blob: ca86df4728710df0f3b644fbfc48ccb0330d0627 [file] [log] [blame]
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2009. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINERS_STRING_HPP
#define BOOST_CONTAINERS_STRING_HPP
#include "detail/config_begin.hpp"
#include INCLUDE_BOOST_CONTAINER_DETAIL_WORKAROUND_HPP
#include INCLUDE_BOOST_CONTAINER_DETAIL_WORKAROUND_HPP
#include INCLUDE_BOOST_CONTAINER_CONTAINER_FWD_HPP
#include INCLUDE_BOOST_CONTAINER_DETAIL_UTILITIES_HPP
#include INCLUDE_BOOST_CONTAINER_DETAIL_ITERATORS_HPP
#include INCLUDE_BOOST_CONTAINER_DETAIL_ALGORITHMS_HPP
#include INCLUDE_BOOST_CONTAINER_DETAIL_VERSION_TYPE_HPP
#include INCLUDE_BOOST_CONTAINER_DETAIL_ALLOCATION_TYPE_HPP
#include INCLUDE_BOOST_CONTAINER_DETAIL_MPL_HPP
#include INCLUDE_BOOST_CONTAINER_MOVE_HPP
#include <boost/static_assert.hpp>
#include <functional>
#include <string>
#include <stdexcept>
#include <utility>
#include <iterator>
#include <memory>
#include <algorithm>
#include <iosfwd>
#include <istream>
#include <ostream>
#include <ios>
#include <locale>
#include <cstddef>
#include <climits>
#include INCLUDE_BOOST_CONTAINER_DETAIL_TYPE_TRAITS_HPP
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
namespace container {
#else
namespace boost {
namespace container {
#endif
/// @cond
namespace containers_detail {
// ------------------------------------------------------------
// Class basic_string_base.
// basic_string_base is a helper class that makes it it easier to write
// an exception-safe version of basic_string. The constructor allocates,
// but does not initialize, a block of memory. The destructor
// deallocates, but does not destroy elements within, a block of
// memory. The destructor assumes that the memory either is the internal buffer,
// or else points to a block of memory that was allocated using _String_base's
// allocator and whose size is this->m_storage.
template <class A>
class basic_string_base
{
basic_string_base();
BOOST_MOVE_MACRO_MOVABLE_BUT_NOT_COPYABLE(basic_string_base)
public:
typedef A allocator_type;
//! The stored allocator type
typedef allocator_type stored_allocator_type;
typedef typename A::pointer pointer;
typedef typename A::value_type value_type;
typedef typename A::size_type size_type;
basic_string_base(const allocator_type& a)
: members_(a)
{ init(); }
basic_string_base(const allocator_type& a, std::size_t n)
: members_(a)
{
this->init();
this->allocate_initial_block(n);
}
basic_string_base(BOOST_MOVE_MACRO_RV_REF(basic_string_base) b)
: members_(b.members_)
{
init();
this->swap(b);
}
~basic_string_base()
{
this->deallocate_block();
if(!this->is_short()){
static_cast<long_t*>(static_cast<void*>(&this->members_.m_repr.r))->~long_t();
}
}
private:
//This is the structure controlling a long string
struct long_t
{
size_type is_short : 1;
size_type length : (sizeof(size_type)*CHAR_BIT - 1);
size_type storage;
pointer start;
long_t()
{}
long_t(const long_t &other)
{
this->is_short = other.is_short;
length = other.length;
storage = other.storage;
start = other.start;
}
long_t &operator =(const long_t &other)
{
this->is_short = other.is_short;
length = other.length;
storage = other.storage;
start = other.start;
return *this;
}
};
//This basic type should have the same alignment as long_t
//iG typedef typename type_with_alignment<containers_detail::alignment_of<long_t>::value>::type
// long_alignment_type;
typedef void *long_alignment_type;
BOOST_STATIC_ASSERT((containers_detail::alignment_of<long_alignment_type>::value %
containers_detail::alignment_of<long_t>::value) == 0);
//This type is the first part of the structure controlling a short string
//The "data" member stores
struct short_header
{
unsigned char is_short : 1;
unsigned char length : (CHAR_BIT - 1);
};
//This type has the same alignment and size as long_t but it's POD
//so, unlike long_t, it can be placed in a union
struct long_raw_t
{
long_alignment_type a;
unsigned char b[sizeof(long_t) - sizeof(long_alignment_type)];
};
protected:
static const size_type MinInternalBufferChars = 8;
static const size_type AlignmentOfValueType =
alignment_of<value_type>::value;
static const size_type ShortDataOffset =
containers_detail::ct_rounded_size<sizeof(short_header), AlignmentOfValueType>::value;
static const size_type ZeroCostInternalBufferChars =
(sizeof(long_t) - ShortDataOffset)/sizeof(value_type);
static const size_type UnalignedFinalInternalBufferChars =
(ZeroCostInternalBufferChars > MinInternalBufferChars) ?
ZeroCostInternalBufferChars : MinInternalBufferChars;
struct short_t
{
short_header h;
value_type data[UnalignedFinalInternalBufferChars];
};
union repr_t
{
long_raw_t r;
short_t s;
short_t &short_repr() const
{ return *const_cast<short_t *>(&s); }
long_t &long_repr() const
{ return *static_cast<long_t*>(const_cast<void*>(static_cast<const void*>(&r))); }
};
struct members_holder
: public A
{
members_holder(const A &a)
: A(a)
{}
repr_t m_repr;
} members_;
const A &alloc() const
{ return members_; }
A &alloc()
{ return members_; }
static const size_type InternalBufferChars = (sizeof(repr_t) - ShortDataOffset)/sizeof(value_type);
private:
static const size_type MinAllocation = InternalBufferChars*2;
protected:
bool is_short() const
{ return static_cast<bool>(this->members_.m_repr.s.h.is_short != 0); }
void is_short(bool yes)
{
if(yes && !this->is_short()){
static_cast<long_t*>(static_cast<void*>(&this->members_.m_repr.r))->~long_t();
}
else{
new(static_cast<void*>(&this->members_.m_repr.r))long_t();
}
this->members_.m_repr.s.h.is_short = yes;
}
private:
void init()
{
this->members_.m_repr.s.h.is_short = 1;
this->members_.m_repr.s.h.length = 0;
}
protected:
typedef containers_detail::integral_constant<unsigned, 1> allocator_v1;
typedef containers_detail::integral_constant<unsigned, 2> allocator_v2;
typedef containers_detail::integral_constant<unsigned,
boost::container::containers_detail::version<A>::value> alloc_version;
std::pair<pointer, bool>
allocation_command(allocation_type command,
size_type limit_size,
size_type preferred_size,
size_type &received_size, pointer reuse = 0)
{
if(this->is_short() && (command & (expand_fwd | expand_bwd)) ){
reuse = pointer(0);
command &= ~(expand_fwd | expand_bwd);
}
return this->allocation_command
(command, limit_size, preferred_size, received_size, reuse, alloc_version());
}
std::pair<pointer, bool>
allocation_command(allocation_type command,
size_type limit_size,
size_type preferred_size,
size_type &received_size,
const pointer &reuse,
allocator_v1)
{
(void)limit_size;
(void)reuse;
if(!(command & allocate_new))
return std::pair<pointer, bool>(pointer(0), false);
received_size = preferred_size;
return std::make_pair(this->alloc().allocate(received_size), false);
}
std::pair<pointer, bool>
allocation_command(allocation_type command,
size_type limit_size,
size_type preferred_size,
size_type &received_size,
pointer reuse,
allocator_v2)
{
return this->alloc().allocation_command(command, limit_size, preferred_size,
received_size, reuse);
}
size_type next_capacity(size_type additional_objects) const
{ return get_next_capacity(this->alloc().max_size(), this->priv_storage(), additional_objects); }
void deallocate(pointer p, std::size_t n)
{
if (p && (n > InternalBufferChars))
this->alloc().deallocate(p, n);
}
void construct(pointer p, const value_type &value = value_type())
{ new((void*)containers_detail::get_pointer(p)) value_type(value); }
void destroy(pointer p, size_type n)
{
for(; n--; ++p)
containers_detail::get_pointer(p)->~value_type();
}
void destroy(pointer p)
{ containers_detail::get_pointer(p)->~value_type(); }
void allocate_initial_block(std::size_t n)
{
if (n <= this->max_size()) {
if(n > InternalBufferChars){
size_type new_cap = this->next_capacity(n);
pointer p = this->allocation_command(allocate_new, n, new_cap, new_cap).first;
this->is_short(false);
this->priv_addr(p);
this->priv_size(0);
this->priv_storage(new_cap);
}
}
else
throw_length_error();
}
void deallocate_block()
{ this->deallocate(this->priv_addr(), this->priv_storage()); }
std::size_t max_size() const
{ return this->alloc().max_size() - 1; }
// Helper functions for exception handling.
