blob: 5d389b019c5639eb6a32f856c586b9bc711319f0 [file] [log] [blame]
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_BANDED_
#define _BOOST_UBLAS_BANDED_
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/detail/temporary.hpp>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
/** \brief A banded matrix of values of type \c T.
*
* For a \f$(mxn)\f$-dimensional banded matrix with \f$l\f$ lower and \f$u\f$ upper diagonals and
* \f$0 \leq i < m\f$ and \f$0 \leq j < n\f$, if \f$i>j+l\f$ or \f$i<j-u\f$ then \f$b_{i,j}=0\f$.
* The default storage for banded matrices is packed. Orientation and storage can also be specified.
* Default is \c row_major and and unbounded_array. It is \b not required by the storage to initialize
* elements of the matrix.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam L the storage organization. It can be either \c row_major or \c column_major. Default is \c row_major
* \tparam A the type of Storage array. Default is \c unbounded_array
*/
template<class T, class L, class A>
class banded_matrix:
public matrix_container<banded_matrix<T, L, A> > {
typedef T *pointer;
typedef L layout_type;
typedef banded_matrix<T, L, A> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef A array_type;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef vector<T, A> vector_temporary_type;
typedef matrix<T, L, A> matrix_temporary_type; // general sub-matrix
typedef packed_tag storage_category;
typedef typename L::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
banded_matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0),
lower_ (0), upper_ (0), data_ (0) {}
BOOST_UBLAS_INLINE
banded_matrix (size_type size1, size_type size2, size_type lower = 0, size_type upper = 0):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2),
lower_ (lower), upper_ (upper), data_ ((std::max) (size1, size2) * (lower + 1 + upper)) {
}
BOOST_UBLAS_INLINE
banded_matrix (size_type size1, size_type size2, size_type lower, size_type upper, const array_type &data):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2),
lower_ (lower), upper_ (upper), data_ (data) {}
BOOST_UBLAS_INLINE
banded_matrix (const banded_matrix &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_),
lower_ (m.lower_), upper_ (m.upper_), data_ (m.data_) {}
template<class AE>
BOOST_UBLAS_INLINE
banded_matrix (const matrix_expression<AE> &ae, size_type lower = 0, size_type upper = 0):
matrix_container<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()),
lower_ (lower), upper_ (upper),
data_ ((std::max) (size1_, size2_) * (lower_ + 1 + upper_)) {
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
size_type lower () const {
return lower_;
}
BOOST_UBLAS_INLINE
size_type upper () const {
return upper_;
}
// Storage accessors
BOOST_UBLAS_INLINE
const array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, size_type lower = 0, size_type upper = 0, bool preserve = true) {
if (preserve) {
self_type temporary (size1, size2, lower, upper);
detail::matrix_resize_preserve<layout_type> (*this, temporary);
}
else {
data ().resize ((std::max) (size1, size2) * (lower + 1 + upper));
size1_ = size1;
size2_ = size2;
lower_ = lower;
upper_ = upper;
}
}
BOOST_UBLAS_INLINE
void resize_packed_preserve (size_type size1, size_type size2, size_type lower = 0, size_type upper = 0) {
size1_ = size1;
size2_ = size2;
lower_ = lower;
upper_ = upper;
data ().resize ((std::max) (size1, size2) * (lower + 1 + upper), value_type ());
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
BOOST_UBLAS_CHECK (i < size1_, bad_index ());
BOOST_UBLAS_CHECK (j < size2_, bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
const size_type k = (std::max) (i, j);
const size_type l = lower_ + j - i;
if (k < (std::max) (size1_, size2_) &&
l < lower_ + 1 + upper_)
return data () [layout_type::element (k, (std::max) (size1_, size2_),
l, lower_ + 1 + upper_)];
#else
const size_type k = j;
const size_type l = upper_ + i - j;
if (k < size2_ &&
l < lower_ + 1 + upper_)
return data () [layout_type::element (k, size2_,
l, lower_ + 1 + upper_)];
#endif
return zero_;
}
BOOST_UBLAS_INLINE
reference at_element (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size1_, bad_index ());
BOOST_UBLAS_CHECK (j < size2_, bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
const size_type k = (std::max) (i, j);
const size_type l = lower_ + j - i;
return data () [layout_type::element (k, (std::max) (size1_, size2_),
l, lower_ + 1 + upper_)];
#else
const size_type k = j;
const size_type l = upper_ + i - j;
return data () [layout_type::element (k, size2_,
l, lower_ + 1 + upper_)];
#endif
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size1_, bad_index ());
BOOST_UBLAS_CHECK (j < size2_, bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
const size_type k = (std::max) (i, j);
const size_type l = lower_ + j - i;
if (! (k < (std::max) (size1_, size2_) &&
