blob: a56289d479408e70935550579324415e5173caf8 [file] [log] [blame]
//=======================================================================
// Copyright 2002 Indiana University.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_GRAPH_ARCHETYPES_HPP
#define BOOST_GRAPH_ARCHETYPES_HPP
#include <boost/property_map/property_map.hpp>
#include <boost/concept_archetype.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
namespace boost { // should use a different namespace for this
namespace detail {
struct null_graph_archetype : public null_archetype<> {
struct traversal_category { };
};
}
//===========================================================================
template <typename Vertex, typename Directed, typename ParallelCategory,
typename Base = detail::null_graph_archetype >
struct incidence_graph_archetype : public Base
{
typedef typename Base::traversal_category base_trav_cat;
struct traversal_category
: public incidence_graph_tag, public base_trav_cat { };
#if 0
typedef immutable_graph_tag mutability_category;
#endif
typedef Vertex vertex_descriptor;
typedef unsigned int degree_size_type;
typedef unsigned int vertices_size_type;
typedef unsigned int edges_size_type;
struct edge_descriptor {
edge_descriptor() { }
edge_descriptor(const detail::dummy_constructor&) { }
bool operator==(const edge_descriptor&) const { return false; }
bool operator!=(const edge_descriptor&) const { return false; }
};
typedef input_iterator_archetype<edge_descriptor> out_edge_iterator;
typedef Directed directed_category;
typedef ParallelCategory edge_parallel_category;
typedef void adjacency_iterator;
typedef void in_edge_iterator;
typedef void vertex_iterator;
typedef void edge_iterator;
};
template <typename V, typename D, typename P, typename B>
V source(const typename incidence_graph_archetype<V,D,P,B>::edge_descriptor&,
const incidence_graph_archetype<V,D,P,B>& )
{
return V(static_object<detail::dummy_constructor>::get());
}
template <typename V, typename D, typename P, typename B>
V target(const typename incidence_graph_archetype<V,D,P,B>::edge_descriptor&,
const incidence_graph_archetype<V,D,P,B>& )
{
return V(static_object<detail::dummy_constructor>::get());
}
template <typename V, typename D, typename P, typename B>
std::pair<typename incidence_graph_archetype<V,D,P,B>::out_edge_iterator,
typename incidence_graph_archetype<V,D,P,B>::out_edge_iterator>
out_edges(const V&, const incidence_graph_archetype<V,D,P,B>& )
{
typedef typename incidence_graph_archetype<V,D,P,B>::out_edge_iterator Iter;
return std::make_pair(Iter(), Iter());
}
template <typename V, typename D, typename P, typename B>
typename incidence_graph_archetype<V,D,P,B>::degree_size_type
out_degree(const V&, const incidence_graph_archetype<V,D,P,B>& )
{
return 0;
}
//===========================================================================
template <typename Vertex, typename Directed, typename ParallelCategory,
typename Base = detail::null_graph_archetype >
struct adjacency_graph_archetype : public Base
{
typedef typename Base::traversal_category base_trav_cat;
struct traversal_category
: public adjacency_graph_tag, public base_trav_cat { };
typedef Vertex vertex_descriptor;
typedef unsigned int degree_size_type;
typedef unsigned int vertices_size_type;
typedef unsigned int edges_size_type;
typedef void edge_descriptor;
typedef input_iterator_archetype<Vertex> adjacency_iterator;
typedef Directed directed_category;
typedef ParallelCategory edge_parallel_category;
typedef void in_edge_iterator;
typedef void out_edge_iterator;
typedef void vertex_iterator;
typedef void edge_iterator;
};
template <typename V, typename D, typename P, typename B>
std::pair<typename adjacency_graph_archetype<V,D,P,B>::adjacency_iterator,
typename adjacency_graph_archetype<V,D,P,B>::adjacency_iterator>
adjacent_vertices(const V&, const adjacency_graph_archetype<V,D,P,B>& )
{
typedef typename adjacency_graph_archetype<V,D,P,B>::adjacency_iterator Iter;
return std::make_pair(Iter(), Iter());
}
template <typename V, typename D, typename P, typename B>
typename adjacency_graph_archetype<V,D,P,B>::degree_size_type
out_degree(const V&, const adjacency_graph_archetype<V,D,P,B>& )
{
return 0;
}
//===========================================================================
template <typename Vertex, typename Directed, typename ParallelCategory,
typename Base = detail::null_graph_archetype >
struct vertex_list_graph_archetype : public Base
{
typedef incidence_graph_archetype<Vertex, Directed, ParallelCategory>
Incidence;
typedef adjacency_graph_archetype<Vertex, Directed, ParallelCategory>
Adjacency;
typedef typename Base::traversal_category base_trav_cat;
struct traversal_category
: public vertex_list_graph_tag, public base_trav_cat { };