void throw_length_error() const
{ throw(std::length_error("basic_string")); }
void throw_out_of_range() const
{ throw(std::out_of_range("basic_string")); }
protected:
size_type priv_capacity() const
{ return this->priv_storage() - 1; }
pointer priv_addr() const
{ return this->is_short() ? pointer(&this->members_.m_repr.short_repr().data[0]) : this->members_.m_repr.long_repr().start; }
void priv_addr(pointer addr)
{ this->members_.m_repr.long_repr().start = addr; }
size_type priv_storage() const
{ return this->is_short() ? InternalBufferChars : this->members_.m_repr.long_repr().storage; }
void priv_storage(size_type storage)
{
if(!this->is_short())
this->members_.m_repr.long_repr().storage = storage;
}
size_type priv_size() const
{ return this->is_short() ? this->members_.m_repr.short_repr().h.length : this->members_.m_repr.long_repr().length; }
void priv_size(size_type sz)
{
if(this->is_short())
this->members_.m_repr.s.h.length = (unsigned char)sz;
else
this->members_.m_repr.long_repr().length = static_cast<typename A::size_type>(sz);
}
void swap(basic_string_base& other)
{
if(this->is_short()){
if(other.is_short()){
std::swap(this->members_.m_repr, other.members_.m_repr);
}
else{
repr_t copied(this->members_.m_repr);
this->members_.m_repr.long_repr() = other.members_.m_repr.long_repr();
other.members_.m_repr = copied;
}
}
else{
if(other.is_short()){
repr_t copied(other.members_.m_repr);
other.members_.m_repr.long_repr() = this->members_.m_repr.long_repr();
this->members_.m_repr = copied;
}
else{
std::swap(this->members_.m_repr.long_repr(), other.members_.m_repr.long_repr());
}
}
allocator_type & this_al = this->alloc(), &other_al = other.alloc();
if(this_al != other_al){
containers_detail::do_swap(this_al, other_al);
}
}
};
} //namespace containers_detail {
/// @endcond
//! The basic_string class represents a Sequence of characters. It contains all the
//! usual operations of a Sequence, and, additionally, it contains standard string
//! operations such as search and concatenation.
//!
//! The basic_string class is parameterized by character type, and by that type's
//! Character Traits.
//!
//! This class has performance characteristics very much like vector<>, meaning,
//! for example, that it does not perform reference-count or copy-on-write, and that
//! concatenation of two strings is an O(N) operation.
//!
//! Some of basic_string's member functions use an unusual method of specifying positions
//! and ranges. In addition to the conventional method using iterators, many of
//! basic_string's member functions use a single value pos of type size_type to represent a
//! position (in which case the position is begin() + pos, and many of basic_string's
//! member functions use two values, pos and n, to represent a range. In that case pos is
//! the beginning of the range and n is its size. That is, the range is
//! [begin() + pos, begin() + pos + n).
//!
//! Note that the C++ standard does not specify the complexity of basic_string operations.
//! In this implementation, basic_string has performance characteristics very similar to
//! those of vector: access to a single character is O(1), while copy and concatenation
//! are O(N).
//!
//! In this implementation, begin(),
//! end(), rbegin(), rend(), operator[], c_str(), and data() do not invalidate iterators.
//! In this implementation, iterators are only invalidated by member functions that
//! explicitly change the string's contents.
template <class CharT, class Traits, class A>
class basic_string
: private containers_detail::basic_string_base<A>
{
/// @cond
private:
BOOST_MOVE_MACRO_COPYABLE_AND_MOVABLE(basic_string)
typedef containers_detail::basic_string_base<A> base_t;
static const typename base_t::size_type InternalBufferChars = base_t::InternalBufferChars;
protected:
// A helper class to use a char_traits as a function object.
template <class Tr>
struct Eq_traits
: public std::binary_function<typename Tr::char_type,
typename Tr::char_type,
bool>
{
bool operator()(const typename Tr::char_type& x,
const typename Tr::char_type& y) const
{ return Tr::eq(x, y); }
};
template <class Tr>
struct Not_within_traits
: public std::unary_function<typename Tr::char_type, bool>
{
typedef const typename Tr::char_type* Pointer;
const Pointer m_first;
const Pointer m_last;
Not_within_traits(Pointer f, Pointer l)
: m_first(f), m_last(l) {}
bool operator()(const typename Tr::char_type& x) const
{
return std::find_if(m_first, m_last,
std::bind1st(Eq_traits<Tr>(), x)) == m_last;
}
};
/// @endcond
public:
//! The allocator type
typedef A allocator_type;
//! The stored allocator type
typedef allocator_type stored_allocator_type;
//! The type of object, CharT, stored in the string
typedef CharT value_type;
//! The second template parameter Traits
typedef Traits traits_type;
//! Pointer to CharT
typedef typename A::pointer pointer;
//! Const pointer to CharT
typedef typename A::const_pointer const_pointer;
//! Reference to CharT
typedef typename A::reference reference;
//! Const reference to CharT
typedef typename A::const_reference const_reference;
//! An unsigned integral type
typedef typename A::size_type size_type;
//! A signed integral type
typedef typename A::difference_type difference_type;
//! Iterator used to iterate through a string. It's a Random Access Iterator
typedef pointer iterator;
//! Const iterator used to iterate through a string. It's a Random Access Iterator
typedef const_pointer const_iterator;
//! Iterator used to iterate backwards through a string
typedef std::reverse_iterator<iterator> reverse_iterator;
//! Const iterator used to iterate backwards through a string
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
//! The largest possible value of type size_type. That is, size_type(-1).
static const size_type npos;
/// @cond
private:
typedef constant_iterator<CharT, difference_type> cvalue_iterator;
/// @endcond
public: // Constructor, destructor, assignment.
/// @cond
struct reserve_t {};
/// @endcond
basic_string(reserve_t, std::size_t n,
const allocator_type& a = allocator_type())
: base_t(a, n + 1)
{ this->priv_terminate_string(); }
//! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
explicit basic_string(const allocator_type& a = allocator_type())
: base_t(a, InternalBufferChars)
{ this->priv_terminate_string(); }
//! <b>Effects</b>: Copy constructs a basic_string.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws.
basic_string(const basic_string& s)
: base_t(s.alloc())
{ this->priv_range_initialize(s.begin(), s.end()); }
//! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
basic_string(BOOST_MOVE_MACRO_RV_REF(basic_string) s)
: base_t(BOOST_CONTAINER_MOVE_NAMESPACE::move((base_t&)s))
{}
//! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
//! and is initialized by a specific number of characters of the s string.
basic_string(const basic_string& s, size_type pos, size_type n = npos,
const allocator_type& a = allocator_type())
: base_t(a)
{
if (pos > s.size())
this->throw_out_of_range();
else
this->priv_range_initialize
(s.begin() + pos, s.begin() + pos + containers_detail::min_value(n, s.size() - pos));
}
//! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
//! and is initialized by a specific number of characters of the s c-string.
basic_string(const CharT* s, size_type n,
const allocator_type& a = allocator_type())
: base_t(a)
{ this->priv_range_initialize(s, s + n); }
//! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
//! and is initialized by the null-terminated s c-string.
basic_string(const CharT* s,
const allocator_type& a = allocator_type())
: base_t(a)
{ this->priv_range_initialize(s, s + Traits::length(s)); }
//! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
//! and is initialized by n copies of c.
basic_string(size_type n, CharT c,
const allocator_type& a = allocator_type())
: base_t(a)
{
this->priv_range_initialize(cvalue_iterator(c, n),
cvalue_iterator());
}
//! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
//! and a range of iterators.
template <class InputIterator>
basic_string(InputIterator f, InputIterator l,
const allocator_type& a = allocator_type())
: base_t(a)
{
//Dispatch depending on integer/iterator
const bool aux_boolean = containers_detail::is_convertible<InputIterator, std::size_t>::value;
typedef containers_detail::bool_<aux_boolean> Result;
this->priv_initialize_dispatch(f, l, Result());
}
//! <b>Effects</b>: Destroys the basic_string. All used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
~basic_string()
{}
//! <b>Effects</b>: Copy constructs a string.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
basic_string& operator=(BOOST_MOVE_MACRO_COPY_ASSIGN_REF(basic_string) s)
{
if (&s != this)
this->assign(s.begin(), s.end());
return *this;
}
//! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
basic_string& operator=(BOOST_MOVE_MACRO_RV_REF(basic_string) ms)
{
basic_string &s = ms;
if (&s != this){
this->swap(s);
}
return *this;
}
//! <b>Effects</b>: Assignment from a null-terminated c-string.
basic_string& operator=(const CharT* s)
{ return this->assign(s, s + Traits::length(s)); }
//! <b>Effects</b>: Assignment from character.
basic_string& operator=(CharT c)
{ return this->assign(static_cast<size_type>(1), c); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return this->priv_addr(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return this->priv_addr(); }
//! <b>Effects</b>: Returns an iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return this->priv_addr() + this->priv_size(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return this->priv_addr() + this->priv_size(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin()
{ return reverse_iterator(this->priv_addr() + this->priv_size()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(this->priv_addr() + this->priv_size()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend()
{ return reverse_iterator(this->priv_addr()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const
{ return const_reverse_iterator(this->priv_addr()); }
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return this->alloc(); }
//! <b>Effects</b>: Returns the number of the elements contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return this->priv_size(); }
//! <b>Effects</b>: Returns the number of the elements contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type length() const
{ return this->size(); }
//! <b>Effects</b>: Returns the largest possible size of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return base_t::max_size(); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type n, CharT c)
{
if (n <= size())
this->erase(this->begin() + n, this->end());
else
this->append(n - this->size(), c);
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are default constructed.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type n)
{ resize(n, this->priv_null()); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
void reserve(size_type res_arg)
{
if (res_arg > this->max_size())
this->throw_length_error();
if (this->capacity() < res_arg){
size_type n = containers_detail::max_value(res_arg, this->size()) + 1;
size_type new_cap = this->next_capacity(n);
pointer new_start = this->allocation_command
(allocate_new, n, new_cap, new_cap).first;
size_type new_length = 0;
new_length += priv_uninitialized_copy
(this->priv_addr(), this->priv_addr() + this->priv_size(), new_start);
this->priv_construct_null(new_start + new_length);
this->deallocate_block();
this->is_short(false);
this->priv_addr(new_start);
this->priv_size(new_length);
this->priv_storage(new_cap);
}
}
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const
{ return this->priv_capacity(); }
//! <b>Effects</b>: Erases all the elements of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the vector.
void clear()
{
if (!empty()) {
Traits::assign(*this->priv_addr(), this->priv_null());
this->priv_size(0);
}
}
//! <b>Effects</b>: Returns true if the vector contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return !this->priv_size(); }
//! <b>Requires</b>: size() < n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference operator[](size_type n)
{ return *(this->priv_addr() + n); }
//! <b>Requires</b>: size() < n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference operator[](size_type n) const
{ return *(this->priv_addr() + n); }
//! <b>Requires</b>: size() < n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
reference at(size_type n) {
if (n >= size())
this->throw_out_of_range();
return *(this->priv_addr() + n);
}
//! <b>Requires</b>: size() < n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
const_reference at(size_type n) const {
if (n >= size())
this->throw_out_of_range();
return *(this->priv_addr() + n);
}
//! <b>Effects</b>: Appends string s to *this.
basic_string& operator+=(const basic_string& s)
{ return this->append(s); }
//! <b>Effects</b>: Appends c-string s to *this.
basic_string& operator+=(const CharT* s)
{ return this->append(s); }
//! <b>Effects</b>: Appends character c to *this.
basic_string& operator+=(CharT c)
{ this->push_back(c); return *this; }
//! <b>Effects</b>: Appends string s to *this.
basic_string& append(const basic_string& s)
{ return this->append(s.begin(), s.end()); }
//! <b>Effects</b>: Appends the range [pos, pos + n) from string s to *this.
basic_string& append(const basic_string& s, size_type pos, size_type n)
{
if (pos > s.size())
this->throw_out_of_range();
return this->append(s.begin() + pos,
s.begin() + pos + containers_detail::min_value(n, s.size() - pos));
}
//! <b>Effects</b>: Appends the range [s, s + n) from c-string s to *this.
basic_string& append(const CharT* s, size_type n)
{ return this->append(s, s + n); }
//! <b>Effects</b>: Appends the c-string s to *this.
basic_string& append(const CharT* s)
{ return this->append(s, s + Traits::length(s)); }
//! <b>Effects</b>: Appends the n times the character c to *this.
basic_string& append(size_type n, CharT c)
{ return this->append(cvalue_iterator(c, n), cvalue_iterator()); }
//! <b>Effects</b>: Appends the range [first, last) *this.
template <class InputIter>
basic_string& append(InputIter first, InputIter last)
{ this->insert(this->end(), first, last); return *this; }
//! <b>Effects</b>: Inserts a copy of c at the end of the vector.
void push_back(CharT c)
{
if (this->priv_size() < this->capacity()){
this->priv_construct_null(this->priv_addr() + (this->priv_size() + 1));
Traits::assign(this->priv_addr()[this->priv_size()], c);
this->priv_size(this->priv_size()+1);
}
else{
//No enough memory, insert a new object at the end
this->append((size_type)1, c);
}
}
//! <b>Effects</b>: Removes the last element from the vector.
void pop_back()
{
Traits::assign(this->priv_addr()[this->priv_size()-1], this->priv_null());
this->priv_size(this->priv_size()-1);;
}
//! <b>Effects</b>: Assigns the value s to *this.
basic_string& assign(const basic_string& s)
{ return this->operator=(s); }
//! <b>Effects</b>: Moves the resources from ms *this.
basic_string& assign(BOOST_MOVE_MACRO_RV_REF(basic_string) ms)
{ return this->operator=(ms);}
//! <b>Effects</b>: Assigns the range [pos, pos + n) from s to *this.
basic_string& assign(const basic_string& s,
size_type pos, size_type n) {
if (pos > s.size())
this->throw_out_of_range();
return this->assign(s.begin() + pos,
s.begin() + pos + containers_detail::min_value(n, s.size() - pos));
}
//! <b>Effects</b>: Assigns the range [s, s + n) from s to *this.
basic_string& assign(const CharT* s, size_type n)
{ return this->assign(s, s + n); }
//! <b>Effects</b>: Assigns the c-string s to *this.
basic_string& assign(const CharT* s)
{ return this->assign(s, s + Traits::length(s)); }
//! <b>Effects</b>: Assigns the character c n-times to *this.
basic_string& assign(size_type n, CharT c)
{ return this->assign(cvalue_iterator(c, n), cvalue_iterator()); }
//! <b>Effects</b>: Assigns the range [first, last) to *this.
template <class InputIter>
basic_string& assign(InputIter first, InputIter last)
{
//Dispatch depending on integer/iterator
const bool aux_boolean = containers_detail::is_convertible<InputIter, std::size_t>::value;
typedef containers_detail::bool_<aux_boolean> Result;
return this->priv_assign_dispatch(first, last, Result());
}
//! <b>Effects</b>: Assigns the range [f, l) to *this.
basic_string& assign(const CharT* f, const CharT* l)
{
const std::ptrdiff_t n = l - f;
if (static_cast<size_type>(n) <= size()) {
Traits::copy(containers_detail::get_pointer(this->priv_addr()), f, n);
this->erase(this->priv_addr() + n, this->priv_addr() + this->priv_size());
}
else {
Traits::copy(containers_detail::get_pointer(this->priv_addr()), f, this->priv_size());
this->append(f + this->priv_size(), l);
}
return *this;
}
//! <b>Effects</b>: Inserts the string s before pos.
basic_string& insert(size_type pos, const basic_string& s)
{
if (pos > size())
this->throw_out_of_range();
if (this->size() > this->max_size() - s.size())
this->throw_length_error();
this->insert(this->priv_addr() + pos, s.begin(), s.end());
return *this;
}
//! <b>Effects</b>: Inserts the range [pos, pos + n) from string s before pos.
basic_string& insert(size_type pos, const basic_string& s,
size_type beg, size_type n)
{
if (pos > this->size() || beg > s.size())
this->throw_out_of_range();
size_type len = containers_detail::min_value(n, s.size() - beg);
if (this->size() > this->max_size() - len)
this->throw_length_error();
const CharT *beg_ptr = containers_detail::get_pointer(s.begin()) + beg;
const CharT *end_ptr = beg_ptr + len;
this->insert(this->priv_addr() + pos, beg_ptr, end_ptr);
return *this;
}
//! <b>Effects</b>: Inserts the range [s, s + n) before pos.
basic_string& insert(size_type pos, const CharT* s, size_type n)
{
if (pos > this->size())
this->throw_out_of_range();
if (this->size() > this->max_size() - n)
this->throw_length_error();
this->insert(this->priv_addr() + pos, s, s + n);
return *this;
}
//! <b>Effects</b>: Inserts the c-string s before pos.
basic_string& insert(size_type pos, const CharT* s)
{
if (pos > size())
this->throw_out_of_range();
size_type len = Traits::length(s);
if (this->size() > this->max_size() - len)
this->throw_length_error();
this->insert(this->priv_addr() + pos, s, s + len);
return *this;
}
//! <b>Effects</b>: Inserts the character c n-times before pos.
basic_string& insert(size_type pos, size_type n, CharT c)
{
if (pos > this->size())
this->throw_out_of_range();
if (this->size() > this->max_size() - n)
this->throw_length_error();
this->insert(this->priv_addr() + pos, n, c);
return *this;
}
//! <b>Effects</b>: Inserts the character c before position.
iterator insert(iterator position, CharT c)
{
size_type new_offset = position - this->priv_addr() + 1;
this->insert(position, cvalue_iterator(c, 1),
cvalue_iterator());
return this->priv_addr() + new_offset;
}
//! <b>Effects</b>: Inserts the character c n-times before position.
void insert(iterator position, std::size_t n, CharT c)
{
this->insert(position, cvalue_iterator(c, n),
cvalue_iterator());
}
//! <b>Effects</b>: Inserts the range [first, last) before position.
template <class InputIter>
void insert(iterator p, InputIter first, InputIter last)
{
//Dispatch depending on integer/iterator
const bool aux_boolean = containers_detail::is_convertible<InputIter, std::size_t>::value;
typedef containers_detail::bool_<aux_boolean> Result;
this->priv_insert_dispatch(p, first, last, Result());
}
//! <b>Effects</b>: Inserts the range [pos, pos + n).
basic_string& erase(size_type pos = 0, size_type n = npos)
{
if (pos > size())
this->throw_out_of_range();
erase(this->priv_addr() + pos, this->priv_addr() + pos + containers_detail::min_value(n, size() - pos));
return *this;
}
//! <b>Effects</b>: Erases the character pointed by position.
iterator erase(iterator position)
{
// The move includes the terminating null.
Traits::move(containers_detail::get_pointer(position),
containers_detail::get_pointer(position + 1),
this->priv_size() - (position - this->priv_addr()));
this->priv_size(this->priv_size()-1);
return position;
}
//! <b>Effects</b>: Erases the range [first, last).
iterator erase(iterator first, iterator last)
{
if (first != last) { // The move includes the terminating null.
size_type num_erased = last - first;
Traits::move(containers_detail::get_pointer(first),
containers_detail::get_pointer(last),
(this->priv_size() + 1)-(last - this->priv_addr()));
size_type new_length = this->priv_size() - num_erased;
this->priv_size(new_length);
}
return first;
}
//! <b>Effects</b>: Replaces a substring of *this with the string s.
basic_string& replace(size_type pos, size_type n,
const basic_string& s)
{
if (pos > size())
this->throw_out_of_range();
const size_type len = containers_detail::min_value(n, size() - pos);
if (this->size() - len >= this->max_size() - s.size())
this->throw_length_error();
return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len,
s.begin(), s.end());
}
//! <b>Effects</b>: Replaces a substring of *this with a substring of s.
basic_string& replace(size_type pos1, size_type n1,
const basic_string& s,
size_type pos2, size_type n2)
{
if (pos1 > size() || pos2 > s.size())
this->throw_out_of_range();
const size_type len1 = containers_detail::min_value(n1, size() - pos1);
const size_type len2 = containers_detail::min_value(n2, s.size() - pos2);
if (this->size() - len1 >= this->max_size() - len2)
this->throw_length_error();
return this->replace(this->priv_addr() + pos1, this->priv_addr() + pos1 + len1,
s.priv_addr() + pos2, s.priv_addr() + pos2 + len2);
}
//! <b>Effects</b>: Replaces a substring of *this with the first n1 characters of s.
basic_string& replace(size_type pos, size_type n1,
const CharT* s, size_type n2)
{
if (pos > size())
this->throw_out_of_range();
const size_type len = containers_detail::min_value(n1, size() - pos);
if (n2 > this->max_size() || size() - len >= this->max_size() - n2)
this->throw_length_error();
return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len,
s, s + n2);
}
//! <b>Effects</b>: Replaces a substring of *this with a null-terminated character array.
basic_string& replace(size_type pos, size_type n1,
const CharT* s)
{
if (pos > size())
this->throw_out_of_range();
const size_type len = containers_detail::min_value(n1, size() - pos);
const size_type n2 = Traits::length(s);
if (n2 > this->max_size() || size() - len >= this->max_size() - n2)
this->throw_length_error();
return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len,
s, s + Traits::length(s));
}
//! <b>Effects</b>: Replaces a substring of *this with n1 copies of c.
basic_string& replace(size_type pos, size_type n1,
size_type n2, CharT c)
{
if (pos > size())
this->throw_out_of_range();
const size_type len = containers_detail::min_value(n1, size() - pos);
if (n2 > this->max_size() || size() - len >= this->max_size() - n2)
this->throw_length_error();
return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len, n2, c);
}
//! <b>Effects</b>: Replaces a substring of *this with the string s.
basic_string& replace(iterator first, iterator last,
const basic_string& s)
{ return this->replace(first, last, s.begin(), s.end()); }
//! <b>Effects</b>: Replaces a substring of *this with the first n characters of s.
basic_string& replace(iterator first, iterator last,
const CharT* s, size_type n)
{ return this->replace(first, last, s, s + n); }
//! <b>Effects</b>: Replaces a substring of *this with a null-terminated character array.
basic_string& replace(iterator first, iterator last,
const CharT* s)
{ return this->replace(first, last, s, s + Traits::length(s)); }
//! <b>Effects</b>: Replaces a substring of *this with n copies of c.
basic_string& replace(iterator first, iterator last,
size_type n, CharT c)
{
const size_type len = static_cast<size_type>(last - first);
if (len >= n) {
Traits::assign(containers_detail::get_pointer(first), n, c);
erase(first + n, last);
}
else {
Traits::assign(containers_detail::get_pointer(first), len, c);
insert(last, n - len, c);
}
return *this;
}
//! <b>Effects</b>: Replaces a substring of *this with the range [f, l)
template <class InputIter>
basic_string& replace(iterator first, iterator last,
InputIter f, InputIter l)
{
//Dispatch depending on integer/iterator
const bool aux_boolean = containers_detail::is_convertible<InputIter, std::size_t>::value;
typedef containers_detail::bool_<aux_boolean> Result;
return this->priv_replace_dispatch(first, last, f, l, Result());
}
//! <b>Effects</b>: Copies a substring of *this to a buffer.
size_type copy(CharT* s, size_type n, size_type pos = 0) const
{
if (pos > size())
this->throw_out_of_range();
const size_type len = containers_detail::min_value(n, size() - pos);
Traits::copy(s, containers_detail::get_pointer(this->priv_addr() + pos), len);
return len;
}
//! <b>Effects</b>: Swaps the contents of two strings.
void swap(basic_string& x)
{ base_t::swap(x); }
//! <b>Returns</b>: Returns a pointer to a null-terminated array of characters
//! representing the string's contents. For any string s it is guaranteed
//! that the first s.size() characters in the array pointed to by s.c_str()
//! are equal to the character in s, and that s.c_str()[s.size()] is a null
//! character. Note, however, that it not necessarily the first null character.