l < lower_ + 1 + upper_) ) {
bad_index ().raise ();
// NEVER reached
}
return data () [layout_type::element (k, (std::max) (size1_, size2_),
l, lower_ + 1 + upper_)];
#else
const size_type k = j;
const size_type l = upper_ + i - j;
if (! (k < size2_ &&
l < lower_ + 1 + upper_) ) {
bad_index ().raise ();
// NEVER reached
}
return data () [layout_type::element (k, size2_,
l, lower_ + 1 + upper_)];
#endif
}
// Element assignment
BOOST_UBLAS_INLINE
reference insert_element (size_type i, size_type j, const_reference t) {
return (operator () (i, j) = t);
}
BOOST_UBLAS_INLINE
void erase_element (size_type i, size_type j) {
operator () (i, j) = value_type/*zero*/();
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
std::fill (data ().begin (), data ().end (), value_type/*zero*/());
}
// Assignment
BOOST_UBLAS_INLINE
banded_matrix &operator = (const banded_matrix &m) {
size1_ = m.size1_;
size2_ = m.size2_;
lower_ = m.lower_;
upper_ = m.upper_;
data () = m.data ();
return *this;
}
BOOST_UBLAS_INLINE
banded_matrix &assign_temporary (banded_matrix &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
banded_matrix &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae, lower_, upper_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
banded_matrix &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
banded_matrix& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae, lower_, upper_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
banded_matrix &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
banded_matrix& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae, lower_, upper_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
banded_matrix &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
banded_matrix& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
banded_matrix& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (banded_matrix &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
std::swap (lower_, m.lower_);
std::swap (upper_, m.upper_);
data ().swap (m.data ());
}
}
BOOST_UBLAS_INLINE
friend void swap (banded_matrix &m1, banded_matrix &m2) {
m1.swap (m2);
}
// Iterator types
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;
typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;
typedef indexed_const_iterator1<self_type, packed_random_access_iterator_tag> const_iterator1;
typedef indexed_const_iterator2<self_type, packed_random_access_iterator_tag> const_iterator2;
#else
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
#endif
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int rank, size_type i, size_type j) const {
if (rank == 1) {
size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0));
i = (std::max) (i, lower_i);
size_type upper_i = (std::min) (j + 1 + lower_, size1_);
i = (std::min) (i, upper_i);
}
return const_iterator1 (*this, i, j);
}
BOOST_UBLAS_INLINE
iterator1 find1 (int rank, size_type i, size_type j) {
if (rank == 1) {
size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0));
i = (std::max) (i, lower_i);
size_type upper_i = (std::min) (j + 1 + lower_, size1_);
i = (std::min) (i, upper_i);
}
return iterator1 (*this, i, j);
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int rank, size_type i, size_type j) const {
if (rank == 1) {
size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0));
j = (std::max) (j, lower_j);
size_type upper_j = (std::min) (i + 1 + upper_, size2_);
j = (std::min) (j, upper_j);
}
return const_iterator2 (*this, i, j);
}
BOOST_UBLAS_INLINE
iterator2 find2 (int rank, size_type i, size_type j) {
if (rank == 1) {
size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0));
j = (std::max) (j, lower_j);
size_type upper_j = (std::min) (i + 1 + upper_, size2_);
j = (std::min) (j, upper_j);
}
return iterator2 (*this, i, j);
}
// Iterators simply are indices.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator1:
public container_const_reference<banded_matrix>,
public random_access_iterator_base<packed_random_access_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename banded_matrix::value_type value_type;
typedef typename banded_matrix::difference_type difference_type;
typedef typename banded_matrix::const_reference reference;
typedef const typename banded_matrix::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, size_type it1, size_type it2):
container_const_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), it1_ (it.it1_), it2_ (it.it2_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
++ it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
-- it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator += (difference_type n) {
it1_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -= (difference_type n) {
it1_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ - it.it1_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return (*this) () (it1_, it2_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
