blob: b5573106024964587844d0417b04e4c2eed82e54 [file] [log] [blame]
// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_REMEZ_HPP
#define BOOST_MATH_TOOLS_REMEZ_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/solve.hpp>
#include <boost/math/tools/minima.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/math/tools/polynomial.hpp>
#include <boost/function/function1.hpp>
#include <boost/scoped_array.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/policy.hpp>
namespace boost{ namespace math{ namespace tools{
namespace detail{
//
// The error function: the difference between F(x) and
// the current approximation. This is the function
// for which we must find the extema.
//
template <class T>
struct remez_error_function
{
typedef boost::function1<T, T const &> function_type;
public:
remez_error_function(
function_type f_,
const polynomial<T>& n,
const polynomial<T>& d,
bool rel_err)
: f(f_), numerator(n), denominator(d), rel_error(rel_err) {}
T operator()(const T& z)const
{
T y = f(z);
T abs = y - (numerator.evaluate(z) / denominator.evaluate(z));
T err;
if(rel_error)
{
if(y != 0)
err = abs / fabs(y);
else if(0 == abs)
{
// we must be at a root, or it's not recoverable:
BOOST_ASSERT(0 == abs);
err = 0;
}
else
{
// We have a divide by zero!
// Lets assume that f(x) is zero as a result of
// internal cancellation error that occurs as a result
// of shifting a root at point z to the origin so that
// the approximation can be "pinned" to pass through
// the origin: in that case it really
// won't matter what our approximation calculates here
// as long as it's a small number, return the absolute error:
err = abs;
}
}
else
err = abs;
return err;
}
private:
function_type f;
polynomial<T> numerator;
polynomial<T> denominator;
bool rel_error;
};
//
// This function adapts the error function so that it's minima
// are the extema of the error function. We can find the minima
// with standard techniques.
//
template <class T>
struct remez_max_error_function
{
remez_max_error_function(const remez_error_function<T>& f)
: func(f) {}
T operator()(const T& x)
{
BOOST_MATH_STD_USING
return -fabs(func(x));
}
private:
remez_error_function<T> func;
};
} // detail
template <class T>
class remez_minimax
{
public:
typedef boost::function1<T, T const &> function_type;
typedef boost::numeric::ublas::vector<T> vector_type;
typedef boost::numeric::ublas::matrix<T> matrix_type;
remez_minimax(function_type f, unsigned oN, unsigned oD, T a, T b, bool pin = true, bool rel_err = false, int sk = 0, int bits = 0);
remez_minimax(function_type f, unsigned oN, unsigned oD, T a, T b, bool pin, bool rel_err, int sk, int bits, const vector_type& points);
void reset(unsigned oN, unsigned oD, T a, T b, bool pin = true, bool rel_err = false, int sk = 0, int bits = 0);
void reset(unsigned oN, unsigned oD, T a, T b, bool pin, bool rel_err, int sk, int bits, const vector_type& points);
void set_brake(int b)
{
BOOST_ASSERT(b < 100);
BOOST_ASSERT(b >= 0);
m_brake = b;
}
T iterate();
polynomial<T> denominator()const;
polynomial<T> numerator()const;
vector_type const& chebyshev_points()const
{
return control_points;
}
vector_type const& zero_points()const
{
return zeros;
}
T error_term()const
{
return solution[solution.size() - 1];
}
T max_error()const
{
return m_max_error;
}
T max_change()const
{
return m_max_change;
}
void rotate()
{
--orderN;
++orderD;
}
void rescale(T a, T b)
{
T scale = (b - a) / (max - min);
for(unsigned i = 0; i < control_points.size(); ++i)
{
control_points[i] = (control_points[i] - min) * scale + a;
}
min = a;
max = b;
}
private:
void init_chebyshev();
function_type func; // The function to approximate.
vector_type control_points; // Current control points to be used for the next iteration.
vector_type solution; // Solution from the last iteration contains all unknowns including the error term.
vector_type zeros; // Location of points of zero error from last iteration, plus the two end points.
vector_type maxima; // Location of maxima of the error function, actually contains the control points used for the last iteration.
T m_max_error; // Maximum error found in last approximation.
T m_max_change; // Maximum change in location of control points after last iteration.
unsigned orderN; // Order of the numerator polynomial.
unsigned orderD; // Order of the denominator polynomial.
T min, max; // End points of the range to optimise over.
bool rel_error; // If true optimise for relative not absolute error.
bool pinned; // If true the approximation is "pinned" to go through the origin.
unsigned unknowns; // Total number of unknowns.
int m_precision; // Number of bits precision to which the zeros and maxima are found.
