blob: b3b61a9109b1ead9307072e60df8441bccb23bcb [file] [log] [blame]
//
// Copyright (c) 2000-2007
// Joerg Walter, Mathias Koch, Gunter Winkler
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_MATRIX_SPARSE_
#define _BOOST_UBLAS_MATRIX_SPARSE_
#include <boost/numeric/ublas/vector_sparse.hpp>
#include <boost/numeric/ublas/matrix_expression.hpp>
#include <boost/numeric/ublas/detail/matrix_assign.hpp>
#if BOOST_UBLAS_TYPE_CHECK
#include <boost/numeric/ublas/matrix.hpp>
#endif
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
#ifdef BOOST_UBLAS_STRICT_MATRIX_SPARSE
template<class M>
class sparse_matrix_element:
public container_reference<M> {
public:
typedef M matrix_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
typedef const value_type &const_reference;
typedef value_type *pointer;
typedef const value_type *const_pointer;
private:
// Proxied element operations
void get_d () const {
const_pointer p = (*this) ().find_element (i_, j_);
if (p)
d_ = *p;
else
d_ = value_type/*zero*/();
}
void set (const value_type &s) const {
pointer p = (*this) ().find_element (i_, j_);
if (!p)
(*this) ().insert_element (i_, j_, s);
else
*p = s;
}
public:
// Construction and destruction
BOOST_UBLAS_INLINE
sparse_matrix_element (matrix_type &m, size_type i, size_type j):
container_reference<matrix_type> (m), i_ (i), j_ (j) {
}
BOOST_UBLAS_INLINE
sparse_matrix_element (const sparse_matrix_element &p):
container_reference<matrix_type> (p), i_ (p.i_), j_ (p.j_) {}
BOOST_UBLAS_INLINE
~sparse_matrix_element () {
}
// Assignment
BOOST_UBLAS_INLINE
sparse_matrix_element &operator = (const sparse_matrix_element &p) {
// Overide the implict copy assignment
p.get_d ();
set (p.d_);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_matrix_element &operator = (const D &d) {
set (d);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_matrix_element &operator += (const D &d) {
get_d ();
d_ += d;
set (d_);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_matrix_element &operator -= (const D &d) {
get_d ();
d_ -= d;
set (d_);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_matrix_element &operator *= (const D &d) {
get_d ();
d_ *= d;
set (d_);
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_matrix_element &operator /= (const D &d) {
get_d ();
d_ /= d;
set (d_);
return *this;
}
// Comparison
template<class D>
BOOST_UBLAS_INLINE
bool operator == (const D &d) const {
get_d ();
return d_ == d;
}
template<class D>
BOOST_UBLAS_INLINE
bool operator != (const D &d) const {
get_d ();
return d_ != d;
}
// Conversion - weak link in proxy as d_ is not a perfect alias for the element
BOOST_UBLAS_INLINE
operator const_reference () const {
get_d ();
return d_;
}
// Conversion to reference - may be invalidated
BOOST_UBLAS_INLINE
value_type& ref () const {
const pointer p = (*this) ().find_element (i_, j_);
if (!p)
return (*this) ().insert_element (i_, j_, value_type/*zero*/());
else
return *p;
}
private:
size_type i_;
size_type j_;
mutable value_type d_;
};
/*
* Generalise explicit reference access
*/
namespace detail {
template <class V>
struct element_reference<sparse_matrix_element<V> > {
typedef typename V::value_type& reference;
static reference get_reference (const sparse_matrix_element<V>& sve)
{
return sve.ref ();
}
};
}
template<class M>
struct type_traits<sparse_matrix_element<M> > {
typedef typename M::value_type element_type;
typedef type_traits<sparse_matrix_element<M> > self_type;
typedef typename type_traits<element_type>::value_type value_type;
typedef typename type_traits<element_type>::const_reference const_reference;
typedef sparse_matrix_element<M> reference;
typedef typename type_traits<element_type>::real_type real_type;
typedef typename type_traits<element_type>::precision_type precision_type;
static const unsigned plus_complexity = type_traits<element_type>::plus_complexity;
static const unsigned multiplies_complexity = type_traits<element_type>::multiplies_complexity;
static
BOOST_UBLAS_INLINE
real_type real (const_reference t) {
return type_traits<element_type>::real (t);
}
static
BOOST_UBLAS_INLINE
real_type imag (const_reference t) {
return type_traits<element_type>::imag (t);
}
static
BOOST_UBLAS_INLINE
value_type conj (const_reference t) {
