blob: f8cbed7bc572349ee42d8fbcef3dc6eabe109990 [file] [log] [blame]
// (C) Copyright John Maddock 2005.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED
#define BOOST_MATH_COMPLEX_ATANH_INCLUDED
#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
# include <boost/math/complex/details.hpp>
#endif
#ifndef BOOST_MATH_LOG1P_INCLUDED
# include <boost/math/special_functions/log1p.hpp>
#endif
#include <boost/assert.hpp>
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
#endif
namespace boost{ namespace math{
template<class T>
std::complex<T> atanh(const std::complex<T>& z)
{
//
// References:
//
// Eric W. Weisstein. "Inverse Hyperbolic Tangent."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/InverseHyperbolicTangent.html
//
// Also: The Wolfram Functions Site,
// http://functions.wolfram.com/ElementaryFunctions/ArcTanh/
//
// Also "Abramowitz and Stegun. Handbook of Mathematical Functions."
// at : http://jove.prohosting.com/~skripty/toc.htm
//
static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);
static const T pi = static_cast<T>(3.141592653589793238462643383279502884197L);
static const T one = static_cast<T>(1.0L);
static const T two = static_cast<T>(2.0L);
static const T four = static_cast<T>(4.0L);
static const T zero = static_cast<T>(0);
static const T a_crossover = static_cast<T>(0.3L);
T x = std::fabs(z.real());
T y = std::fabs(z.imag());
T real, imag; // our results
T safe_upper = detail::safe_max(two);
T safe_lower = detail::safe_min(static_cast<T>(2));
//
// Begin by handling the special cases specified in C99:
//
if(detail::test_is_nan(x))
{
if(detail::test_is_nan(y))
return std::complex<T>(x, x);
else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity()))
return std::complex<T>(0, ((z.imag() < 0) ? -half_pi : half_pi));
else
return std::complex<T>(x, x);
}
else if(detail::test_is_nan(y))
{
if(x == 0)
return std::complex<T>(x, y);
if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity()))
return std::complex<T>(0, y);
else
return std::complex<T>(y, y);
}
else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper))
{
T xx = x*x;
T yy = y*y;
T x2 = x * two;
///
// The real part is given by:
//
// real(atanh(z)) == log((1 + x^2 + y^2 + 2x) / (1 + x^2 + y^2 - 2x))
//
// However, when x is either large (x > 1/E) or very small
// (x < E) then this effectively simplifies
// to log(1), leading to wildly inaccurate results.
// By dividing the above (top and bottom) by (1 + x^2 + y^2) we get:
//
// real(atanh(z)) == log((1 + (2x / (1 + x^2 + y^2))) / (1 - (-2x / (1 + x^2 + y^2))))
//
// which is much more sensitive to the value of x, when x is not near 1
// (remember we can compute log(1+x) for small x very accurately).
//
// The cross-over from one method to the other has to be determined
// experimentally, the value used below appears correct to within a
// factor of 2 (and there are larger errors from other parts
// of the input domain anyway).
//
T alpha = two*x / (one + xx + yy);
if(alpha < a_crossover)
{
real = boost::math::log1p(alpha) - boost::math::log1p(-alpha);
}
else
{
T xm1 = x - one;
real = boost::math::log1p(x2 + xx + yy) - std::log(xm1*xm1 + yy);
}
real /= four;
if(z.real() < 0)
real = -real;
imag = std::atan2((y * two), (one - xx - yy));
imag /= two;
if(z.imag() < 0)
imag = -imag;
}
else
{
//
// This section handles exception cases that would normally cause
// underflow or overflow in the main formulas.
//
// Begin by working out the real part, we need to approximate
// alpha = 2x / (1 + x^2 + y^2)
// without either overflow or underflow in the squared terms.
//
T alpha = 0;
if(x >= safe_upper)
{
// this is really a test for infinity,
// but we may not have the necessary numeric_limits support:
if((x > (std::numeric_limits<T>::max)()) || (y > (std::numeric_limits<T>::max)()))
{
alpha = 0;
}
else if(y >= safe_upper)
{
// Big x and y: divide alpha through by x*y:
alpha = (two/y) / (x/y + y/x);
}
else if(y > one)
{
// Big x: divide through by x:
alpha = two / (x + y*y/x);
}
else
{
// Big x small y, as above but neglect y^2/x:
alpha = two/x;
}
}
else if(y >= safe_upper)
{
if(x > one)
{
// Big y, medium x, divide through by y:
alpha = (two*x/y) / (y + x*x/y);
}
else
{
// Small x and y, whatever alpha is, it's too small to calculate:
alpha = 0;
}
}
else
{
// one or both of x and y are small, calculate divisor carefully:
T div = one;
if(x > safe_lower)
div += x*x;
if(y > safe_lower)
div += y*y;
alpha = two*x/div;
}
if(alpha < a_crossover)
{
real = boost::math::log1p(alpha) - boost::math::log1p(-alpha);
}
else
{
// We can only get here as a result of small y and medium sized x,
// we can simply neglect the y^2 terms:
BOOST_ASSERT(x >= safe_lower);
BOOST_ASSERT(x <= safe_upper);
//BOOST_ASSERT(y <= safe_lower);
T xm1 = x - one;
real = std::log(1 + two*x + x*x) - std::log(xm1*xm1);
}
real /= four;
if(z.real() < 0)
real = -real;
//
// Now handle imaginary part, this is much easier,
// if x or y are large, then the formula:
// atan2(2y, 1 - x^2 - y^2)
// evaluates to +-(PI - theta) where theta is negligible compared to PI.
//
if((x >= safe_upper) || (y >= safe_upper))
{
imag = pi;
}
else if(x <= safe_lower)
{
//
// If both x and y are small then atan(2y),
// otherwise just x^2 is negligible in the divisor:
//
if(y <= safe_lower)
imag = std::atan2(two*y, one);
else
{
if((y == zero) && (x == zero))
imag = 0;
else
imag = std::atan2(two*y, one - y*y);
}
}
else
{
//
// y^2 is negligible:
//
if((y == zero) && (x == one))
imag = 0;
else
imag = std::atan2(two*y, 1 - x*x);
}
imag /= two;
if(z.imag() < 0)
imag = -imag;
}
return std::complex<T>(real, imag);
}
} } // namespaces
#endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED