blob: 4c477dfb17efb65ed7db782407484cdf333c3686 [file] [log] [blame]
// r_c_shortest_paths.hpp header file
// Copyright Michael Drexl 2005, 2006.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_R_C_SHORTEST_PATHS_HPP
#define BOOST_GRAPH_R_C_SHORTEST_PATHS_HPP
#include <map>
#include <queue>
#include <vector>
#include <boost/graph/graph_traits.hpp>
namespace boost {
// r_c_shortest_paths_label struct
template<class Graph, class Resource_Container>
struct r_c_shortest_paths_label
{
r_c_shortest_paths_label
( const unsigned long n,
const Resource_Container& rc = Resource_Container(),
const r_c_shortest_paths_label* const pl = 0,
const typename graph_traits<Graph>::edge_descriptor& ed =
graph_traits<Graph>::edge_descriptor(),
const typename graph_traits<Graph>::vertex_descriptor& vd =
graph_traits<Graph>::vertex_descriptor() )
: num( n ),
cumulated_resource_consumption( rc ),
p_pred_label( pl ),
pred_edge( ed ),
resident_vertex( vd ),
b_is_dominated( false ),
b_is_processed( false )
{}
r_c_shortest_paths_label& operator=( const r_c_shortest_paths_label& other )
{
if( this == &other )
return *this;
this->~r_c_shortest_paths_label();
new( this ) r_c_shortest_paths_label( other );
return *this;
}
const unsigned long num;
Resource_Container cumulated_resource_consumption;
const r_c_shortest_paths_label* const p_pred_label;
const typename graph_traits<Graph>::edge_descriptor pred_edge;
const typename graph_traits<Graph>::vertex_descriptor resident_vertex;
bool b_is_dominated;
bool b_is_processed;
}; // r_c_shortest_paths_label
template<class Graph, class Resource_Container>
inline bool operator==
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
return
l1.cumulated_resource_consumption == l2.cumulated_resource_consumption;
}
template<class Graph, class Resource_Container>
inline bool operator!=
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
return
!( l1 == l2 );
}
template<class Graph, class Resource_Container>
inline bool operator<
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
return
l1.cumulated_resource_consumption < l2.cumulated_resource_consumption;
}
template<class Graph, class Resource_Container>
inline bool operator>
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
return
l2.cumulated_resource_consumption < l1.cumulated_resource_consumption;
}
template<class Graph, class Resource_Container>
inline bool operator<=
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
return
l1 < l2 || l1 == l2;
}
template<class Graph, class Resource_Container>
inline bool operator>=
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
return l2 < l1 || l1 == l2;
}
namespace detail {
// ks_smart_pointer class
// from:
// Kuhlins, S.; Schader, M. (1999):
// Die C++-Standardbibliothek
// Springer, Berlin
// p. 333 f.
template<class T>
class ks_smart_pointer
{
public:
ks_smart_pointer( T* ptt = 0 ) : pt( ptt ) {}
ks_smart_pointer( const ks_smart_pointer& other ) : pt( other.pt ) {}
ks_smart_pointer& operator=( const ks_smart_pointer& other )
{ pt = other.pt; return *this; }
~ks_smart_pointer() {}
T& operator*() const { return *pt; }
T* operator->() const { return pt; }
T* get() const { return pt; }
operator T*() const { return pt; }
friend bool operator==( const ks_smart_pointer& t,
const ks_smart_pointer& u )
{ return *t.pt == *u.pt; }
friend bool operator!=( const ks_smart_pointer& t,
const ks_smart_pointer& u )
{ return *t.pt != *u.pt; }
friend bool operator<( const ks_smart_pointer& t,
const ks_smart_pointer& u )
{ return *t.pt < *u.pt; }
friend bool operator>( const ks_smart_pointer& t,
const ks_smart_pointer& u )
{ return *t.pt > *u.pt; }
friend bool operator<=( const ks_smart_pointer& t,
const ks_smart_pointer& u )
{ return *t.pt <= *u.pt; }
friend bool operator>=( const ks_smart_pointer& t,
const ks_smart_pointer& u )
{ return *t.pt >= *u.pt; }
private:
T* pt;
}; // ks_smart_pointer
// r_c_shortest_paths_dispatch function (body/implementation)
template<class Graph,
class VertexIndexMap,
class EdgeIndexMap,
class Resource_Container,
class Resource_Extension_Function,
class Dominance_Function,
class Label_Allocator,
class Visitor>
void r_c_shortest_paths_dispatch
( const Graph& g,
const VertexIndexMap& vertex_index_map,
const EdgeIndexMap& /*edge_index_map*/,
typename graph_traits<Graph>::vertex_descriptor s,
typename graph_traits<Graph>::vertex_descriptor t,
// each inner vector corresponds to a pareto-optimal path
std::vector
<std::vector
<typename graph_traits
<Graph>::edge_descriptor> >& pareto_optimal_solutions,
std::vector
<Resource_Container>& pareto_optimal_resource_containers,
bool b_all_pareto_optimal_solutions,
// to initialize the first label/resource container
// and to carry the type information
const Resource_Container& rc,
Resource_Extension_Function& ref,
Dominance_Function& dominance,
// to specify the memory management strategy for the labels
Label_Allocator /*la*/,
Visitor vis )
{
pareto_optimal_resource_containers.clear();
pareto_optimal_solutions.clear();
unsigned long i_label_num = 0;
typedef
typename
Label_Allocator::template rebind
<r_c_shortest_paths_label
<Graph, Resource_Container> >::other LAlloc;
LAlloc l_alloc;
typedef
ks_smart_pointer
<r_c_shortest_paths_label<Graph, Resource_Container> > Splabel;
std::priority_queue<Splabel, std::vector<Splabel>, std::greater<Splabel> >
unprocessed_labels;
bool b_feasible = true;
r_c_shortest_paths_label<Graph, Resource_Container>* first_label =
l_alloc.allocate( 1 );
l_alloc.construct
( first_label,
r_c_shortest_paths_label
<Graph, Resource_Container>( i_label_num++,
rc,
0,
typename graph_traits<Graph>::
edge_descriptor(),
s ) );
Splabel splabel_first_label = Splabel( first_label );
unprocessed_labels.push( splabel_first_label );
std::vector<std::list<Splabel> > vec_vertex_labels( num_vertices( g ) );
vec_vertex_labels[vertex_index_map[s]].push_back( splabel_first_label );
std::vector<typename std::list<Splabel>::iterator>
vec_last_valid_positions_for_dominance( num_vertices( g ) );
for( int i = 0; i < static_cast<int>( num_vertices( g ) ); ++i )
vec_last_valid_positions_for_dominance[i] = vec_vertex_labels[i].begin();
std::vector<int> vec_last_valid_index_for_dominance( num_vertices( g ), 0 );
std::vector<bool>
b_vec_vertex_already_checked_for_dominance( num_vertices( g ), false );
while( unprocessed_labels.size() )
{
Splabel cur_label = unprocessed_labels.top();
unprocessed_labels.pop();
vis.on_label_popped( *cur_label, g );
// an Splabel object in unprocessed_labels and the respective Splabel
// object in the respective list<Splabel> of vec_vertex_labels share their
// embedded r_c_shortest_paths_label object
// to avoid memory leaks, dominated
// r_c_shortest_paths_label objects are marked and deleted when popped
// from unprocessed_labels, as they can no longer be deleted at the end of
// the function; only the Splabel object in unprocessed_labels still
// references the r_c_shortest_paths_label object
// this is also for efficiency, because the else branch is executed only
// if there is a chance that extending the
// label leads to new undominated labels, which in turn is possible only
