blob: 5eb5065e6ca79d6ae1c3302824b80db7809fdb7c [file] [log] [blame]
// Copyright (c) 2006 Xiaogang Zhang
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// History:
// XZ wrote the original of this file as part of the Google
// Summer of Code 2006. JM modified it to fit into the
// Boost.Math conceptual framework better, and to handle
// types longer than 80-bit reals.
//
#ifndef BOOST_MATH_ELLINT_RF_HPP
#define BOOST_MATH_ELLINT_RF_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/policies/error_handling.hpp>
// Carlson's elliptic integral of the first kind
// R_F(x, y, z) = 0.5 * \int_{0}^{\infty} [(t+x)(t+y)(t+z)]^{-1/2} dt
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
namespace boost { namespace math { namespace detail{
template <typename T, typename Policy>
T ellint_rf_imp(T x, T y, T z, const Policy& pol)
{
T value, X, Y, Z, E2, E3, u, lambda, tolerance;
unsigned long k;
BOOST_MATH_STD_USING
using namespace boost::math::tools;
static const char* function = "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)";
if (x < 0 || y < 0 || z < 0)
{
return policies::raise_domain_error<T>(function,
"domain error, all arguments must be non-negative, "
"only sensible result is %1%.",
std::numeric_limits<T>::quiet_NaN(), pol);
}
if (x + y == 0 || y + z == 0 || z + x == 0)
{
return policies::raise_domain_error<T>(function,
"domain error, at most one argument can be zero, "
"only sensible result is %1%.",
std::numeric_limits<T>::quiet_NaN(), pol);
}
// Carlson scales error as the 6th power of tolerance,
// but this seems not to work for types larger than
// 80-bit reals, this heuristic seems to work OK:
if(policies::digits<T, Policy>() > 64)
{
tolerance = pow(tools::epsilon<T>(), T(1)/4.25f);
BOOST_MATH_INSTRUMENT_VARIABLE(tolerance);
}
else
{
tolerance = pow(4*tools::epsilon<T>(), T(1)/6);
BOOST_MATH_INSTRUMENT_VARIABLE(tolerance);
}
// duplication
k = 1;
do
{
u = (x + y + z) / 3;
X = (u - x) / u;
Y = (u - y) / u;
Z = (u - z) / u;
// Termination condition:
if ((tools::max)(abs(X), abs(Y), abs(Z)) < tolerance)
break;
T sx = sqrt(x);
T sy = sqrt(y);
T sz = sqrt(z);
lambda = sy * (sx + sz) + sz * sx;
x = (x + lambda) / 4;
y = (y + lambda) / 4;
z = (z + lambda) / 4;
++k;
}
while(k < policies::get_max_series_iterations<Policy>());
// Check to see if we gave up too soon:
policies::check_series_iterations(function, k, pol);
BOOST_MATH_INSTRUMENT_VARIABLE(k);
// Taylor series expansion to the 5th order
E2 = X * Y - Z * Z;
E3 = X * Y * Z;
value = (1 + E2*(E2/24 - E3*T(3)/44 - T(0.1)) + E3/14) / sqrt(u);
BOOST_MATH_INSTRUMENT_VARIABLE(value);
return value;
}
} // namespace detail
template <class T1, class T2, class T3, class Policy>
inline typename tools::promote_args<T1, T2, T3>::type
ellint_rf(T1 x, T2 y, T3 z, const Policy& pol)
{
typedef typename tools::promote_args<T1, T2, T3>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
return policies::checked_narrowing_cast<result_type, Policy>(
detail::ellint_rf_imp(
static_cast<value_type>(x),
static_cast<value_type>(y),
static_cast<value_type>(z), pol), "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)");
}
template <class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type
ellint_rf(T1 x, T2 y, T3 z)
{
return ellint_rf(x, y, z, policies::policy<>());
}
}} // namespaces
#endif // BOOST_MATH_ELLINT_RF_HPP