//! Characters within a string are permitted to be null.
const CharT* c_str() const
{ return containers_detail::get_pointer(this->priv_addr()); }
//! <b>Returns</b>: Returns a pointer to an array of characters, not necessarily
//! null-terminated, representing the string's contents. data() is permitted,
//! but not required, to be identical to c_str(). The first size() characters
//! of that array are guaranteed to be identical to the characters in *this.
//! The return value of data() is never a null pointer, even if size() is zero.
const CharT* data() const
{ return containers_detail::get_pointer(this->priv_addr()); }
//! <b>Effects</b>: Searches for s as a substring of *this, beginning at
//! character pos of *this.
size_type find(const basic_string& s, size_type pos = 0) const
{ return find(s.c_str(), pos, s.size()); }
//! <b>Effects</b>: Searches for a null-terminated character array as a
//! substring of *this, beginning at character pos of *this.
size_type find(const CharT* s, size_type pos = 0) const
{ return find(s, pos, Traits::length(s)); }
//! <b>Effects</b>: Searches for the first n characters of s as a substring
//! of *this, beginning at character pos of *this.
size_type find(const CharT* s, size_type pos, size_type n) const
{
if (pos + n > size())
return npos;
else {
pointer finish = this->priv_addr() + this->priv_size();
const const_iterator result =
std::search(containers_detail::get_pointer(this->priv_addr() + pos),
containers_detail::get_pointer(finish),
s, s + n, Eq_traits<Traits>());
return result != finish ? result - begin() : npos;
}
}
//! <b>Effects</b>: Searches for the character c, beginning at character
//! position pos.
size_type find(CharT c, size_type pos = 0) const
{
if (pos >= size())
return npos;
else {
pointer finish = this->priv_addr() + this->priv_size();
const const_iterator result =
std::find_if(this->priv_addr() + pos, finish,
std::bind2nd(Eq_traits<Traits>(), c));
return result != finish ? result - begin() : npos;
}
}
//! <b>Effects</b>: Searches backward for s as a substring of *this,
//! beginning at character position min(pos, size())
size_type rfind(const basic_string& s, size_type pos = npos) const
{ return rfind(s.c_str(), pos, s.size()); }
//! <b>Effects</b>: Searches backward for a null-terminated character array
//! as a substring of *this, beginning at character min(pos, size())
size_type rfind(const CharT* s, size_type pos = npos) const
{ return rfind(s, pos, Traits::length(s)); }
//! <b>Effects</b>: Searches backward for the first n characters of s as a
//! substring of *this, beginning at character position min(pos, size()).
size_type rfind(const CharT* s, size_type pos, size_type n) const
{
const std::size_t len = size();
if (n > len)
return npos;
else if (n == 0)
return containers_detail::min_value(len, pos);
else {
const const_iterator last = begin() + containers_detail::min_value(len - n, pos) + n;
const const_iterator result = find_end(begin(), last,
s, s + n,
Eq_traits<Traits>());
return result != last ? result - begin() : npos;
}
}
//! <b>Effects</b>: Searches backward for a null-terminated character array
//! as a substring of *this, beginning at character min(pos, size()).
size_type rfind(CharT c, size_type pos = npos) const
{
const size_type len = size();
if (len < 1)
return npos;
else {
const const_iterator last = begin() + containers_detail::min_value(len - 1, pos) + 1;
const_reverse_iterator rresult =
std::find_if(const_reverse_iterator(last), rend(),
std::bind2nd(Eq_traits<Traits>(), c));
return rresult != rend() ? (rresult.base() - 1) - begin() : npos;
}
}
//! <b>Effects</b>: Searches within *this, beginning at pos, for the first
//! character that is equal to any character within s.
size_type find_first_of(const basic_string& s, size_type pos = 0) const
{ return find_first_of(s.c_str(), pos, s.size()); }
//! <b>Effects</b>: Searches within *this, beginning at pos, for the first
//! character that is equal to any character within s.
size_type find_first_of(const CharT* s, size_type pos = 0) const
{ return find_first_of(s, pos, Traits::length(s)); }
//! <b>Effects</b>: Searches within *this, beginning at pos, for the first
//! character that is equal to any character within the first n characters of s.
size_type find_first_of(const CharT* s, size_type pos,
size_type n) const
{
if (pos >= size())
return npos;
else {
pointer finish = this->priv_addr() + this->priv_size();
const_iterator result = std::find_first_of(this->priv_addr() + pos, finish,
s, s + n,
Eq_traits<Traits>());
return result != finish ? result - begin() : npos;
}
}
//! <b>Effects</b>: Searches within *this, beginning at pos, for the first
//! character that is equal to c.
size_type find_first_of(CharT c, size_type pos = 0) const
{ return find(c, pos); }
//! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
//! for the first character that is equal to any character within s.
size_type find_last_of(const basic_string& s,
size_type pos = npos) const
{ return find_last_of(s.c_str(), pos, s.size()); }
//! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()), for
//! the first character that is equal to any character within s.
size_type find_last_of(const CharT* s, size_type pos = npos) const
{ return find_last_of(s, pos, Traits::length(s)); }
//! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
//! for the first character that is equal to any character within the first n
//! characters of s.
size_type find_last_of(const CharT* s, size_type pos, size_type n) const
{
const size_type len = size();
if (len < 1)
return npos;
else {
const const_iterator last = this->priv_addr() + containers_detail::min_value(len - 1, pos) + 1;
const const_reverse_iterator rresult =
std::find_first_of(const_reverse_iterator(last), rend(),
s, s + n,
Eq_traits<Traits>());
return rresult != rend() ? (rresult.base() - 1) - this->priv_addr() : npos;
}
}
//! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()), for
//! the first character that is equal to c.
size_type find_last_of(CharT c, size_type pos = npos) const
{ return rfind(c, pos); }
//! <b>Effects</b>: Searches within *this, beginning at pos, for the first
//! character that is not equal to any character within s.
size_type find_first_not_of(const basic_string& s,
size_type pos = 0) const
{ return find_first_not_of(s.c_str(), pos, s.size()); }
//! <b>Effects</b>: Searches within *this, beginning at pos, for the first
//! character that is not equal to any character within s.
size_type find_first_not_of(const CharT* s, size_type pos = 0) const
{ return find_first_not_of(s, pos, Traits::length(s)); }
//! <b>Effects</b>: Searches within *this, beginning at pos, for the first
//! character that is not equal to any character within the first n
//! characters of s.
size_type find_first_not_of(const CharT* s, size_type pos,
size_type n) const
{
if (pos > size())
return npos;
else {
pointer finish = this->priv_addr() + this->priv_size();
const_iterator result = std::find_if(this->priv_addr() + pos, finish,
Not_within_traits<Traits>(s, s + n));
return result != finish ? result - this->priv_addr() : npos;
}
}
//! <b>Effects</b>: Searches within *this, beginning at pos, for the first
//! character that is not equal to c.
size_type find_first_not_of(CharT c, size_type pos = 0) const
{
if (pos > size())
return npos;
else {
pointer finish = this->priv_addr() + this->priv_size();
const_iterator result
= std::find_if(this->priv_addr() + pos, finish,
std::not1(std::bind2nd(Eq_traits<Traits>(), c)));
return result != finish ? result - begin() : npos;
}
}
//! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
//! for the first character that is not equal to any character within s.
size_type find_last_not_of(const basic_string& s,
size_type pos = npos) const
{ return find_last_not_of(s.c_str(), pos, s.size()); }
//! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()),
//! for the first character that is not equal to any character within s.
size_type find_last_not_of(const CharT* s, size_type pos = npos) const
{ return find_last_not_of(s, pos, Traits::length(s)); }
//! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
//! for the first character that is not equal to any character within the first
//! n characters of s.