// if the label to be extended is undominated
if( !cur_label->b_is_dominated )
{
int i_cur_resident_vertex_num = cur_label->resident_vertex;
std::list<Splabel>& list_labels_cur_vertex =
vec_vertex_labels[i_cur_resident_vertex_num];
if( static_cast<int>( list_labels_cur_vertex.size() ) >= 2
&& vec_last_valid_index_for_dominance[i_cur_resident_vertex_num]
< static_cast<int>( list_labels_cur_vertex.size() ) )
{
typename std::list<Splabel>::iterator outer_iter =
list_labels_cur_vertex.begin();
bool b_outer_iter_at_or_beyond_last_valid_pos_for_dominance = false;
while( outer_iter != list_labels_cur_vertex.end() )
{
Splabel cur_outer_splabel = *outer_iter;
typename std::list<Splabel>::iterator inner_iter = outer_iter;
if( !b_outer_iter_at_or_beyond_last_valid_pos_for_dominance
&& outer_iter ==
vec_last_valid_positions_for_dominance
[i_cur_resident_vertex_num] )
b_outer_iter_at_or_beyond_last_valid_pos_for_dominance = true;
if( !b_vec_vertex_already_checked_for_dominance
[i_cur_resident_vertex_num]
|| b_outer_iter_at_or_beyond_last_valid_pos_for_dominance )
{
++inner_iter;
}
else
{
inner_iter =
vec_last_valid_positions_for_dominance
[i_cur_resident_vertex_num];
++inner_iter;
}
bool b_outer_iter_erased = false;
while( inner_iter != list_labels_cur_vertex.end() )
{
Splabel cur_inner_splabel = *inner_iter;
if( dominance( cur_outer_splabel->
cumulated_resource_consumption,
cur_inner_splabel->
cumulated_resource_consumption ) )
{
typename std::list<Splabel>::iterator buf = inner_iter;
++inner_iter;
list_labels_cur_vertex.erase( buf );
if( cur_inner_splabel->b_is_processed )
{
l_alloc.destroy( cur_inner_splabel.get() );
l_alloc.deallocate( cur_inner_splabel.get(), 1 );
}
else
cur_inner_splabel->b_is_dominated = true;
continue;
}
else
++inner_iter;
if( dominance( cur_inner_splabel->
cumulated_resource_consumption,
cur_outer_splabel->
cumulated_resource_consumption ) )
{
typename std::list<Splabel>::iterator buf = outer_iter;
++outer_iter;
list_labels_cur_vertex.erase( buf );
b_outer_iter_erased = true;
if( cur_outer_splabel->b_is_processed )
{
l_alloc.destroy( cur_outer_splabel.get() );
l_alloc.deallocate( cur_outer_splabel.get(), 1 );
}
else
cur_outer_splabel->b_is_dominated = true;
break;
}
}
if( !b_outer_iter_erased )
++outer_iter;
}
if( static_cast<int>( list_labels_cur_vertex.size() ) > 1 )
vec_last_valid_positions_for_dominance[i_cur_resident_vertex_num] =
(--(list_labels_cur_vertex.end()));
else
vec_last_valid_positions_for_dominance[i_cur_resident_vertex_num] =
list_labels_cur_vertex.begin();
b_vec_vertex_already_checked_for_dominance
[i_cur_resident_vertex_num] = true;
vec_last_valid_index_for_dominance[i_cur_resident_vertex_num] =
static_cast<int>( list_labels_cur_vertex.size() ) - 1;
}
}
if( !b_all_pareto_optimal_solutions && cur_label->resident_vertex == t )
{
// the devil don't sleep
if( cur_label->b_is_dominated )
{
l_alloc.destroy( cur_label.get() );
l_alloc.deallocate( cur_label.get(), 1 );
}
while( unprocessed_labels.size() )
{
Splabel l = unprocessed_labels.top();
unprocessed_labels.pop();
// delete only dominated labels, because nondominated labels are
// deleted at the end of the function
if( l->b_is_dominated )
{
l_alloc.destroy( l.get() );
l_alloc.deallocate( l.get(), 1 );
}
}
break;
}
if( !cur_label->b_is_dominated )
{
cur_label->b_is_processed = true;
vis.on_label_not_dominated( *cur_label, g );
typename graph_traits<Graph>::vertex_descriptor cur_vertex =
cur_label->resident_vertex;
typename graph_traits<Graph>::out_edge_iterator oei, oei_end;
for( boost::tie( oei, oei_end ) = out_edges( cur_vertex, g );
