template <typename V> struct view_is_basic;
struct rgb_t;
struct lab_t;
struct hsb_t;
struct cmyk_t;
struct rgba_t;
struct error_t;
namespace detail {
////////////////////////////////////////////////////////
////
//// Generic reduce operation
////
////////////////////////////////////////////////////////
template <typename Op, typename T>
struct reduce {
typedef T type;
};
////////////////////////////////////////////////////////
////
//// Unary reduce_view operation. Splits into basic and non-basic views.
//// Algorithm-specific reduce should specialize for basic views
////
////////////////////////////////////////////////////////
template <typename Op, typename View, bool IsBasic>
struct reduce_view_basic {
typedef View type;
};
template <typename Op, typename Loc>
struct reduce<Op, image_view<Loc> >
: public reduce_view_basic<Op,image_view<Loc>,view_is_basic<image_view<Loc> >::value> {};
////////////////////////////////////////////////////////
////
//// Unary reduce_image operation. Splits into basic and non-basic images.
//// Algorithm-specific reduce should specialize for basic images
////
////////////////////////////////////////////////////////
template <typename Op, typename Img, bool IsBasic>
struct reduce_image_basic {
typedef Img type;
};
template <typename Op, typename V, typename Alloc>
struct reduce<Op, image<V,Alloc> > : public reduce_image_basic<Op,image<V,Alloc>,image_is_basic<image<V,Alloc> >::value > {};
////////////////////////////////////////////////////////
////
//// Binary reduce_view operation. Splits into basic and non-basic views.
//// Algorithm-specific reduce should specialize for basic views
////
////////////////////////////////////////////////////////
template <typename Op, typename V1, typename V2, bool AreBasic>
struct reduce_views_basic {
typedef std::pair<const V1*, const V2*> type;
};
template <typename Op, typename L1, typename L2>
struct reduce<Op, std::pair<const image_view<L1>*, const image_view<L2>*> >
: public reduce_views_basic<Op,image_view<L1>,image_view<L2>,
mpl::and_<view_is_basic<image_view<L1> >, view_is_basic<image_view<L2> > >::value >
{};
////////////////////////////////////////////////////////
////
//// Color space unary reduce operation. Reduce a color space to a base with the same number of channels
////
////////////////////////////////////////////////////////
template <typename Cs>
struct reduce_color_space {
typedef Cs type;
};
template <> struct reduce_color_space<lab_t> { typedef rgb_t type; };
template <> struct reduce_color_space<hsb_t> { typedef rgb_t type; };
template <> struct reduce_color_space<cmyk_t> { typedef rgba_t type; };
/*
////////////////////////////////////////////////////////
////
//// Color space binary reduce operation. Given a source and destination color spaces,
//// returns a reduced source and destination color spaces that have the same mapping of channels
////
//// Precondition: The two color spaces must be compatible (i.e. must have the same set of channels)
////////////////////////////////////////////////////////
template <typename Vec, int Basis, int VecSize>
struct type_vec_to_integer_impl {
typedef typename mpl::back<Vec>::type last;
typedef typename mpl::pop_back<Vec>::type rest;
static const int value = type_vec_to_integer_impl<rest, Basis, VecSize-1>::value * Basis + last::value;
};
template <typename Vec, int Basis>
struct type_vec_to_integer_impl<Vec,Basis,0> {
static const int value=0;
};
template <typename Vec, int Basis=10>
struct type_vec_to_integer {
static const int value = type_vec_to_integer_impl<Vec,Basis, mpl::size<Vec>::value>::value;
};
// Given two color spaces and the mapping of the channels between them, returns the reduced pair of color spaces
// The default version performs no reduction
template <typename SrcColorSpace, typename DstColorSpace, int Mapping>
struct reduce_color_spaces_impl {
typedef SrcColorSpace first_t;
typedef DstColorSpace second_t;
};
// 012: RGB-RGB, bgr-bgr, lab-lab, hsb-hsb
template <typename SrcColorSpace, typename DstColorSpace>
struct reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,12> {
typedef rgb_t first_t;
typedef rgb_t second_t;
};
// 210: RGB-bgr, bgr-RGB
template <typename SrcColorSpace, typename DstColorSpace>
struct reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,210> {
typedef rgb_t first_t;
typedef bgr_t second_t;
};
// 0123: RGBA-RGBA, bgra-bgra, argb-argb, abgr-abgr cmyk-cmyk
template <typename SrcColorSpace, typename DstColorSpace>
struct reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,123> {
typedef rgba_t first_t;
typedef rgba_t second_t;
};
// 3210: RGBA-abgr, bgra-argb, argb-bgra, abgr-RGBA
template <typename SrcColorSpace, typename DstColorSpace>
