blob: 3ea6e950db0cbb8b2c69fa02692e374c9c720d8d [file] [log] [blame]
// (C) Copyright 2007-2009 Andrew Sutton
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0 (See accompanying file
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_CLIQUE_HPP
#define BOOST_GRAPH_CLIQUE_HPP
#include <vector>
#include <deque>
#include <boost/config.hpp>
#include <boost/graph/graph_concepts.hpp>
#include <boost/graph/lookup_edge.hpp>
#include <boost/concept/detail/concept_def.hpp>
namespace boost {
namespace concepts {
BOOST_concept(CliqueVisitor,(Visitor)(Clique)(Graph))
{
BOOST_CONCEPT_USAGE(CliqueVisitor)
{
vis.clique(k, g);
}
private:
Visitor vis;
Graph g;
Clique k;
};
} /* namespace concepts */
using concepts::CliqueVisitorConcept;
} /* namespace boost */
#include <boost/concept/detail/concept_undef.hpp>
namespace boost
{
// The algorithm implemented in this paper is based on the so-called
// Algorithm 457, published as:
//
// @article{362367,
// author = {Coen Bron and Joep Kerbosch},
// title = {Algorithm 457: finding all cliques of an undirected graph},
// journal = {Communications of the ACM},
// volume = {16},
// number = {9},
// year = {1973},
// issn = {0001-0782},
// pages = {575--577},
// doi = {http://doi.acm.org/10.1145/362342.362367},
// publisher = {ACM Press},
// address = {New York, NY, USA},
// }
//
// Sort of. This implementation is adapted from the 1st version of the
// algorithm and does not implement the candidate selection optimization
// described as published - it could, it just doesn't yet.
//
// The algorithm is given as proportional to (3.14)^(n/3) power. This is
// not the same as O(...), but based on time measures and approximation.
//
// Unfortunately, this implementation may be less efficient on non-
// AdjacencyMatrix modeled graphs due to the non-constant implementation
// of the edge(u,v,g) functions.
//
// TODO: It might be worthwhile to provide functionality for passing
// a connectivity matrix to improve the efficiency of those lookups
// when needed. This could simply be passed as a BooleanMatrix
// s.t. edge(u,v,B) returns true or false. This could easily be
// abstracted for adjacency matricies.
//
// The following paper is interesting for a number of reasons. First,
// it lists a number of other such algorithms and second, it describes
// a new algorithm (that does not appear to require the edge(u,v,g)
// function and appears fairly efficient. It is probably worth investigating.
//
// @article{DBLP:journals/tcs/TomitaTT06,
// author = {Etsuji Tomita and Akira Tanaka and Haruhisa Takahashi},
// title = {The worst-case time complexity for generating all maximal cliques and computational experiments},
// journal = {Theor. Comput. Sci.},
// volume = {363},
// number = {1},
// year = {2006},
// pages = {28-42}
// ee = {http://dx.doi.org/10.1016/j.tcs.2006.06.015}
// }
/**
* The default clique_visitor supplies an empty visitation function.
*/
struct clique_visitor
{
template <typename VertexSet, typename Graph>
void clique(const VertexSet&, Graph&)
{ }
};
/**
* The max_clique_visitor records the size of the maximum clique (but not the
* clique itself).
*/
struct max_clique_visitor
{
max_clique_visitor(std::size_t& max)
: maximum(max)
{ }
template <typename Clique, typename Graph>
inline void clique(const Clique& p, const Graph& g)
{
BOOST_USING_STD_MAX();
maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION (maximum, p.size());
}
std::size_t& maximum;
};
inline max_clique_visitor find_max_clique(std::size_t& max)
{ return max_clique_visitor(max); }
namespace detail
{
template <typename Graph>
inline bool
is_connected_to_clique(const Graph& g,
typename graph_traits<Graph>::vertex_descriptor u,
typename graph_traits<Graph>::vertex_descriptor v,
typename graph_traits<Graph>::undirected_category)
{
return lookup_edge(u, v, g).second;
}
template <typename Graph>
inline bool
is_connected_to_clique(const Graph& g,
typename graph_traits<Graph>::vertex_descriptor u,
typename graph_traits<Graph>::vertex_descriptor v,
typename graph_traits<Graph>::directed_category)
{
// Note that this could alternate between using an || to determine
// full connectivity. I believe that this should produce strongly
// connected components. Note that using && instead of || will
// change the results to a fully connected subgraph (i.e., symmetric
// edges between all vertices s.t., if a->b, then b->a.
return lookup_edge(u, v, g).second && lookup_edge(v, u, g).second;
}
template <typename Graph, typename Container>
inline void
filter_unconnected_vertices(const Graph& g,
typename graph_traits<Graph>::vertex_descriptor v,
const Container& in,
Container& out)
{
function_requires< GraphConcept<Graph> >();
typename graph_traits<Graph>::directed_category cat;
typename Container::const_iterator i, end = in.end();
for(i = in.begin(); i != end; ++i) {
if(is_connected_to_clique(g, v, *i, cat)) {
out.push_back(*i);
}
}
}
template <
typename Graph,
typename Clique, // compsub type
typename Container, // candidates/not type
typename Visitor>
void extend_clique(const Graph& g,
Clique& clique,
Container& cands,
Container& nots,
Visitor vis,
std::size_t min)
{
function_requires< GraphConcept<Graph> >();
function_requires< CliqueVisitorConcept<Visitor,Clique,Graph> >();
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
// Is there vertex in nots that is connected to all vertices
// in the candidate set? If so, no clique can ever be found.