return (*this) ().find2 (1, it1_, 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
return (*this) ().find2 (1, it1_, (*this) ().size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ == it.it1_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ < it.it1_;
}
private:
size_type it1_;
size_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator1:
public container_reference<banded_matrix>,
public random_access_iterator_base<packed_random_access_iterator_tag,
iterator1, value_type> {
public:
typedef typename banded_matrix::value_type value_type;
typedef typename banded_matrix::difference_type difference_type;
typedef typename banded_matrix::reference reference;
typedef typename banded_matrix::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, size_type it1, size_type it2):
container_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
++ it1_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
-- it1_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator += (difference_type n) {
it1_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -= (difference_type n) {
it1_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ - it.it1_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
return (*this) ().at_element (it1_, it2_);
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
return (*this) ().find2 (1, it1_, 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
return (*this) ().find2 (1, it1_, (*this) ().size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ == it.it1_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ < it.it1_;
}
private:
size_type it1_;
size_type it2_;
friend class const_iterator1;
};
#endif
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1_, 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator2:
public container_const_reference<banded_matrix>,
public random_access_iterator_base<packed_random_access_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename banded_matrix::value_type value_type;
typedef typename banded_matrix::difference_type difference_type;
typedef typename banded_matrix::const_reference reference;
typedef const typename banded_matrix::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, size_type it1, size_type it2):
container_const_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), it1_ (it.it1_), it2_ (it.it2_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return (*this) () (it1_, it2_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
return (*this) ().find1 (1, 0, it2_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
return (*this) ().find1 (1, (*this) ().size1 (), it2_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ < it.it2_;
}
private:
size_type it1_;
size_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator2:
public container_reference<banded_matrix>,
public random_access_iterator_base<packed_random_access_iterator_tag,
iterator2, value_type> {
public:
typedef typename banded_matrix::value_type value_type;
typedef typename banded_matrix::difference_type difference_type;
typedef typename banded_matrix::reference reference;
typedef typename banded_matrix::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, size_type it1, size_type it2):
container_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
return (*this) ().at_element (it1_, it2_);
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
return (*this) ().find1 (1, 0, it2_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
return (*this) ().find1 (1, (*this) ().size1 (), it2_);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_;
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_;
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ < it.it2_;
}
private:
size_type it1_;
size_type it2_;
friend class const_iterator2;
};
#endif
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
private:
size_type size1_;
size_type size2_;
size_type lower_;
size_type upper_;
array_type data_;
typedef const value_type const_value_type;
static const_value_type zero_;
};
template<class T, class L, class A>
typename banded_matrix<T, L, A>::const_value_type banded_matrix<T, L, A>::zero_ = value_type/*zero*/();
/** \brief A diagonal matrix of values of type \c T, which is a specialization of a banded matrix
*
* For a \f$(m\times m)\f$-dimensional diagonal matrix, \f$0 \leq i < m\f$ and \f$0 \leq j < m\f$,
* if \f$i\neq j\f$ then \f$b_{i,j}=0\f$. The default storage for diagonal matrices is packed.
* Orientation and storage can also be specified. Default is \c row major \c unbounded_array.
*
* As a specialization of a banded matrix, the constructor of the diagonal matrix creates
* a banded matrix with 0 upper and lower diagonals around the main diagonal and the matrix is
* obviously a square matrix. Operations are optimized based on these 2 assumptions. It is
* \b not required by the storage to initialize elements of the matrix.