struct reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,3210> {
typedef rgba_t first_t;
typedef abgr_t second_t;
};
// 1230: RGBA-argb, bgra-abgr
template <typename SrcColorSpace, typename DstColorSpace>
struct reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,1230> {
typedef rgba_t first_t;
typedef argb_t second_t;
};
// 2103: RGBA-bgra, bgra-RGBA (uses subclass to ensure that base color space is not reduced to derived)
template <typename SrcColorSpace, typename DstColorSpace>
struct reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,2103> {
typedef rgba_t first_t;
typedef bgra_t second_t;
};
// 3012: argb-RGBA, abgr-bgra
template <typename SrcColorSpace, typename DstColorSpace>
struct reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,3012> {
typedef argb_t first_t;
typedef rgba_t second_t;
};
// 0321: argb-abgr, abgr-argb
template <typename SrcColorSpace, typename DstColorSpace>
struct reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,321> {
typedef argb_t first_t;
typedef abgr_t second_t;
};
template <typename SrcColorSpace, typename DstColorSpace>
struct reduce_color_spaces {
typedef typename channel_order<SrcColorSpace>::type src_order_t;
typedef typename channel_order<DstColorSpace>::type dst_order_t;
typedef typename mpl::transform<src_order_t, type_to_index<dst_order_t,mpl::_1> >::type mapping;
static const int mapping_val = type_vec_to_integer<mapping>::value;
typedef typename reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,mapping_val>::first_t _first_t;
typedef typename reduce_color_spaces_impl<SrcColorSpace,DstColorSpace,mapping_val>::second_t _second_t;
typedef typename mpl::and_<color_space_is_base<DstColorSpace>, mpl::not_< color_space_is_base<_second_t> > > swap_t;
public:
typedef typename mpl::if_<swap_t, _second_t, _first_t>::type first_t;
typedef typename mpl::if_<swap_t, _first_t, _second_t>::type second_t;
};
*/
// TODO: Use the old code for reduce_color_spaces above to do color layout reduction
template <typename SrcLayout, typename DstLayout>
struct reduce_color_layouts {
typedef SrcLayout first_t;
typedef DstLayout second_t;
};
////////////////////////////////////////////////////////
////
//// Reduce for copy_pixels
////
////////////////////////////////////////////////////////
struct copy_pixels_fn;
/*
// 1D reduce for copy_pixels reduces the channel to mutable and the color space to its base with same dimensions
template <typename View>
struct reduce_view_basic<copy_pixels_fn,View,true> {
private:
typedef typename reduce_color_space<typename View::color_space_t>::type Cs; // reduce the color space
typedef layout<Cs, typename View::channel_mapping_t> layout_t;
public:
typedef typename derived_view_type<View, use_default, layout_t, use_default, use_default, mpl::true_>::type type;
};
*/
// Incompatible views cannot be used in copy_pixels - will throw std::bad_cast
template <typename V1, typename V2, bool Compatible>
struct reduce_copy_pixop_compat {
typedef error_t type;
};
// For compatible basic views, reduce their color spaces based on their channel mapping.
// Make the source immutable and the destination mutable (they should already be that way)
template <typename V1, typename V2>
struct reduce_copy_pixop_compat<V1,V2,true> {
typedef layout<typename V1::color_space_t, typename V1::channel_mapping_t> layout1;
typedef layout<typename V2::color_space_t, typename V2::channel_mapping_t> layout2;
typedef typename reduce_color_layouts<layout1,layout2>::first_t L1;
typedef typename reduce_color_layouts<layout1,layout2>::second_t L2;
typedef typename derived_view_type<V1, use_default, L1, use_default, use_default, use_default, mpl::false_>::type DV1;
typedef typename derived_view_type<V2, use_default, L2, use_default, use_default, use_default, mpl::true_ >::type DV2;
typedef std::pair<const DV1*, const DV2*> type;
};
// The general 2D version branches into compatible and incompatible views
template <typename V1, typename V2>
struct reduce_views_basic<copy_pixels_fn, V1, V2, true>
: public reduce_copy_pixop_compat<V1, V2, mpl::and_<views_are_compatible<V1,V2>, view_is_mutable<V2> >::value > {
};
////////////////////////////////////////////////////////
////
//// Reduce for variant destructor (basic views have no destructor)
////
////////////////////////////////////////////////////////
struct destructor_op;
template <typename View> struct reduce_view_basic<destructor_op,View,true> { typedef gray8_view_t type; };
////////////////////////////////////////////////////////
////
//// Reduce for get_dimensions (basic views and images have the same structure and the dimensions are contained at the beginning)
////
////////////////////////////////////////////////////////