// This could be broken out into a separate function.
{
typename Container::iterator ni, nend = nots.end();
typename Container::iterator ci, cend = cands.end();
for(ni = nots.begin(); ni != nend; ++ni) {
for(ci = cands.begin(); ci != cend; ++ci) {
// if we don't find an edge, then we're okay.
if(!lookup_edge(*ni, *ci, g).second) break;
}
// if we iterated all the way to the end, then *ni
// is connected to all *ci
if(ci == cend) break;
}
// if we broke early, we found *ni connected to all *ci
if(ni != nend) return;
}
// TODO: the original algorithm 457 describes an alternative
// (albeit really complicated) mechanism for selecting candidates.
// The given optimizaiton seeks to bring about the above
// condition sooner (i.e., there is a vertex in the not set
// that is connected to all candidates). unfortunately, the
// method they give for doing this is fairly unclear.
// basically, for every vertex in not, we should know how many
// vertices it is disconnected from in the candidate set. if
// we fix some vertex in the not set, then we want to keep
// choosing vertices that are not connected to that fixed vertex.
// apparently, by selecting fix point with the minimum number
// of disconnections (i.e., the maximum number of connections
// within the candidate set), then the previous condition wil
// be reached sooner.
// there's some other stuff about using the number of disconnects
// as a counter, but i'm jot really sure i followed it.
// TODO: If we min-sized cliques to visit, then theoretically, we
// should be able to stop recursing if the clique falls below that
// size - maybe?
// otherwise, iterate over candidates and and test
// for maxmimal cliquiness.
typename Container::iterator i, j, end = cands.end();
for(i = cands.begin(); i != cands.end(); ) {
Vertex candidate = *i;
// add the candidate to the clique (keeping the iterator!)
// typename Clique::iterator ci = clique.insert(clique.end(), candidate);
clique.push_back(candidate);
// remove it from the candidate set
i = cands.erase(i);
// build new candidate and not sets by removing all vertices
// that are not connected to the current candidate vertex.
// these actually invert the operation, adding them to the new
// sets if the vertices are connected. its semantically the same.
Container new_cands, new_nots;
filter_unconnected_vertices(g, candidate, cands, new_cands);
filter_unconnected_vertices(g, candidate, nots, new_nots);
if(new_cands.empty() && new_nots.empty()) {
// our current clique is maximal since there's nothing
// that's connected that we haven't already visited. If
// the clique is below our radar, then we won't visit it.
if(clique.size() >= min) {
vis.clique(clique, g);
}
}
else {
// recurse to explore the new candidates
extend_clique(g, clique, new_cands, new_nots, vis, min);
}
// we're done with this vertex, so we need to move it
// to the nots, and remove the candidate from the clique.
nots.push_back(candidate);
clique.pop_back();
}
}
} /* namespace detail */
template <typename Graph, typename Visitor>
inline void
bron_kerbosch_all_cliques(const Graph& g, Visitor vis, std::size_t min)
{
function_requires< IncidenceGraphConcept<Graph> >();
function_requires< VertexListGraphConcept<Graph> >();
function_requires< VertexIndexGraphConcept<Graph> >();
function_requires< AdjacencyMatrixConcept<Graph> >(); // Structural requirement only
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
typedef std::vector<Vertex> VertexSet;
typedef std::deque<Vertex> Clique;
function_requires< CliqueVisitorConcept<Visitor,Clique,Graph> >();
// NOTE: We're using a deque to implement the clique, because it provides
// constant inserts and removals at the end and also a constant size.
VertexIterator i, end;
boost::tie(i, end) = vertices(g);
VertexSet cands(i, end); // start with all vertices as candidates
VertexSet nots; // start with no vertices visited
Clique clique; // the first clique is an empty vertex set
detail::extend_clique(g, clique, cands, nots, vis, min);
}
// NOTE: By default the minimum number of vertices per clique is set at 2
// because singleton cliques aren't really very interesting.
template <typename Graph, typename Visitor>
inline void
bron_kerbosch_all_cliques(const Graph& g, Visitor vis)
{ bron_kerbosch_all_cliques(g, vis, 2); }
template <typename Graph>
inline std::size_t
bron_kerbosch_clique_number(const Graph& g)
{
std::size_t ret = 0;
bron_kerbosch_all_cliques(g, find_max_clique(ret));
return ret;
}
} /* namespace boost */
#endif