oei != oei_end;
++oei )
{
b_feasible = true;
r_c_shortest_paths_label<Graph, Resource_Container>* new_label =
l_alloc.allocate( 1 );
l_alloc.construct( new_label,
r_c_shortest_paths_label
<Graph, Resource_Container>
( i_label_num++,
cur_label->cumulated_resource_consumption,
cur_label.get(),
*oei,
target( *oei, g ) ) );
b_feasible =
ref( g,
new_label->cumulated_resource_consumption,
new_label->p_pred_label->cumulated_resource_consumption,
new_label->pred_edge );
if( !b_feasible )
{
vis.on_label_not_feasible( *new_label, g );
l_alloc.destroy( new_label );
l_alloc.deallocate( new_label, 1 );
}
else
{
const r_c_shortest_paths_label<Graph, Resource_Container>&
ref_new_label = *new_label;
vis.on_label_feasible( ref_new_label, g );
Splabel new_sp_label( new_label );
vec_vertex_labels[vertex_index_map[new_sp_label->resident_vertex]].
push_back( new_sp_label );
unprocessed_labels.push( new_sp_label );
}
}
}
else
{
vis.on_label_dominated( *cur_label, g );
l_alloc.destroy( cur_label.get() );
l_alloc.deallocate( cur_label.get(), 1 );
}
}
std::list<Splabel> dsplabels = vec_vertex_labels[vertex_index_map[t]];
typename std::list<Splabel>::const_iterator csi = dsplabels.begin();
typename std::list<Splabel>::const_iterator csi_end = dsplabels.end();
// if d could be reached from o
if( dsplabels.size() )
{
for( ; csi != csi_end; ++csi )
{
std::vector<typename graph_traits<Graph>::edge_descriptor>
cur_pareto_optimal_path;
const r_c_shortest_paths_label<Graph, Resource_Container>* p_cur_label =
(*csi).get();
pareto_optimal_resource_containers.
push_back( p_cur_label->cumulated_resource_consumption );
while( p_cur_label->num != 0 )
{
cur_pareto_optimal_path.push_back( p_cur_label->pred_edge );
p_cur_label = p_cur_label->p_pred_label;
}
pareto_optimal_solutions.push_back( cur_pareto_optimal_path );
if( !b_all_pareto_optimal_solutions )
break;
}
}
int i_size = static_cast<int>( vec_vertex_labels.size() );
for( int i = 0; i < i_size; ++i )
{
const std::list<Splabel>& list_labels_cur_vertex = vec_vertex_labels[i];
csi_end = list_labels_cur_vertex.end();
for( csi = list_labels_cur_vertex.begin(); csi != csi_end; ++csi )
{
l_alloc.destroy( (*csi).get() );
l_alloc.deallocate( (*csi).get(), 1 );
}
}
} // r_c_shortest_paths_dispatch
} // detail
// default_r_c_shortest_paths_visitor struct
struct default_r_c_shortest_paths_visitor
{
template<class Label, class Graph>
void on_label_popped( const Label&, const Graph& ) {}
template<class Label, class Graph>
void on_label_feasible( const Label&, const Graph& ) {}
template<class Label, class Graph>
void on_label_not_feasible( const Label&, const Graph& ) {}
template<class Label, class Graph>
void on_label_dominated( const Label&, const Graph& ) {}
template<class Label, class Graph>
void on_label_not_dominated( const Label&, const Graph& ) {}
}; // default_r_c_shortest_paths_visitor
// default_r_c_shortest_paths_allocator
typedef
std::allocator<int> default_r_c_shortest_paths_allocator;
// default_r_c_shortest_paths_allocator
// r_c_shortest_paths functions (handle/interface)
// first overload:
// - return all pareto-optimal solutions
// - specify Label_Allocator and Visitor arguments
template<class Graph,
class VertexIndexMap,
class EdgeIndexMap,
class Resource_Container,
class Resource_Extension_Function,
class Dominance_Function,
class Label_Allocator,
class Visitor>
void r_c_shortest_paths
( const Graph& g,
const VertexIndexMap& vertex_index_map,
const EdgeIndexMap& edge_index_map,
typename graph_traits<Graph>::vertex_descriptor s,
typename graph_traits<Graph>::vertex_descriptor t,
