blob: 102e902cb0103de900c7e6006425be9eeae6bffb [file] [log] [blame]
/*-----------------------------------------------------------------------------+
Copyright (c) 2010-2010: Joachim Faulhaber
+------------------------------------------------------------------------------+
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENCE.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
+-----------------------------------------------------------------------------*/
#ifndef BOOST_ICL_CONCEPT_ELEMENT_ASSOCIATOR_HPP_JOFA_100921
#define BOOST_ICL_CONCEPT_ELEMENT_ASSOCIATOR_HPP_JOFA_100921
#include <boost/config.hpp>
#include <boost/icl/type_traits/is_associative_element_container.hpp>
#include <boost/icl/type_traits/is_key_container_of.hpp>
#include <boost/icl/type_traits/is_combinable.hpp>
#include <boost/icl/detail/subset_comparer.hpp>
#include <boost/icl/concept/element_set.hpp>
#include <boost/icl/concept/element_map.hpp>
namespace boost{ namespace icl
{
//==============================================================================
//= Size
//==============================================================================
template<class Type>
typename enable_if<is_element_container<Type>, std::size_t>::type
iterative_size(const Type& object)
{
return object.size();
}
template<class Type>
typename enable_if<is_associative_element_container<Type>, typename Type::size_type>::type
size(const Type& object)
{
return icl::iterative_size(object);
}
template<class Type>
typename enable_if<is_associative_element_container<Type>, typename Type::size_type>::type
cardinality(const Type& object)
{
return icl::iterative_size(object);
}
//==============================================================================
//= Containedness<ElementSet|ElementMap>
//==============================================================================
//------------------------------------------------------------------------------
//- bool within(c P&, c T&) T:{s}|{m} P:{e}|{i} fragment_types|key_types
//------------------------------------------------------------------------------
/** Checks if a key is in the associative container */
template<class Type>
typename enable_if<is_associative_element_container<Type>, bool>::type
within(const typename Type::key_type& key, const Type& super)
{
return !(super.find(key) == super.end());
}
//------------------------------------------------------------------------------
//- bool within(c P&, c T&) T:{s}|{m} P:{s'} fragment_types|key_types
//------------------------------------------------------------------------------
template<class SubT, class SuperT>
typename enable_if<mpl::and_< is_associative_element_container<SuperT>
, is_key_container_of<SubT, SuperT> >,
bool>::type
within(const SubT& sub, const SuperT& super)
{
if(icl::is_empty(sub)) return true;
if(icl::is_empty(super)) return false;
if(icl::size(super) < icl::size(sub)) return false;
typename SubT::const_iterator common_lwb_;
typename SubT::const_iterator common_upb_;
if(!Set::common_range(common_lwb_, common_upb_, sub, super))
return false;
typename SubT::const_iterator sub_ = sub.begin();
typename SuperT::const_iterator super_;
while(sub_ != sub.end())
{
super_ = super.find(key_value<SubT>(sub_));
if(super_ == super.end())
return false;
else if(!co_equal(sub_, super_, &sub, &super))
return false;
++sub_;
}
return true;
}
//------------------------------------------------------------------------------
//- bool contains(c T&, c P&) T:{s}|{m} P:{e}|{i} fragment_types|key_types
//------------------------------------------------------------------------------
template<class Type>
typename enable_if<is_associative_element_container<Type>, bool>::type
contains(const Type& super, const typename Type::key_type& key)
{
return icl::within(key, super);
}
//------------------------------------------------------------------------------
//- bool contains(c T&, c P&) T:{s}|{m} P:{s'} fragment_types|key_types
//------------------------------------------------------------------------------
template<class SubT, class SuperT>
typename enable_if<mpl::and_< is_associative_element_container<SuperT>
, is_key_container_of<SubT, SuperT> >,
bool>::type
contains(const SuperT& super, const SubT& sub)
{
return icl::within(sub, super);
}
//==============================================================================
//= Equivalences and Orderings
//==============================================================================
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4996) //'std::equal': Function call with parameters that may be unsafe - this call relies on the caller to check that the passed values are correct. To disable this warning, use -D_SCL_SECURE_NO_WARNINGS. See documentation on how to use Visual C++ 'Checked Iterators'
#endif // I do guarantee here that I am using the parameters correctly :)
/** Standard equality, which is lexicographical equality of the sets
as sequences, that are given by their Compare order. */
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, bool>::type
operator == (const Type& left, const Type& right)
{
return left.size() == right.size()