size_type find_last_not_of(const CharT* s, size_type pos, size_type n) const
{
const size_type len = size();
if (len < 1)
return npos;
else {
const const_iterator last = begin() + containers_detail::min_value(len - 1, pos) + 1;
const const_reverse_iterator rresult =
std::find_if(const_reverse_iterator(last), rend(),
Not_within_traits<Traits>(s, s + n));
return rresult != rend() ? (rresult.base() - 1) - begin() : npos;
}
}
//! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()),
//! for the first character that is not equal to c.
size_type find_last_not_of(CharT c, size_type pos = npos) const
{
const size_type len = size();
if (len < 1)
return npos;
else {
const const_iterator last = begin() + containers_detail::min_value(len - 1, pos) + 1;
const_reverse_iterator rresult =
std::find_if(const_reverse_iterator(last), rend(),
std::not1(std::bind2nd(Eq_traits<Traits>(), c)));
return rresult != rend() ? (rresult.base() - 1) - begin() : npos;
}
}
//! <b>Effects</b>: Returns a substring of *this.
basic_string substr(size_type pos = 0, size_type n = npos) const
{
if (pos > size())
this->throw_out_of_range();
return basic_string(this->priv_addr() + pos,
this->priv_addr() + pos + containers_detail::min_value(n, size() - pos), this->alloc());
}
//! <b>Effects</b>: Three-way lexicographical comparison of s and *this.
int compare(const basic_string& s) const
{ return s_compare(this->priv_addr(), this->priv_addr() + this->priv_size(), s.priv_addr(), s.priv_addr() + s.priv_size()); }
//! <b>Effects</b>: Three-way lexicographical comparison of s and a substring
//! of *this.
int compare(size_type pos1, size_type n1, const basic_string& s) const
{
if (pos1 > size())
this->throw_out_of_range();
return s_compare(this->priv_addr() + pos1,
this->priv_addr() + pos1 + containers_detail::min_value(n1, size() - pos1),
s.priv_addr(), s.priv_addr() + s.priv_size());
}
//! <b>Effects</b>: Three-way lexicographical comparison of a substring of s
//! and a substring of *this.
int compare(size_type pos1, size_type n1,
const basic_string& s,
size_type pos2, size_type n2) const {
if (pos1 > size() || pos2 > s.size())
this->throw_out_of_range();
return s_compare(this->priv_addr() + pos1,
this->priv_addr() + pos1 + containers_detail::min_value(n1, size() - pos1),
s.priv_addr() + pos2,
s.priv_addr() + pos2 + containers_detail::min_value(n2, size() - pos2));
}
//! <b>Effects</b>: Three-way lexicographical comparison of s and *this.
int compare(const CharT* s) const
{ return s_compare(this->priv_addr(), this->priv_addr() + this->priv_size(), s, s + Traits::length(s)); }
//! <b>Effects</b>: Three-way lexicographical comparison of the first
//! min(len, traits::length(s) characters of s and a substring of *this.
int compare(size_type pos1, size_type n1, const CharT* s,
size_type n2 = npos) const
{
if (pos1 > size())
this->throw_out_of_range();
return s_compare(this->priv_addr() + pos1,
this->priv_addr() + pos1 + containers_detail::min_value(n1, size() - pos1),
s, s + n2);
}
/// @cond
private:
static int s_compare(const_pointer f1, const_pointer l1,
const_pointer f2, const_pointer l2)
{
const std::ptrdiff_t n1 = l1 - f1;
const std::ptrdiff_t n2 = l2 - f2;
const int cmp = Traits::compare(containers_detail::get_pointer(f1),
containers_detail::get_pointer(f2),
containers_detail::min_value(n1, n2));
return cmp != 0 ? cmp : (n1 < n2 ? -1 : (n1 > n2 ? 1 : 0));
}
void priv_construct_null(pointer p)
{ this->construct(p, 0); }
static CharT priv_null()
{ return (CharT) 0; }
// Helper functions used by constructors. It is a severe error for
// any of them to be called anywhere except from within constructors.
void priv_terminate_string()
{ this->priv_construct_null(this->priv_addr() + this->priv_size()); }
template <class InputIter>
void priv_range_initialize(InputIter f, InputIter l,
std::input_iterator_tag)
{
this->allocate_initial_block(InternalBufferChars);
this->priv_construct_null(this->priv_addr() + this->priv_size());
this->append(f, l);
}
template <class ForwardIter>
void priv_range_initialize(ForwardIter f, ForwardIter l,
std::forward_iterator_tag)
{
difference_type n = std::distance(f, l);
this->allocate_initial_block(containers_detail::max_value<difference_type>(n+1, InternalBufferChars));
priv_uninitialized_copy(f, l, this->priv_addr());
this->priv_size(n);
this->priv_terminate_string();
}
template <class InputIter>
void priv_range_initialize(InputIter f, InputIter l)
{
typedef typename std::iterator_traits<InputIter>::iterator_category Category;
this->priv_range_initialize(f, l, Category());
}
template <class Integer>
void priv_initialize_dispatch(Integer n, Integer x, containers_detail::true_)
{
this->allocate_initial_block(containers_detail::max_value<difference_type>(n+1, InternalBufferChars));
priv_uninitialized_fill_n(this->priv_addr(), n, x);
this->priv_size(n);
this->priv_terminate_string();
}
template <class InputIter>
void priv_initialize_dispatch(InputIter f, InputIter l, containers_detail::false_)
{ this->priv_range_initialize(f, l); }
template<class FwdIt, class Count> inline
void priv_uninitialized_fill_n(FwdIt first, Count count, const CharT val)
{
//Save initial position
FwdIt init = first;
BOOST_TRY{
//Construct objects
for (; count--; ++first){
this->construct(first, val);
}
}
BOOST_CATCH(...){
//Call destructors
for (; init != first; ++init){
this->destroy(init);
}
BOOST_RETHROW
}
BOOST_CATCH_END
}
template<class InpIt, class FwdIt> inline
size_type priv_uninitialized_copy(InpIt first, InpIt last, FwdIt dest)
{
//Save initial destination position
FwdIt dest_init = dest;
size_type constructed = 0;
BOOST_TRY{
//Try to build objects
for (; first != last; ++dest, ++first, ++constructed){
this->construct(dest, *first);
}
}
BOOST_CATCH(...){
//Call destructors
for (; constructed--; ++dest_init){
this->destroy(dest_init);
}
BOOST_RETHROW
}
BOOST_CATCH_END
return (constructed);
}
template <class Integer>
basic_string& priv_assign_dispatch(Integer n, Integer x, containers_detail::true_)
{ return this->assign((size_type) n, (CharT) x); }
template <class InputIter>
basic_string& priv_assign_dispatch(InputIter f, InputIter l,
containers_detail::false_)
{
size_type cur = 0;
CharT *ptr = containers_detail::get_pointer(this->priv_addr());
while (f != l && cur != this->priv_size()) {
Traits::assign(*ptr, *f);
++f;
++cur;
++ptr;
}
if (f == l)
this->erase(this->priv_addr() + cur, this->priv_addr() + this->priv_size());
else
this->append(f, l);
return *this;
}
template <class InputIter>
void priv_insert(iterator p, InputIter first, InputIter last, std::input_iterator_tag)
{
for ( ; first != last; ++first, ++p) {
p = this->insert(p, *first);
}
}
template <class ForwardIter>
void priv_insert(iterator position, ForwardIter first,
ForwardIter last, std::forward_iterator_tag)
{
if (first != last) {
size_type n = std::distance(first, last);
size_type remaining = this->capacity() - this->priv_size();
const size_type old_size = this->size();
pointer old_start = this->priv_addr();
bool enough_capacity = false;
std::pair<pointer, bool> allocation_ret;
size_type new_cap = 0;
//Check if we have enough capacity
if (remaining >= n){
enough_capacity = true;
}
else {
//Otherwise expand current buffer or allocate new storage
new_cap = this->next_capacity(n);
allocation_ret = this->allocation_command
(allocate_new | expand_fwd | expand_bwd, old_size + n + 1,
new_cap, new_cap, old_start);
//Check forward expansion
if(old_start == allocation_ret.first){
enough_capacity = true;
this->priv_storage(new_cap);
}
}
//Reuse same buffer
if(enough_capacity){
const size_type elems_after =
this->priv_size() - (position - this->priv_addr());
size_type old_length = this->priv_size();
if (elems_after >= n) {
pointer pointer_past_last = this->priv_addr() + this->priv_size() + 1;
priv_uninitialized_copy(this->priv_addr() + (this->priv_size() - n + 1),
pointer_past_last, pointer_past_last);
this->priv_size(this->priv_size()+n);
Traits::move(containers_detail::get_pointer(position + n),
containers_detail::get_pointer(position),
(elems_after - n) + 1);
this->priv_copy(first, last, position);
}
else {
ForwardIter mid = first;
std::advance(mid, elems_after + 1);
priv_uninitialized_copy(mid, last, this->priv_addr() + this->priv_size() + 1);
this->priv_size(this->priv_size() + (n - elems_after));
priv_uninitialized_copy
(position, this->priv_addr() + old_length + 1,
this->priv_addr() + this->priv_size());
this->priv_size(this->priv_size() + elems_after);
this->priv_copy(first, mid, position);
}
}
else{
pointer new_start = allocation_ret.first;
if(!allocation_ret.second){