T m_max_change_history[2]; // Past history of changes to control points.
int m_brake; // amount to break by in percentage points.
int m_skew; // amount to skew starting points by in percentage points: -100-100
};
#ifndef BRAKE
#define BRAKE 0
#endif
#ifndef SKEW
#define SKEW 0
#endif
template <class T>
void remez_minimax<T>::init_chebyshev()
{
BOOST_MATH_STD_USING
//
// Fill in the zeros:
//
unsigned terms = pinned ? orderD + orderN : orderD + orderN + 1;
for(unsigned i = 0; i < terms; ++i)
{
T cheb = cos((2 * terms - 1 - 2 * i) * constants::pi<T>() / (2 * terms));
cheb += 1;
cheb /= 2;
if(m_skew != 0)
{
T p = static_cast<T>(200 + m_skew) / 200;
cheb = pow(cheb, p);
}
cheb *= (max - min);
cheb += min;
zeros[i+1] = cheb;
}
zeros[0] = min;
zeros[unknowns] = max;
// perform a regular interpolation fit:
matrix_type A(terms, terms);
vector_type b(terms);
// fill in the y values:
for(unsigned i = 0; i < b.size(); ++i)
{
b[i] = func(zeros[i+1]);
}
// fill in powers of x evaluated at each of the control points:
unsigned offsetN = pinned ? 0 : 1;
unsigned offsetD = offsetN + orderN;
unsigned maxorder = (std::max)(orderN, orderD);
for(unsigned i = 0; i < b.size(); ++i)
{
T x0 = zeros[i+1];
T x = x0;
if(!pinned)
A(i, 0) = 1;
for(unsigned j = 0; j < maxorder; ++j)
{
if(j < orderN)
A(i, j + offsetN) = x;
if(j < orderD)
{
A(i, j + offsetD) = -x * b[i];
}
x *= x0;
}
}
//
// Now go ahead and solve the expression to get our solution:
//
vector_type l_solution = boost::math::tools::solve(A, b);
// need to add a "fake" error term:
l_solution.resize(unknowns);
l_solution[unknowns-1] = 0;
solution = l_solution;
//
// Now find all the extrema of the error function:
//
detail::remez_error_function<T> Err(func, this->numerator(), this->denominator(), rel_error);
detail::remez_max_error_function<T> Ex(Err);
m_max_error = 0;
int max_err_location = 0;
for(unsigned i = 0; i < unknowns; ++i)
{
std::pair<T, T> r = brent_find_minima(Ex, zeros[i], zeros[i+1], m_precision);
maxima[i] = r.first;
T rel_err = fabs(r.second);
if(rel_err > m_max_error)
{
m_max_error = fabs(r.second);
max_err_location = i;
}
}
control_points = maxima;
}
template <class T>
void remez_minimax<T>::reset(
unsigned oN,
unsigned oD,
T a,
T b,
bool pin,
bool rel_err,
int sk,
int bits)
{
control_points = vector_type(oN + oD + (pin ? 1 : 2));
solution = control_points;
zeros = vector_type(oN + oD + (pin ? 2 : 3));
maxima = control_points;
orderN = oN;
orderD = oD;
rel_error = rel_err;
pinned = pin;
m_skew = sk;
min = a;
max = b;
m_max_error = 0;
unknowns = orderN + orderD + (pinned ? 1 : 2);
// guess our initial control points:
control_points[0] = min;
control_points[unknowns - 1] = max;
T interval = (max - min) / (unknowns - 1);
T spot = min + interval;
for(unsigned i = 1; i < control_points.size(); ++i)
{
control_points[i] = spot;
spot += interval;
}
solution[unknowns - 1] = 0;
m_max_error = 0;
if(bits == 0)
{
// don't bother about more than float precision:
m_precision = (std::min)(24, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
}
else
{
// can't be more accurate than half the bits of T:
m_precision = (std::min)(bits, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
}
m_max_change_history[0] = m_max_change_history[1] = 1;
init_chebyshev();
// do one iteration whatever:
//iterate();
}
template <class T>
inline remez_minimax<T>::remez_minimax(
typename remez_minimax<T>::function_type f,
unsigned oN,
unsigned oD,
T a,
T b,
bool pin,
bool rel_err,
int sk,
int bits)
: func(f)
{
m_brake = 0;
reset(oN, oD, a, b, pin, rel_err, sk, bits);
}
template <class T>
void remez_minimax<T>::reset(
unsigned oN,
unsigned oD,
T a,
T b,
bool pin,
bool rel_err,
int sk,
int bits,
const vector_type& points)