&& std::equal(left.begin(), left.end(), right.begin());
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, bool>::type
is_element_equal(const Type& left, const Type& right)
{ return left == right; }
/* Strict weak less ordering which is given by the Compare order */
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, bool>::type
operator < (const Type& left, const Type& right)
{
return std::lexicographical_compare(
left.begin(), left.end(), right.begin(), right.end(),
typename Type::element_compare()
);
}
template<class LeftT, class RightT>
typename enable_if<is_concept_equivalent<is_element_container,LeftT, RightT>,
int>::type
inclusion_compare(const LeftT& left, const RightT& right)
{
return Set::subset_compare(left, right,
left.begin(), left.end(),
right.begin(), right.end());
}
//==============================================================================
//= Addition
//==============================================================================
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type&
operator += (Type& object, const typename Type::value_type& operand)
{
return icl::add(object, operand);
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator + (Type object, const typename Type::value_type& operand)
{
return object += operand;
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator + (const typename Type::value_type& operand, Type object)
{
return object += operand;
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator += (Type& object, const Type& operand)
{
if(&object == &operand)
return object;
typename Type::iterator prior_ = object.end();
ICL_const_FORALL(typename Type, it_, operand)
prior_ = icl::add(object, prior_, *it_);
return object;
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator + (Type object, const Type& operand)
{
return object += operand;
}
//==============================================================================
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type&
operator |= (Type& object, const typename Type::value_type& operand)
{
return icl::add(object, operand);
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator | (Type object, const typename Type::value_type& operand)
{
return object += operand;
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator | (const typename Type::value_type& operand, Type object)
{
return object += operand;
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type&
operator |= (Type& object, const Type& operand)
{
return object += operand;
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator | (Type object, const Type& operand)
{
return object += operand;
}
//==============================================================================
//= Insertion
//==============================================================================
//------------------------------------------------------------------------------
//- V insert(T&, c P&) T:{s}|{m} P:{e}|{b} fragment_type
//------------------------------------------------------------------------------
template<class Type>
typename enable_if<is_associative_element_container<Type>,
std::pair<typename Type::iterator,bool> >::type
insert(Type& object, const typename Type::value_type& operand)
{
return object.insert(operand);
}
template<class Type>
typename enable_if<is_associative_element_container<Type>,
typename Type::iterator>::type
insert(Type& object, typename Type::iterator prior,
const typename Type::value_type& operand)
{
return object.insert(prior, operand);
}
//------------------------------------------------------------------------------
//- T insert(T&, c T&) T:{s m} map fragment_type
//------------------------------------------------------------------------------
template<class Type>
typename enable_if<is_associative_element_container<Type>, Type>::type&
insert(Type& object, const Type& addend)
{
typedef typename Type::iterator iterator;
iterator prior_ = object.end();
ICL_const_FORALL(typename Type, elem_, addend)
icl::insert(object, prior_, *elem_);
return object;
}
//==============================================================================
//= Erasure
//==============================================================================
template<class Type>
typename enable_if<is_associative_element_container<Type>, typename Type::size_type>::type
erase(Type& object, const typename Type::key_type& key_value)
{
typedef typename Type::size_type size_type;
typename Type::iterator it_ = object.find(key_value);
if(it_ != object.end())
{
object.erase(it_);
return unit_element<size_type>::value();
}
return identity_element<size_type>::value();
}
template<class Type>
typename enable_if<is_associative_element_container<Type>, Type>::type&
erase(Type& object, const Type& erasure)
{
ICL_const_FORALL(typename Type, elem_, erasure)
icl::erase(object, *elem_);
return object;
}
//==============================================================================
//= Subtraction<ElementSet|ElementMap>
//==============================================================================
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type&