// each inner vector corresponds to a pareto-optimal path
std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >&
pareto_optimal_solutions,
std::vector<Resource_Container>& pareto_optimal_resource_containers,
// to initialize the first label/resource container
// and to carry the type information
const Resource_Container& rc,
const Resource_Extension_Function& ref,
const Dominance_Function& dominance,
// to specify the memory management strategy for the labels
Label_Allocator la,
Visitor vis )
{
r_c_shortest_paths_dispatch( g,
vertex_index_map,
edge_index_map,
s,
t,
pareto_optimal_solutions,
pareto_optimal_resource_containers,
true,
rc,
ref,
dominance,
la,
vis );
}
// second overload:
// - return only one pareto-optimal solution
// - specify Label_Allocator and Visitor arguments
template<class Graph,
class VertexIndexMap,
class EdgeIndexMap,
class Resource_Container,
class Resource_Extension_Function,
class Dominance_Function,
class Label_Allocator,
class Visitor>
void r_c_shortest_paths
( const Graph& g,
const VertexIndexMap& vertex_index_map,
const EdgeIndexMap& edge_index_map,
typename graph_traits<Graph>::vertex_descriptor s,
typename graph_traits<Graph>::vertex_descriptor t,
std::vector<typename graph_traits<Graph>::edge_descriptor>&
pareto_optimal_solution,
Resource_Container& pareto_optimal_resource_container,
// to initialize the first label/resource container
// and to carry the type information
const Resource_Container& rc,
const Resource_Extension_Function& ref,
const Dominance_Function& dominance,
// to specify the memory management strategy for the labels
Label_Allocator la,
Visitor vis )
{
// each inner vector corresponds to a pareto-optimal path
std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >
pareto_optimal_solutions;
std::vector<Resource_Container> pareto_optimal_resource_containers;
r_c_shortest_paths_dispatch( g,
vertex_index_map,
edge_index_map,
s,
t,
pareto_optimal_solutions,
pareto_optimal_resource_containers,
false,
rc,
ref,
dominance,
la,
vis );
if (!pareto_optimal_solutions.empty()) {
pareto_optimal_solution = pareto_optimal_solutions[0];
pareto_optimal_resource_container = pareto_optimal_resource_containers[0];
}
}
// third overload:
// - return all pareto-optimal solutions
// - use default Label_Allocator and Visitor
template<class Graph,
class VertexIndexMap,
class EdgeIndexMap,
class Resource_Container,
class Resource_Extension_Function,
class Dominance_Function>
void r_c_shortest_paths
( const Graph& g,
const VertexIndexMap& vertex_index_map,
const EdgeIndexMap& edge_index_map,
typename graph_traits<Graph>::vertex_descriptor s,
typename graph_traits<Graph>::vertex_descriptor t,
// each inner vector corresponds to a pareto-optimal path
std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >&
pareto_optimal_solutions,
std::vector<Resource_Container>& pareto_optimal_resource_containers,
// to initialize the first label/resource container
// and to carry the type information
const Resource_Container& rc,
const Resource_Extension_Function& ref,
const Dominance_Function& dominance )
{
r_c_shortest_paths_dispatch( g,
vertex_index_map,
edge_index_map,
s,
t,
pareto_optimal_solutions,
pareto_optimal_resource_containers,
true,
rc,
ref,
dominance,
default_r_c_shortest_paths_allocator(),
default_r_c_shortest_paths_visitor() );
}
// fourth overload:
// - return only one pareto-optimal solution
// - use default Label_Allocator and Visitor
template<class Graph,
class VertexIndexMap,
class EdgeIndexMap,
class Resource_Container,
class Resource_Extension_Function,