{
control_points = vector_type(oN + oD + (pin ? 1 : 2));
solution = control_points;
zeros = vector_type(oN + oD + (pin ? 2 : 3));
maxima = control_points;
orderN = oN;
orderD = oD;
rel_error = rel_err;
pinned = pin;
m_skew = sk;
min = a;
max = b;
m_max_error = 0;
unknowns = orderN + orderD + (pinned ? 1 : 2);
control_points = points;
solution[unknowns - 1] = 0;
m_max_error = 0;
if(bits == 0)
{
// don't bother about more than float precision:
m_precision = (std::min)(24, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
}
else
{
// can't be more accurate than half the bits of T:
m_precision = (std::min)(bits, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
}
m_max_change_history[0] = m_max_change_history[1] = 1;
// do one iteration whatever:
//iterate();
}
template <class T>
inline remez_minimax<T>::remez_minimax(
typename remez_minimax<T>::function_type f,
unsigned oN,
unsigned oD,
T a,
T b,
bool pin,
bool rel_err,
int sk,
int bits,
const vector_type& points)
: func(f)
{
m_brake = 0;
reset(oN, oD, a, b, pin, rel_err, sk, bits, points);
}
template <class T>
T remez_minimax<T>::iterate()
{
BOOST_MATH_STD_USING
matrix_type A(unknowns, unknowns);
vector_type b(unknowns);
// fill in evaluation of f(x) at each of the control points:
for(unsigned i = 0; i < b.size(); ++i)
{
// take care that none of our control points are at the origin:
if(pinned && (control_points[i] == 0))
{
if(i)
control_points[i] = control_points[i-1] / 3;
else
control_points[i] = control_points[i+1] / 3;
}
b[i] = func(control_points[i]);
}
T err_err;
unsigned convergence_count = 0;
do{
// fill in powers of x evaluated at each of the control points:
int sign = 1;
unsigned offsetN = pinned ? 0 : 1;
unsigned offsetD = offsetN + orderN;
unsigned maxorder = (std::max)(orderN, orderD);
T Elast = solution[unknowns - 1];
for(unsigned i = 0; i < b.size(); ++i)
{
T x0 = control_points[i];
T x = x0;
if(!pinned)
A(i, 0) = 1;
for(unsigned j = 0; j < maxorder; ++j)
{
if(j < orderN)
A(i, j + offsetN) = x;
if(j < orderD)
{
T mult = rel_error ? (b[i] - sign * fabs(b[i]) * Elast): (b[i] - sign * Elast);
A(i, j + offsetD) = -x * mult;
}
x *= x0;
}
// The last variable to be solved for is the error term,
// sign changes with each control point:
T E = rel_error ? sign * fabs(b[i]) : sign;
A(i, unknowns - 1) = E;
sign = -sign;
}
#ifdef BOOST_MATH_INSTRUMENT
for(unsigned i = 0; i < b.size(); ++i)
std::cout << b[i] << " ";
std::cout << "\n\n";
for(unsigned i = 0; i < b.size(); ++i)
{
for(unsigned j = 0; j < b.size(); ++ j)
std::cout << A(i, j) << " ";
std::cout << "\n";
}
std::cout << std::endl;
#endif
//
// Now go ahead and solve the expression to get our solution:
//
solution = boost::math::tools::solve(A, b);
err_err = (Elast != 0) ? fabs((fabs(solution[unknowns-1]) - fabs(Elast)) / fabs(Elast)) : 1;
}while(orderD && (convergence_count++ < 80) && (err_err > 0.001));
//
// Perform a sanity check to verify that the solution to the equations
// is not so much in error as to be useless. The matrix inversion can
// be very close to singular, so this can be a real problem.
//
vector_type sanity = prod(A, solution);
for(unsigned i = 0; i < b.size(); ++i)
{
T err = fabs((b[i] - sanity[i]) / fabs(b[i]));
if(err > sqrt(epsilon<T>()))
{
std::cerr << "Sanity check failed: more than half the digits in the found solution are in error." << std::endl;
}
}
//
// Next comes another sanity check, we want to verify that all the control
// points do actually alternate in sign, in practice we may have
// additional roots in the error function that cause this to fail.
// Failure here is always fatal: even though this code attempts to correct
// the problem it usually only postpones the inevitable.