operator -= (Type& object, const typename Type::value_type& operand)
{
return icl::subtract(object, operand);
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator - (Type object, const typename Type::value_type& operand)
{
return object -= operand;
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type&
operator -= (Type& object, const Type& subtrahend)
{
ICL_const_FORALL(typename Type, it_, subtrahend)
icl::subtract(object, *it_);
return object;
}
template <class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator - (Type object, const Type& subtrahend)
{
return object -= subtrahend;
}
//==============================================================================
//= Intersection
//==============================================================================
//------------------------------------------------------------------------------
//- void add_intersection(T&, c T&, c P&) T:{s}{m} P:{e}{e} key_type
//------------------------------------------------------------------------------
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, void>::type
add_intersection(Type& section, const Type& object,
const typename Type::key_type& operand)
{
typedef typename Type::const_iterator const_iterator;
const_iterator it_ = object.find(operand);
if(it_ != object.end())
icl::add(section, *it_);
}
//------------------------------------------------------------------------------
//- void add_intersection(T&, c T&, c P&) T:{s}{m} P:{s}{s} set key_type
//------------------------------------------------------------------------------
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, void>::type
add_intersection(Type& section, const Type& object,
const typename key_container_type_of<Type>::type& operand)
{
typedef typename key_container_type_of<Type>::type key_container_type;
typedef typename key_container_type::const_iterator const_iterator;
const_iterator common_lwb_, common_upb_;
if(!Set::common_range(common_lwb_, common_upb_, operand, object))
return;
const_iterator sec_ = common_lwb_;
while(sec_ != common_upb_)
add_intersection(section, object, *sec_++);
}
//------------------------------------------------------------------------------
//- Intersection<ElementMap|ElementSet>
//------------------------------------------------------------------------------
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type&
operator &= (Type& object, const typename Type::key_type& operand)
{
Type section;
add_intersection(section, object, operand);
object.swap(section);
return object;
}
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator & (Type object, const typename Type::key_type& operand)
{
return object &= operand;
}
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator & (const typename Type::key_type& operand, Type object)
{
return object &= operand;
}
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type&
operator &= (Type& object, const typename key_container_type_of<Type>::type& operand)
{
Type section;
add_intersection(section, object, operand);
object.swap(section);
return object;
}
//------------------------------------------------------------------------------
template<class Type, class CoType>
inline typename enable_if<is_associative_element_container<Type>, bool>::type
disjoint(const Type& left, const Type& right)
{
return !intersects(left, right);
}
//==============================================================================
//= Symmetric difference<ElementSet|ElementMap>
//==============================================================================
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator ^ (Type object, const typename Type::value_type& operand)
{
return icl::flip(object, operand);
}
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator ^ (const typename Type::value_type& operand, Type object)
{
return icl::flip(object, operand);
}
template<class Type>
inline typename enable_if<is_associative_element_container<Type>, Type>::type
operator ^ (Type object, const Type& operand)
{
return object ^= operand;
}
//==============================================================================
//= Manipulation by predicates
//==============================================================================
template<class Type, class Predicate>
typename enable_if<is_associative_element_container<Type>, Type>::type&
erase_if(const Predicate& pred, Type& object)
{
typename Type::iterator it_ = object.begin();
while(it_ != object.end())
if(pred(*it_))
icl::erase(object, it_++);
else ++it_;
return object;
}
template<class Type, class Predicate>
inline typename enable_if<is_associative_element_container<Type>, Type>::type&
add_if(const Predicate& pred, Type& object, const Type& src)
{
typename Type::const_iterator it_ = src.begin();
while(it_ != src.end())
if(pred(*it_))
icl::add(object, *it_++);
return object;
}
template<class Type, class Predicate>
inline typename enable_if<is_associative_element_container<Type>, Type>::type&
assign_if(const Predicate& pred, Type& object, const Type& src)
{
icl::clear(object);
return add_if(object, src, pred);
}
}} // namespace boost icl
#endif