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam L the storage organization. It can be either \c row_major or \c column_major. Default is \c row_major
* \tparam A the type of Storage array. Default is \c unbounded_array
*/
template<class T, class L, class A>
class diagonal_matrix:
public banded_matrix<T, L, A> {
public:
typedef typename A::size_type size_type;
typedef banded_matrix<T, L, A> matrix_type;
typedef A array_type;
// Construction and destruction
BOOST_UBLAS_INLINE
diagonal_matrix ():
matrix_type () {}
BOOST_UBLAS_INLINE
diagonal_matrix (size_type size):
matrix_type (size, size) {}
BOOST_UBLAS_INLINE
diagonal_matrix (size_type size, const array_type& data):
matrix_type (size, size, 0, 0, data) {}
BOOST_UBLAS_INLINE
diagonal_matrix (size_type size1, size_type size2):
matrix_type (size1, size2) {}
template<class AE>
BOOST_UBLAS_INLINE
diagonal_matrix (const matrix_expression<AE> &ae):
matrix_type (ae) {}
BOOST_UBLAS_INLINE
~diagonal_matrix () {}
// Assignment
BOOST_UBLAS_INLINE
diagonal_matrix &operator = (const diagonal_matrix &m) {
matrix_type::operator = (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
diagonal_matrix &operator = (const matrix_expression<AE> &ae) {
matrix_type::operator = (ae);
return *this;
}
};
/** \brief A banded matrix adaptator: convert a any matrix into a banded matrix expression
*
* For a \f$(m\times n)\f$-dimensional matrix, the \c banded_adaptor will provide a banded matrix
* with \f$l\f$ lower and \f$u\f$ upper diagonals and \f$0 \leq i < m\f$ and \f$0 \leq j < n\f$,
* if \f$i>j+l\f$ or \f$i<j-u\f$ then \f$b_{i,j}=0\f$.
*
* Storage and location are based on those of the underlying matrix. This is important because
* a \c banded_adaptor does not copy the matrix data to a new place. Therefore, modifying values
* in a \c banded_adaptor matrix will also modify the underlying matrix too.
*
* \tparam M the type of matrix used to generate a banded matrix
*/
template<class M>
class banded_adaptor:
public matrix_expression<banded_adaptor<M> > {
typedef banded_adaptor<M> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_expression<self_type>::operator ();
#endif
typedef const M const_matrix_type;
typedef M matrix_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typedef typename M::value_type value_type;
typedef typename M::const_reference const_reference;
typedef typename boost::mpl::if_<boost::is_const<M>,
typename M::const_reference,
typename M::reference>::type reference;
typedef typename boost::mpl::if_<boost::is_const<M>,
typename M::const_closure_type,
typename M::closure_type>::type matrix_closure_type;
typedef const self_type const_closure_type;
typedef self_type closure_type;
// Replaced by _temporary_traits to avoid type requirements on M
//typedef typename M::vector_temporary_type vector_temporary_type;
//typedef typename M::matrix_temporary_type matrix_temporary_type;
typedef typename storage_restrict_traits<typename M::storage_category,
packed_proxy_tag>::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
banded_adaptor (matrix_type &data, size_type lower = 0, size_type upper = 0):
matrix_expression<self_type> (),
data_ (data), lower_ (lower), upper_ (upper) {}
BOOST_UBLAS_INLINE
banded_adaptor (const banded_adaptor &m):
matrix_expression<self_type> (),
data_ (m.data_), lower_ (m.lower_), upper_ (m.upper_) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return data_.size1 ();
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return data_.size2 ();
}
BOOST_UBLAS_INLINE
size_type lower () const {
return lower_;
}
BOOST_UBLAS_INLINE
size_type upper () const {
return upper_;
}
// Storage accessors
BOOST_UBLAS_INLINE
const matrix_closure_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
matrix_closure_type &data () {
return data_;
}
// Element access
#ifndef BOOST_UBLAS_PROXY_CONST_MEMBER
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
size_type k = (std::max) (i, j);
size_type l = lower_ + j - i;
if (k < (std::max) (size1 (), size2 ()) &&
l < lower_ + 1 + upper_)
return data () (i, j);
#else
size_type k = j;
size_type l = upper_ + i - j;
if (k < size2 () &&
l < lower_ + 1 + upper_)
return data () (i, j);
#endif
return zero_;
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
size_type k = (std::max) (i, j);
size_type l = lower_ + j - i;
if (k < (std::max) (size1 (), size2 ()) &&
l < lower_ + 1 + upper_)
return data () (i, j);
#else
size_type k = j;
size_type l = upper_ + i - j;
if (k < size2 () &&
l < lower_ + 1 + upper_)
return data () (i, j);
#endif
#ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER
bad_index ().raise ();
#endif
return const_cast<reference>(zero_);
}
#else
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) const {
BOOST_UBLAS_CHECK (i < size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < size2 (), bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
size_type k = (std::max) (i, j);
size_type l = lower_ + j - i;
if (k < (std::max) (size1 (), size2 ()) &&
l < lower_ + 1 + upper_)
return data () (i, j);
#else
size_type k = j;
size_type l = upper_ + i - j;
if (k < size2 () &&
l < lower_ + 1 + upper_)
return data () (i, j);
#endif
#ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER
bad_index ().raise ();
#endif
return const_cast<reference>(zero_);
}
#endif
// Assignment
BOOST_UBLAS_INLINE
banded_adaptor &operator = (const banded_adaptor &m) {
matrix_assign<scalar_assign> (*this, m);
return *this;
}
BOOST_UBLAS_INLINE
banded_adaptor &assign_temporary (banded_adaptor &m) {
*this = m;
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
banded_adaptor &operator = (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, matrix<value_type> (ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
banded_adaptor &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
banded_adaptor& operator += (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, matrix<value_type> (*this + ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
banded_adaptor &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
banded_adaptor& operator -= (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, matrix<value_type> (*this - ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
banded_adaptor &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
banded_adaptor& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
banded_adaptor& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const banded_adaptor &ba) const {
return (*this).data ().same_closure (ba.data ());
}
// Swapping
BOOST_UBLAS_INLINE
void swap (banded_adaptor &m) {
if (this != &m) {
BOOST_UBLAS_CHECK (lower_ == m.lower_, bad_size ());
BOOST_UBLAS_CHECK (upper_ == m.upper_, bad_size ());
matrix_swap<scalar_swap> (*this, m);
}
}
BOOST_UBLAS_INLINE
friend void swap (banded_adaptor &m1, banded_adaptor &m2) {
m1.swap (m2);
}
// Iterator types
private:
// Use the matrix iterator
typedef typename M::const_iterator1 const_subiterator1_type;
typedef typename boost::mpl::if_<boost::is_const<M>,
typename M::const_iterator1,
typename M::iterator1>::type subiterator1_type;
typedef typename M::const_iterator2 const_subiterator2_type;
typedef typename boost::mpl::if_<boost::is_const<M>,
typename M::const_iterator2,
typename M::iterator2>::type subiterator2_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;
typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;
typedef indexed_const_iterator1<self_type, packed_random_access_iterator_tag> const_iterator1;
typedef indexed_const_iterator2<self_type, packed_random_access_iterator_tag> const_iterator2;
#else
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
#endif
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator1 find1 (int rank, size_type i, size_type j) const {
if (rank == 1) {
size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0));
i = (std::max) (i, lower_i);
size_type upper_i = (std::min) (j + 1 + lower_, size1 ());
i = (std::min) (i, upper_i);
}
return const_iterator1 (*this, data ().find1 (rank, i, j));
}
BOOST_UBLAS_INLINE
iterator1 find1 (int rank, size_type i, size_type j) {
if (rank == 1) {
size_type lower_i = (std::max) (difference_type (j - upper_), difference_type (0));
i = (std::max) (i, lower_i);
size_type upper_i = (std::min) (j + 1 + lower_, size1 ());
i = (std::min) (i, upper_i);
}
return iterator1 (*this, data ().find1 (rank, i, j));
}
BOOST_UBLAS_INLINE
const_iterator2 find2 (int rank, size_type i, size_type j) const {
if (rank == 1) {
size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0));
j = (std::max) (j, lower_j);
size_type upper_j = (std::min) (i + 1 + upper_, size2 ());
j = (std::min) (j, upper_j);
}
return const_iterator2 (*this, data ().find2 (rank, i, j));
}
BOOST_UBLAS_INLINE
iterator2 find2 (int rank, size_type i, size_type j) {
if (rank == 1) {
size_type lower_j = (std::max) (difference_type (i - lower_), difference_type (0));
j = (std::max) (j, lower_j);
size_type upper_j = (std::min) (i + 1 + upper_, size2 ());
j = (std::min) (j, upper_j);
}
return iterator2 (*this, data ().find2 (rank, i, j));
}
// Iterators simply are indices.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator1:
public container_const_reference<banded_adaptor>,
public random_access_iterator_base<typename iterator_restrict_traits<
typename const_subiterator1_type::iterator_category, packed_random_access_iterator_tag>::iterator_category,
const_iterator1, value_type> {
public:
typedef typename const_subiterator1_type::value_type value_type;
typedef typename const_subiterator1_type::difference_type difference_type;
typedef typename const_subiterator1_type::reference reference;
typedef typename const_subiterator1_type::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), it1_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, const const_subiterator1_type &it1):