//
polynomial<T> num, denom;
num = this->numerator();
denom = this->denominator();
T e1 = b[0] - num.evaluate(control_points[0]) / denom.evaluate(control_points[0]);
#ifdef BOOST_MATH_INSTRUMENT
std::cout << e1;
#endif
for(unsigned i = 1; i < b.size(); ++i)
{
T e2 = b[i] - num.evaluate(control_points[i]) / denom.evaluate(control_points[i]);
#ifdef BOOST_MATH_INSTRUMENT
std::cout << " " << e2;
#endif
if(e2 * e1 > 0)
{
std::cerr << std::flush << "Basic sanity check failed: Error term does not alternate in sign, non-recoverable error may follow..." << std::endl;
T perturbation = 0.05;
do{
T point = control_points[i] * (1 - perturbation) + control_points[i-1] * perturbation;
e2 = func(point) - num.evaluate(point) / denom.evaluate(point);
if(e2 * e1 < 0)
{
control_points[i] = point;
break;
}
perturbation += 0.05;
}while(perturbation < 0.8);
if((e2 * e1 > 0) && (i + 1 < b.size()))
{
perturbation = 0.05;
do{
T point = control_points[i] * (1 - perturbation) + control_points[i+1] * perturbation;
e2 = func(point) - num.evaluate(point) / denom.evaluate(point);
if(e2 * e1 < 0)
{
control_points[i] = point;
break;
}
perturbation += 0.05;
}while(perturbation < 0.8);
}
}
e1 = e2;
}
#ifdef BOOST_MATH_INSTRUMENT
for(unsigned i = 0; i < solution.size(); ++i)
std::cout << solution[i] << " ";
std::cout << std::endl << this->numerator() << std::endl;
std::cout << this->denominator() << std::endl;
std::cout << std::endl;
#endif
//
// The next step is to find all the intervals in which our maxima
// lie:
//
detail::remez_error_function<T> Err(func, this->numerator(), this->denominator(), rel_error);
zeros[0] = min;
zeros[unknowns] = max;
for(unsigned i = 1; i < control_points.size(); ++i)
{
eps_tolerance<T> tol(m_precision);
boost::uintmax_t max_iter = 1000;
std::pair<T, T> p = toms748_solve(
Err,
control_points[i-1],
control_points[i],
tol,
max_iter);
zeros[i] = (p.first + p.second) / 2;
//zeros[i] = bisect(Err, control_points[i-1], control_points[i], m_precision);
}
//
// Now find all the extrema of the error function:
//
detail::remez_max_error_function<T> Ex(Err);
m_max_error = 0;
int max_err_location = 0;
for(unsigned i = 0; i < unknowns; ++i)
{
std::pair<T, T> r = brent_find_minima(Ex, zeros[i], zeros[i+1], m_precision);
maxima[i] = r.first;
T rel_err = fabs(r.second);
if(rel_err > m_max_error)
{
m_max_error = fabs(r.second);
max_err_location = i;
}
}
//
// Almost done now! we just need to set our control points
// to the extrema, and calculate how much each point has changed
// (this will be our termination condition):
//
swap(control_points, maxima);
m_max_change = 0;
int max_change_location = 0;
for(unsigned i = 0; i < unknowns; ++i)
{
control_points[i] = (control_points[i] * (100 - m_brake) + maxima[i] * m_brake) / 100;
T change = fabs((control_points[i] - maxima[i]) / control_points[i]);
#if 0
if(change > m_max_change_history[1])
{
// divergence!!! try capping the change:
std::cerr << "Possible divergent step, change will be capped!!" << std::endl;
change = m_max_change_history[1];
if(control_points[i] < maxima[i])
control_points[i] = maxima[i] - change * maxima[i];
else
control_points[i] = maxima[i] + change * maxima[i];
}
#endif
if(change > m_max_change)
{
m_max_change = change;
max_change_location = i;
}
}
//
// store max change information:
//
m_max_change_history[0] = m_max_change_history[1];
m_max_change_history[1] = fabs(m_max_change);
return m_max_change;
}
template <class T>
polynomial<T> remez_minimax<T>::numerator()const
{
boost::scoped_array<T> a(new T[orderN + 1]);
if(pinned)
a[0] = 0;
unsigned terms = pinned ? orderN : orderN + 1;
for(unsigned i = 0; i < terms; ++i)
a[pinned ? i+1 : i] = solution[i];
return boost::math::tools::polynomial<T>(&a[0], orderN);
}
template <class T>
polynomial<T> remez_minimax<T>::denominator()const
{
unsigned terms = orderD + 1;
unsigned offsetD = pinned ? orderN : (orderN + 1);
boost::scoped_array<T> a(new T[terms]);
a[0] = 1;
for(unsigned i = 0; i < orderD; ++i)
a[i+1] = solution[i + offsetD];
return boost::math::tools::polynomial<T>(&a[0], orderD);
}
}}} // namespaces
#endif // BOOST_MATH_TOOLS_REMEZ_HPP