#if 0
typedef immutable_graph_tag mutability_category;
#endif
typedef Vertex vertex_descriptor;
typedef unsigned int degree_size_type;
typedef typename Incidence::edge_descriptor edge_descriptor;
typedef typename Incidence::out_edge_iterator out_edge_iterator;
typedef typename Adjacency::adjacency_iterator adjacency_iterator;
typedef input_iterator_archetype<Vertex> vertex_iterator;
typedef unsigned int vertices_size_type;
typedef unsigned int edges_size_type;
typedef Directed directed_category;
typedef ParallelCategory edge_parallel_category;
typedef void in_edge_iterator;
typedef void edge_iterator;
};
template <typename V, typename D, typename P, typename B>
std::pair<typename vertex_list_graph_archetype<V,D,P,B>::vertex_iterator,
typename vertex_list_graph_archetype<V,D,P,B>::vertex_iterator>
vertices(const vertex_list_graph_archetype<V,D,P,B>& )
{
typedef typename vertex_list_graph_archetype<V,D,P,B>::vertex_iterator Iter;
return std::make_pair(Iter(), Iter());
}
template <typename V, typename D, typename P, typename B>
typename vertex_list_graph_archetype<V,D,P,B>::vertices_size_type
num_vertices(const vertex_list_graph_archetype<V,D,P,B>& )
{
return 0;
}
// ambiguously inherited from incidence graph and adjacency graph
template <typename V, typename D, typename P, typename B>
typename vertex_list_graph_archetype<V,D,P,B>::degree_size_type
out_degree(const V&, const vertex_list_graph_archetype<V,D,P,B>& )
{
return 0;
}
//===========================================================================
struct property_graph_archetype_tag { };
template <typename GraphArchetype, typename Property, typename ValueArch>
struct property_graph_archetype : public GraphArchetype
{
typedef property_graph_archetype_tag graph_tag;
typedef ValueArch vertex_property_type;
typedef ValueArch edge_property_type;
};
struct choose_edge_property_map_archetype {
template <typename Graph, typename Property, typename Tag>
struct bind_ {
typedef mutable_lvalue_property_map_archetype
<typename Graph::edge_descriptor, Property> type;
typedef lvalue_property_map_archetype
<typename Graph::edge_descriptor, Property> const_type;
};
};
template <>
struct edge_property_selector<property_graph_archetype_tag> {
typedef choose_edge_property_map_archetype type;
};
struct choose_vertex_property_map_archetype {
template <typename Graph, typename Property, typename Tag>
struct bind_ {
typedef mutable_lvalue_property_map_archetype
<typename Graph::vertex_descriptor, Property> type;
typedef lvalue_property_map_archetype
<typename Graph::vertex_descriptor, Property> const_type;
};
};
template <>
struct vertex_property_selector<property_graph_archetype_tag> {
typedef choose_vertex_property_map_archetype type;
};
template <typename G, typename P, typename V>
typename property_map<property_graph_archetype<G, P, V>, P>::type
get(P, property_graph_archetype<G, P, V>&) {
typename property_map<property_graph_archetype<G, P, V>, P>::type pmap;
return pmap;
}
template <typename G, typename P, typename V>
typename property_map<property_graph_archetype<G, P, V>, P>::const_type
get(P, const property_graph_archetype<G, P, V>&) {
typename property_map<property_graph_archetype<G, P, V>, P>::const_type pmap;
return pmap;
}
template <typename G, typename P, typename K, typename V>
typename property_traits<typename property_map<property_graph_archetype<G, P, V>, P>::const_type>::value_type
get(P p, const property_graph_archetype<G, P, V>& g, K k) {
return get( get(p, g), k);
}
template <typename G, typename P, typename V, typename Key>
void
put(P p, property_graph_archetype<G, P, V>& g,
const Key& key, const V& value)
{
typedef typename boost::property_map<property_graph_archetype<G, P, V>, P>::type Map;
Map pmap = get(p, g);
put(pmap, key, value);
}
struct color_value_archetype {
color_value_archetype() { }
color_value_archetype(detail::dummy_constructor) { }
bool operator==(const color_value_archetype& ) const { return true; }
bool operator!=(const color_value_archetype& ) const { return true; }
};
template <>
struct color_traits<color_value_archetype> {
static color_value_archetype white()
{
return color_value_archetype
(static_object<detail::dummy_constructor>::get());
}
static color_value_archetype gray()
{
return color_value_archetype
(static_object<detail::dummy_constructor>::get());
}
static color_value_archetype black()
{
return color_value_archetype
(static_object<detail::dummy_constructor>::get());
}
};
template <typename T>
class buffer_archetype {
public:
void push(const T&) {}
void pop() {}
T& top() { return static_object<T>::get(); }
const T& top() const { return static_object<T>::get(); }
bool empty() const { return true; }
};
} // namespace boost
#endif // BOOST_GRAPH_ARCHETYPES_HPP