class Dominance_Function>
void r_c_shortest_paths
( const Graph& g,
const VertexIndexMap& vertex_index_map,
const EdgeIndexMap& edge_index_map,
typename graph_traits<Graph>::vertex_descriptor s,
typename graph_traits<Graph>::vertex_descriptor t,
std::vector<typename graph_traits<Graph>::edge_descriptor>&
pareto_optimal_solution,
Resource_Container& pareto_optimal_resource_container,
// to initialize the first label/resource container
// and to carry the type information
const Resource_Container& rc,
const Resource_Extension_Function& ref,
const Dominance_Function& dominance )
{
// each inner vector corresponds to a pareto-optimal path
std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >
pareto_optimal_solutions;
std::vector<Resource_Container> pareto_optimal_resource_containers;
r_c_shortest_paths_dispatch( g,
vertex_index_map,
edge_index_map,
s,
t,
pareto_optimal_solutions,
pareto_optimal_resource_containers,
false,
rc,
ref,
dominance,
default_r_c_shortest_paths_allocator(),
default_r_c_shortest_paths_visitor() );
if (!pareto_optimal_solutions.empty()) {
pareto_optimal_solution = pareto_optimal_solutions[0];
pareto_optimal_resource_container = pareto_optimal_resource_containers[0];
}
}
// r_c_shortest_paths
// check_r_c_path function
template<class Graph,
class Resource_Container,
class Resource_Extension_Function>
void check_r_c_path( const Graph& g,
const std::vector
<typename graph_traits
<Graph>::edge_descriptor>& ed_vec_path,
const Resource_Container& initial_resource_levels,
// if true, computed accumulated final resource levels must
// be equal to desired_final_resource_levels
// if false, computed accumulated final resource levels must
// be less than or equal to desired_final_resource_levels
bool b_result_must_be_equal_to_desired_final_resource_levels,
const Resource_Container& desired_final_resource_levels,
Resource_Container& actual_final_resource_levels,
const Resource_Extension_Function& ref,
bool& b_is_a_path_at_all,
bool& b_feasible,
bool& b_correctly_extended,
typename graph_traits<Graph>::edge_descriptor&
ed_last_extended_arc )
{
int i_size_ed_vec_path = static_cast<int>( ed_vec_path.size() );
std::vector<typename graph_traits<Graph>::edge_descriptor> buf_path;
if( i_size_ed_vec_path == 0 )
b_feasible = true;
else
{
if( i_size_ed_vec_path == 1
|| target( ed_vec_path[0], g ) == source( ed_vec_path[1], g ) )
buf_path = ed_vec_path;
else
for( int i = i_size_ed_vec_path - 1; i >= 0; --i )
buf_path.push_back( ed_vec_path[i] );
for( int i = 0; i < i_size_ed_vec_path - 1; ++i )
{
if( target( buf_path[i], g ) != source( buf_path[i + 1], g ) )
{
b_is_a_path_at_all = false;
b_feasible = false;
b_correctly_extended = false;
return;
}
}
}
b_is_a_path_at_all = true;
b_feasible = true;
b_correctly_extended = false;
Resource_Container current_resource_levels = initial_resource_levels;
actual_final_resource_levels = current_resource_levels;
for( int i = 0; i < i_size_ed_vec_path; ++i )
{
ed_last_extended_arc = buf_path[i];
b_feasible = ref( g,
actual_final_resource_levels,
current_resource_levels,
buf_path[i] );
current_resource_levels = actual_final_resource_levels;
if( !b_feasible )
return;
}
if( b_result_must_be_equal_to_desired_final_resource_levels )
b_correctly_extended =
actual_final_resource_levels == desired_final_resource_levels ?
true : false;
else
{
if( actual_final_resource_levels < desired_final_resource_levels
|| actual_final_resource_levels == desired_final_resource_levels )
b_correctly_extended = true;
}
} // check_path
} // namespace
#endif // BOOST_GRAPH_R_C_SHORTEST_PATHS_HPP