struct any_type_get_dimensions;
template <typename View> struct reduce_view_basic<any_type_get_dimensions,View,true> { typedef gray8_view_t type; };
template <typename Img> struct reduce_image_basic<any_type_get_dimensions,Img,true> { typedef gray8_image_t type; };
////////////////////////////////////////////////////////
////
//// Reduce for get_num_channels (only color space matters)
////
////////////////////////////////////////////////////////
struct any_type_get_num_channels;
template <typename View> struct reduce_view_basic<any_type_get_num_channels,View,true> {
typedef typename View::color_space_t::base Cs;
typedef typename view_type<bits8,typename reduce_color_space<Cs>::type>::type type;
};
template <typename Img> struct reduce_image_basic<any_type_get_num_channels,Img,true> {
typedef typename Img::color_space_t::base Cs;
typedef typename image_type<bits8,typename reduce_color_space<Cs>::type>::type type;
};
////////////////////////////////////////////////////////
////
//// Reduce for resample_pixels (same as copy_pixels)
////
////////////////////////////////////////////////////////
template <typename Sampler, typename MapFn> struct resample_pixels_fn;
template <typename S, typename M, typename V, bool IsBasic>
struct reduce_view_basic<resample_pixels_fn<S,M>, V, IsBasic> : public reduce_view_basic<copy_pixels_fn, V, IsBasic> {};
template <typename S, typename M, typename V1, typename V2, bool IsBasic>
struct reduce_views_basic<resample_pixels_fn<S,M>, V1, V2, IsBasic> : public reduce_views_basic<copy_pixels_fn, V1, V2, IsBasic> {};
////////////////////////////////////////////////////////
////
//// Reduce for copy_and_convert_pixels
//// (the only reduction could be made when views are compatible and have the same mapping, planarity and stepness)
////
////////////////////////////////////////////////////////
template <typename CC> class copy_and_convert_pixels_fn;
// the only thing for 1D reduce is making them all mutable...
template <typename CC, typename View, bool IsBasic>
struct reduce_view_basic<copy_and_convert_pixels_fn<CC>, View, IsBasic>
: public derived_view_type<View, use_default, use_default, use_default, use_default, mpl::true_> {
};
// For 2D reduce, if they have the same channels and color spaces (i.e. the same pixels) then copy_and_convert is just copy.
// In this case, reduce their common color space. In general make the first immutable and the second mutable
template <typename CC, typename V1, typename V2, bool AreBasic>
struct reduce_views_basic<copy_and_convert_pixels_fn<CC>, V1, V2, AreBasic> {
typedef is_same<typename V1::pixel_t, typename V2::pixel_t> Same;
typedef reduce_color_space<typename V1::color_space_t::base> CsR;
typedef typename mpl::if_<Same, typename CsR::type, typename V1::color_space_t>::type Cs1;
typedef typename mpl::if_<Same, typename CsR::type, typename V2::color_space_t>::type Cs2;
typedef typename derived_view_type<V1, use_default, layout<Cs1, typename V1::channel_mapping_t>, use_default, use_default, mpl::false_>::type DV1;
typedef typename derived_view_type<V2, use_default, layout<Cs2, typename V2::channel_mapping_t>, use_default, use_default, mpl::true_ >::type DV2;
typedef std::pair<const DV1*, const DV2*> type;
};
//integral_image_generator
//resize_clobber_image_fnobj
//image_default_construct_fnobj
//fill_converted_pixels_fn
//bind(gil::detail::copy_pixels_fn(), _1, dst)
//bind(gil::detail::copy_pixels_fn(), src,_1)
//bind(detail::copy_and_convert_pixels_fn(), _1, dst)
//bind(detail::copy_and_convert_pixels_fn(), src, _1)
//gil::detail::fill_pixels_fn<Value>(val)
//detail::copy_construct_in_place_fn<base_t>
//detail::equal_to_fn<typename variant<Types>::base_t>
//detail::any_image_get_view<typename any_image<Types>::view_t>
//detail::any_image_get_const_view<typename any_image<Types>::view_t>
//detail::flipped_up_down_view_fn<any_image_view<ViewTypes> >
//detail::flipped_left_right_view_fn<typename any_image_view<ViewTypes>::dynamic_step_t>
//detail::tranposed_view_fn<typename any_image_view<ViewTypes>::dynamic_step_t>
//detail::rotated90cw_view_fn<typename any_image_view<ViewTypes>::dynamic_step_t>
//detail::rotated90ccw_view_fn<typename any_image_view<ViewTypes>::dynamic_step_t>
//detail::rotated180_view_fn<typename any_image_view<ViewTypes>::dynamic_step_t>
//detail::subimage_view_fn<any_image_view<ViewTypes> >
//detail::subsampled_view_fn<typename any_image_view<ViewTypes>::dynamic_step_t>
//detail::nth_channel_view_fn<typename nth_channel_view_type<any_image_view<ViewTypes> >
//detail::color_converted_view_fn<DstP,typename color_convert_view_type<any_image_view<ViewTypes>, DstP>::type >
}
} } // namespace boost::gil
#endif // GIL_REDUCE_CODE_BLOAT
#endif