//Copy data to new buffer
size_type new_length = 0;
//This can't throw, since characters are POD
new_length += priv_uninitialized_copy
(this->priv_addr(), position, new_start);
new_length += priv_uninitialized_copy
(first, last, new_start + new_length);
new_length += priv_uninitialized_copy
(position, this->priv_addr() + this->priv_size(),
new_start + new_length);
this->priv_construct_null(new_start + new_length);
this->deallocate_block();
this->is_short(false);
this->priv_addr(new_start);
this->priv_size(new_length);
this->priv_storage(new_cap);
}
else{
//value_type is POD, so backwards expansion is much easier
//than with vector<T>
value_type *oldbuf = containers_detail::get_pointer(old_start);
value_type *newbuf = containers_detail::get_pointer(new_start);
value_type *pos = containers_detail::get_pointer(position);
size_type before = pos - oldbuf;
//First move old data
Traits::move(newbuf, oldbuf, before);
Traits::move(newbuf + before + n, pos, old_size - before);
//Now initialize the new data
priv_uninitialized_copy(first, last, new_start + before);
this->priv_construct_null(new_start + (old_size + n));
this->is_short(false);
this->priv_addr(new_start);
this->priv_size(old_size + n);
this->priv_storage(new_cap);
}
}
}
}
template <class Integer>
void priv_insert_dispatch(iterator p, Integer n, Integer x,
containers_detail::true_)
{ insert(p, (size_type) n, (CharT) x); }
template <class InputIter>
void priv_insert_dispatch(iterator p, InputIter first, InputIter last,
containers_detail::false_)
{
typedef typename std::iterator_traits<InputIter>::iterator_category Category;
priv_insert(p, first, last, Category());
}
template <class InputIterator>
void priv_copy(InputIterator first, InputIterator last, iterator result)
{
for ( ; first != last; ++first, ++result)
Traits::assign(*result, *first);
}
void priv_copy(const CharT* first, const CharT* last, CharT* result)
{ Traits::copy(result, first, last - first); }
template <class Integer>
basic_string& priv_replace_dispatch(iterator first, iterator last,
Integer n, Integer x,
containers_detail::true_)
{ return this->replace(first, last, (size_type) n, (CharT) x); }
template <class InputIter>
basic_string& priv_replace_dispatch(iterator first, iterator last,
InputIter f, InputIter l,
containers_detail::false_)
{
typedef typename std::iterator_traits<InputIter>::iterator_category Category;
return this->priv_replace(first, last, f, l, Category());
}
template <class InputIter>
basic_string& priv_replace(iterator first, iterator last,
InputIter f, InputIter l, std::input_iterator_tag)
{
for ( ; first != last && f != l; ++first, ++f)
Traits::assign(*first, *f);
if (f == l)
this->erase(first, last);
else
this->insert(last, f, l);
return *this;
}
template <class ForwardIter>
basic_string& priv_replace(iterator first, iterator last,
ForwardIter f, ForwardIter l,
std::forward_iterator_tag)
{
difference_type n = std::distance(f, l);
const difference_type len = last - first;
if (len >= n) {
this->priv_copy(f, l, first);
this->erase(first + n, last);
}
else {
ForwardIter m = f;
std::advance(m, len);
this->priv_copy(f, m, first);
this->insert(last, m, l);
}
return *this;
}
/// @endcond
};
//!Typedef for a basic_string of
//!narrow characters
typedef basic_string
<char
,std::char_traits<char>
,std::allocator<char> >
string;
//!Typedef for a basic_string of
//!narrow characters
typedef basic_string
<wchar_t
,std::char_traits<wchar_t>
,std::allocator<wchar_t> >
wstring;
/// @cond
template <class CharT, class Traits, class A>
const typename basic_string<CharT,Traits,A>::size_type
basic_string<CharT,Traits,A>::npos
= (typename basic_string<CharT,Traits,A>::size_type) -1;
/// @endcond
// ------------------------------------------------------------
// Non-member functions.
// Operator+
template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(const basic_string<CharT,Traits,A>& x,
const basic_string<CharT,Traits,A>& y)
{
typedef basic_string<CharT,Traits,A> str_t;
typedef typename str_t::reserve_t reserve_t;
reserve_t reserve;
str_t result(reserve, x.size() + y.size(), x.alloc());
result.append(x);
result.append(y);
return result;
}
template <class CharT, class Traits, class A> inline
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A)
operator+(
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A) mx
, const basic_string<CharT,Traits,A>& y)
{
mx += y;
return BOOST_CONTAINER_MOVE_NAMESPACE::move(mx);
}
template <class CharT, class Traits, class A> inline
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A)
operator+(const basic_string<CharT,Traits,A>& x,
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A) my)
{
typedef typename basic_string<CharT,Traits,A>::size_type size_type;
return my.replace(size_type(0), size_type(0), x);
}
template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(const CharT* s, const basic_string<CharT,Traits,A>& y)
{
typedef basic_string<CharT,Traits,A> str_t;
typedef typename str_t::reserve_t reserve_t;
reserve_t reserve;
const std::size_t n = Traits::length(s);
str_t result(reserve, n + y.size());
result.append(s, s + n);
result.append(y);
return result;
}
template <class CharT, class Traits, class A> inline
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A)
operator+(const CharT* s,
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A) my)
{
typedef typename basic_string<CharT,Traits,A>::size_type size_type;
return BOOST_CONTAINER_MOVE_NAMESPACE::move(my.get().replace(size_type(0), size_type(0), s));
}
template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(CharT c, const basic_string<CharT,Traits,A>& y)
{
typedef basic_string<CharT,Traits,A> str_t;
typedef typename str_t::reserve_t reserve_t;
reserve_t reserve;
str_t result(reserve, 1 + y.size());
result.push_back(c);
result.append(y);
return result;
}
template <class CharT, class Traits, class A> inline
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A)
operator+(CharT c,
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A) my)
{
typedef typename basic_string<CharT,Traits,A>::size_type size_type;
return my.replace(size_type(0), size_type(0), &c, &c + 1);
}
template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(const basic_string<CharT,Traits,A>& x, const CharT* s)
{
typedef basic_string<CharT,Traits,A> str_t;
typedef typename str_t::reserve_t reserve_t;
reserve_t reserve;
const std::size_t n = Traits::length(s);
str_t result(reserve, x.size() + n, x.alloc());
result.append(x);
result.append(s, s + n);
return result;
}
template <class CharT, class Traits, class A>
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A)
operator+(BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A) mx
, const CharT* s)
{
mx += s;
return BOOST_CONTAINER_MOVE_NAMESPACE::move(mx);
}
template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(const basic_string<CharT,Traits,A>& x, const CharT c)
{
typedef basic_string<CharT,Traits,A> str_t;
typedef typename str_t::reserve_t reserve_t;
reserve_t reserve;
str_t result(reserve, x.size() + 1, x.alloc());
result.append(x);
result.push_back(c);
return result;
}
template <class CharT, class Traits, class A>
BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A)
operator+( BOOST_MOVE_MACRO_RV_REF_3_TEMPL_ARGS(basic_string, CharT, Traits, A) mx
, const CharT c)
{
mx += c;
return BOOST_CONTAINER_MOVE_NAMESPACE::move(mx);
}
// Operator== and operator!=
template <class CharT, class Traits, class A>
inline bool
operator==(const basic_string<CharT,Traits,A>& x,
const basic_string<CharT,Traits,A>& y)
{
return x.size() == y.size() &&
Traits::compare(x.data(), y.data(), x.size()) == 0;
}
template <class CharT, class Traits, class A>
inline bool
operator==(const CharT* s, const basic_string<CharT,Traits,A>& y)
{
std::size_t n = Traits::length(s);
return n == y.size() && Traits::compare(s, y.data(), n) == 0;
}
template <class CharT, class Traits, class A>
inline bool
operator==(const basic_string<CharT,Traits,A>& x, const CharT* s)
{
std::size_t n = Traits::length(s);
return x.size() == n && Traits::compare(x.data(), s, n) == 0;
}
template <class CharT, class Traits, class A>
inline bool
operator!=(const basic_string<CharT,Traits,A>& x,
const basic_string<CharT,Traits,A>& y)
{ return !(x == y); }
template <class CharT, class Traits, class A>
inline bool
operator!=(const CharT* s, const basic_string<CharT,Traits,A>& y)
{ return !(s == y); }
template <class CharT, class Traits, class A>
inline bool
operator!=(const basic_string<CharT,Traits,A>& x, const CharT* s)
{ return !(x == s); }
// Operator< (and also >, <=, and >=).