container_const_reference<self_type> (m), it1_ (it1) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), it1_ (it.it1_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
++ it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
-- it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator += (difference_type n) {
it1_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -= (difference_type n) {
it1_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it1_ - it.it1_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
size_type i = index1 ();
size_type j = index2 ();
BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
size_type k = (std::max) (i, j);
size_type l = (*this) ().lower () + j - i;
if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) &&
l < (*this) ().lower () + 1 + (*this) ().upper ())
return *it1_;
#else
size_type k = j;
size_type l = (*this) ().upper () + i - j;
if (k < (*this) ().size2 () &&
l < (*this) ().lower () + 1 + (*this) ().upper ())
return *it1_;
#endif
return (*this) () (i, j);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
return (*this) ().find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
return (*this) ().find2 (1, index1 (), (*this) ().size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_.index1 ();
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it1_.index2 ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
it1_ = it.it1_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it1_ == it.it1_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it1_ < it.it1_;
}
private:
const_subiterator1_type it1_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1 (), 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator1:
public container_reference<banded_adaptor>,
public random_access_iterator_base<typename iterator_restrict_traits<
typename subiterator1_type::iterator_category, packed_random_access_iterator_tag>::iterator_category,
iterator1, value_type> {
public:
typedef typename subiterator1_type::value_type value_type;
typedef typename subiterator1_type::difference_type difference_type;
typedef typename subiterator1_type::reference reference;
typedef typename subiterator1_type::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), it1_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, const subiterator1_type &it1):
container_reference<self_type> (m), it1_ (it1) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
++ it1_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
-- it1_;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator += (difference_type n) {
it1_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -= (difference_type n) {
it1_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it1_ - it.it1_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
size_type i = index1 ();
size_type j = index2 ();
BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
size_type k = (std::max) (i, j);
size_type l = (*this) ().lower () + j - i;
if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) &&
l < (*this) ().lower () + 1 + (*this) ().upper ())
return *it1_;
#else
size_type k = j;
size_type l = (*this) ().upper () + i - j;
if (k < (*this) ().size2 () &&
l < (*this) ().lower () + 1 + (*this) ().upper ())
return *it1_;
#endif
return (*this) () (i, j);
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
return (*this) ().find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
return (*this) ().find2 (1, index1 (), (*this) ().size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it1_.index1 ();
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it1_.index2 ();
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
it1_ = it.it1_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it1_ == it.it1_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it1_ < it.it1_;
}
private:
subiterator1_type it1_;
friend class const_iterator1;
};
#endif
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1 (), 0);
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator2:
public container_const_reference<banded_adaptor>,
public random_access_iterator_base<packed_random_access_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename iterator_restrict_traits<typename const_subiterator2_type::iterator_category,
packed_random_access_iterator_tag>::iterator_category iterator_category;
typedef typename const_subiterator2_type::value_type value_type;
typedef typename const_subiterator2_type::difference_type difference_type;
typedef typename const_subiterator2_type::reference reference;
typedef typename const_subiterator2_type::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, const const_subiterator2_type &it2):
container_const_reference<self_type> (m), it2_ (it2) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), it2_ (it.it2_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
size_type i = index1 ();
size_type j = index2 ();
BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
size_type k = (std::max) (i, j);
size_type l = (*this) ().lower () + j - i;
if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) &&
l < (*this) ().lower () + 1 + (*this) ().upper ())
return *it2_;
#else
size_type k = j;
size_type l = (*this) ().upper () + i - j;
if (k < (*this) ().size2 () &&
l < (*this) ().lower () + 1 + (*this) ().upper ())
return *it2_;
#endif
return (*this) () (i, j);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
return (*this) ().find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
return (*this) ().find1 (1, (*this) ().size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it2_.index1 ();
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_.index2 ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it2_ < it.it2_;
}
private:
const_subiterator2_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2 ());
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator2:
public container_reference<banded_adaptor>,
public random_access_iterator_base<typename iterator_restrict_traits<
typename subiterator2_type::iterator_category, packed_random_access_iterator_tag>::iterator_category,
iterator2, value_type> {
public:
typedef typename subiterator2_type::value_type value_type;
typedef typename subiterator2_type::difference_type difference_type;
typedef typename subiterator2_type::reference reference;
typedef typename subiterator2_type::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), it2_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, const subiterator2_type &it2):
container_reference<self_type> (m), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
size_type i = index1 ();
size_type j = index2 ();
BOOST_UBLAS_CHECK (i < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (j < (*this) ().size2 (), bad_index ());
#ifdef BOOST_UBLAS_OWN_BANDED
size_type k = (std::max) (i, j);
size_type l = (*this) ().lower () + j - i;
if (k < (std::max) ((*this) ().size1 (), (*this) ().size2 ()) &&
l < (*this) ().lower () + 1 + (*this) ().upper ())
return *it2_;
#else
size_type k = j;
size_type l = (*this) ().upper () + i - j;
if (k < (*this) ().size2 () &&
l < (*this) ().lower () + 1 + (*this) ().upper ())
return *it2_;
#endif
return (*this) () (i, j);
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
return (*this) ().find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
return (*this) ().find1 (1, (*this) ().size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
return it2_.index1 ();
}
BOOST_UBLAS_INLINE
size_type index2 () const {
return it2_.index2 ();
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
return it2_ < it.it2_;
}
private:
subiterator2_type it2_;
friend class const_iterator2;
};
#endif
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2 ());
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
private:
matrix_closure_type data_;
size_type lower_;
size_type upper_;
typedef const value_type const_value_type;
static const_value_type zero_;
};
// Specialization for temporary_traits
template <class M>
struct vector_temporary_traits< banded_adaptor<M> >
: vector_temporary_traits< M > {} ;
template <class M>
struct vector_temporary_traits< const banded_adaptor<M> >
: vector_temporary_traits< M > {} ;
template <class M>
struct matrix_temporary_traits< banded_adaptor<M> >
: matrix_temporary_traits< M > {} ;
template <class M>
struct matrix_temporary_traits< const banded_adaptor<M> >
: matrix_temporary_traits< M > {} ;
template<class M>
typename banded_adaptor<M>::const_value_type banded_adaptor<M>::zero_ = value_type/*zero*/();
/** \brief A diagonal matrix adaptator: convert a any matrix into a diagonal matrix expression
*
* For a \f$(m\times m)\f$-dimensional matrix, the \c diagonal_adaptor will provide a diagonal matrix
* with \f$0 \leq i < m\f$ and \f$0 \leq j < m\f$, if \f$i\neq j\f$ then \f$b_{i,j}=0\f$.
*
* Storage and location are based on those of the underlying matrix. This is important because
* a \c diagonal_adaptor does not copy the matrix data to a new place. Therefore, modifying values
* in a \c diagonal_adaptor matrix will also modify the underlying matrix too.
*
* \tparam M the type of matrix used to generate the diagonal matrix
*/
template<class M>
class diagonal_adaptor:
public banded_adaptor<M> {
public:
typedef M matrix_type;
typedef banded_adaptor<M> adaptor_type;
// Construction and destruction
BOOST_UBLAS_INLINE
diagonal_adaptor ():
adaptor_type () {}
BOOST_UBLAS_INLINE
diagonal_adaptor (matrix_type &data):
adaptor_type (data) {}
BOOST_UBLAS_INLINE
~diagonal_adaptor () {}
// Assignment
BOOST_UBLAS_INLINE
diagonal_adaptor &operator = (const diagonal_adaptor &m) {
adaptor_type::operator = (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
diagonal_adaptor &operator = (const matrix_expression<AE> &ae) {
adaptor_type::operator = (ae);
return *this;
}
};
}}}
#endif