template <class CharT, class Traits, class A>
inline bool
operator<(const basic_string<CharT,Traits,A>& x, const basic_string<CharT,Traits,A>& y)
{
return x.compare(y) < 0;
// return basic_string<CharT,Traits,A>
// ::s_compare(x.begin(), x.end(), y.begin(), y.end()) < 0;
}
template <class CharT, class Traits, class A>
inline bool
operator<(const CharT* s, const basic_string<CharT,Traits,A>& y)
{
return y.compare(s) > 0;
// std::size_t n = Traits::length(s);
// return basic_string<CharT,Traits,A>
// ::s_compare(s, s + n, y.begin(), y.end()) < 0;
}
template <class CharT, class Traits, class A>
inline bool
operator<(const basic_string<CharT,Traits,A>& x,
const CharT* s)
{
return x.compare(s) < 0;
// std::size_t n = Traits::length(s);
// return basic_string<CharT,Traits,A>
// ::s_compare(x.begin(), x.end(), s, s + n) < 0;
}
template <class CharT, class Traits, class A>
inline bool
operator>(const basic_string<CharT,Traits,A>& x,
const basic_string<CharT,Traits,A>& y) {
return y < x;
}
template <class CharT, class Traits, class A>
inline bool
operator>(const CharT* s, const basic_string<CharT,Traits,A>& y) {
return y < s;
}
template <class CharT, class Traits, class A>
inline bool
operator>(const basic_string<CharT,Traits,A>& x, const CharT* s)
{
return s < x;
}
template <class CharT, class Traits, class A>
inline bool
operator<=(const basic_string<CharT,Traits,A>& x,
const basic_string<CharT,Traits,A>& y)
{
return !(y < x);
}
template <class CharT, class Traits, class A>
inline bool
operator<=(const CharT* s, const basic_string<CharT,Traits,A>& y)
{ return !(y < s); }
template <class CharT, class Traits, class A>
inline bool
operator<=(const basic_string<CharT,Traits,A>& x, const CharT* s)
{ return !(s < x); }
template <class CharT, class Traits, class A>
inline bool
operator>=(const basic_string<CharT,Traits,A>& x,
const basic_string<CharT,Traits,A>& y)
{ return !(x < y); }
template <class CharT, class Traits, class A>
inline bool
operator>=(const CharT* s, const basic_string<CharT,Traits,A>& y)
{ return !(s < y); }
template <class CharT, class Traits, class A>
inline bool
operator>=(const basic_string<CharT,Traits,A>& x, const CharT* s)
{ return !(x < s); }
// Swap.
template <class CharT, class Traits, class A>
inline void swap(basic_string<CharT,Traits,A>& x, basic_string<CharT,Traits,A>& y)
{ x.swap(y); }
/// @cond
// I/O.
namespace containers_detail {
template <class CharT, class Traits>
inline bool
string_fill(std::basic_ostream<CharT, Traits>& os,
std::basic_streambuf<CharT, Traits>* buf,
std::size_t n)
{
CharT f = os.fill();
std::size_t i;
bool ok = true;
for (i = 0; i < n; i++)
ok = ok && !Traits::eq_int_type(buf->sputc(f), Traits::eof());
return ok;
}
} //namespace containers_detail {
/// @endcond
template <class CharT, class Traits, class A>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os, const basic_string<CharT,Traits,A>& s)
{
typename std::basic_ostream<CharT, Traits>::sentry sentry(os);
bool ok = false;
if (sentry) {
ok = true;
std::size_t n = s.size();
std::size_t pad_len = 0;
const bool left = (os.flags() & std::ios::left) != 0;
const std::size_t w = os.width(0);
std::basic_streambuf<CharT, Traits>* buf = os.rdbuf();
if (w != 0 && n < w)
pad_len = w - n;
if (!left)
ok = containers_detail::string_fill(os, buf, pad_len);
ok = ok &&
buf->sputn(s.data(), std::streamsize(n)) == std::streamsize(n);
if (left)
ok = ok && containers_detail::string_fill(os, buf, pad_len);
}
if (!ok)
os.setstate(std::ios_base::failbit);
return os;
}
template <class CharT, class Traits, class A>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is, basic_string<CharT,Traits,A>& s)
{
typename std::basic_istream<CharT, Traits>::sentry sentry(is);
if (sentry) {
std::basic_streambuf<CharT, Traits>* buf = is.rdbuf();
const std::ctype<CharT>& ctype = std::use_facet<std::ctype<CharT> >(is.getloc());
s.clear();
std::size_t n = is.width(0);
if (n == 0)
n = static_cast<std::size_t>(-1);
else
s.reserve(n);
while (n-- > 0) {
typename Traits::int_type c1 = buf->sbumpc();
if (Traits::eq_int_type(c1, Traits::eof())) {
is.setstate(std::ios_base::eofbit);
break;
}
else {
CharT c = Traits::to_char_type(c1);
if (ctype.is(std::ctype<CharT>::space, c)) {
if (Traits::eq_int_type(buf->sputbackc(c), Traits::eof()))
is.setstate(std::ios_base::failbit);
break;
}
else
s.push_back(c);
}
}
// If we have read no characters, then set failbit.
if (s.size() == 0)
is.setstate(std::ios_base::failbit);
}
else
is.setstate(std::ios_base::failbit);
return is;
}
template <class CharT, class Traits, class A>
std::basic_istream<CharT, Traits>&
getline(std::istream& is, basic_string<CharT,Traits,A>& s,CharT delim)
{
std::size_t nread = 0;
typename std::basic_istream<CharT, Traits>::sentry sentry(is, true);
if (sentry) {
std::basic_streambuf<CharT, Traits>* buf = is.rdbuf();
s.clear();
while (nread < s.max_size()) {
int c1 = buf->sbumpc();
if (Traits::eq_int_type(c1, Traits::eof())) {
is.setstate(std::ios_base::eofbit);
break;
}
else {
++nread;
CharT c = Traits::to_char_type(c1);
if (!Traits::eq(c, delim))
s.push_back(c);
else
break; // Character is extracted but not appended.
}
}
}
if (nread == 0 || nread >= s.max_size())
is.setstate(std::ios_base::failbit);
return is;
}
template <class CharT, class Traits, class A>
inline std::basic_istream<CharT, Traits>&
getline(std::basic_istream<CharT, Traits>& is, basic_string<CharT,Traits,A>& s)
{
return getline(is, s, '\n');
}
template <class Ch, class A>
inline std::size_t hash_value(basic_string<Ch, std::char_traits<Ch>, A> const& v)
{
return hash_range(v.begin(), v.end());
}
}}
/// @cond
namespace boost {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class C, class T, class A>
struct has_trivial_destructor_after_move<boost::container::basic_string<C, T, A> >
{
static const bool value = has_trivial_destructor<A>::value;
};
*/
}
/// @endcond
#include INCLUDE_BOOST_CONTAINER_DETAIL_CONFIG_END_HPP
#endif // BOOST_CONTAINERS_STRING_HPP