return type_traits<element_type>::conj (t);
}
static
BOOST_UBLAS_INLINE
real_type type_abs (const_reference t) {
return type_traits<element_type>::type_abs (t);
}
static
BOOST_UBLAS_INLINE
value_type type_sqrt (const_reference t) {
return type_traits<element_type>::type_sqrt (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_1 (const_reference t) {
return type_traits<element_type>::norm_1 (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_2 (const_reference t) {
return type_traits<element_type>::norm_2 (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_inf (const_reference t) {
return type_traits<element_type>::norm_inf (t);
}
static
BOOST_UBLAS_INLINE
bool equals (const_reference t1, const_reference t2) {
return type_traits<element_type>::equals (t1, t2);
}
};
template<class M1, class T2>
struct promote_traits<sparse_matrix_element<M1>, T2> {
typedef typename promote_traits<typename sparse_matrix_element<M1>::value_type, T2>::promote_type promote_type;
};
template<class T1, class M2>
struct promote_traits<T1, sparse_matrix_element<M2> > {
typedef typename promote_traits<T1, typename sparse_matrix_element<M2>::value_type>::promote_type promote_type;
};
template<class M1, class M2>
struct promote_traits<sparse_matrix_element<M1>, sparse_matrix_element<M2> > {
typedef typename promote_traits<typename sparse_matrix_element<M1>::value_type,
typename sparse_matrix_element<M2>::value_type>::promote_type promote_type;
};
#endif
/** \brief Index map based sparse matrix of values of type \c T
*
* This class represents a matrix by using a \c key to value mapping. The default type is
* \code template<class T, class L = row_major, class A = map_std<std::size_t, T> > class mapped_matrix; \endcode
* So, by default a STL map container is used to associate keys and values. The key is computed depending on
* the layout type \c L as \code key = layout_type::element(i, size1_, j, size2_); \endcode
* which means \code key = (i*size2+j) \endcode for a row major matrix.
* Limitations: The matrix size must not exceed \f$(size1*size2) < \f$ \code std::limits<std::size_t> \endcode.
* The \ref find1() and \ref find2() operations have a complexity of at least \f$\mathcal{O}(log(nnz))\f$, depending
* on the efficiency of \c std::lower_bound on the key set of the map.
* Orientation and storage can also be specified, otherwise a row major orientation is used.
* It is \b not required by the storage to initialize elements of the matrix. By default, the orientation is \c row_major.
*
* \sa fwd.hpp, storage_sparse.hpp
*
* \tparam T the type of object stored in the matrix (like double, float, complex, etc...)
* \tparam L the storage organization. It can be either \c row_major or \c column_major. By default it is \c row_major
*/
template<class T, class L, class A>
class mapped_matrix:
public matrix_container<mapped_matrix<T, L, A> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T * const_pointer;
typedef L layout_type;
typedef mapped_matrix<T, L, A> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef T value_type;
typedef A array_type;
typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
typedef typename detail::map_traits<A, T>::reference reference;
#else
typedef sparse_matrix_element<self_type> reference;
#endif
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef mapped_vector<T, A> vector_temporary_type;
typedef self_type matrix_temporary_type;
typedef sparse_tag storage_category;
typedef typename L::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
mapped_matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), data_ () {}
BOOST_UBLAS_INLINE
mapped_matrix (size_type size1, size_type size2, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ () {
detail::map_reserve (data (), restrict_capacity (non_zeros));
}
BOOST_UBLAS_INLINE
mapped_matrix (const mapped_matrix &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {}
template<class AE>
BOOST_UBLAS_INLINE
mapped_matrix (const matrix_expression<AE> &ae, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ () {
detail::map_reserve (data (), restrict_capacity (non_zeros));
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
size_type nnz_capacity () const {
return detail::map_capacity (data ());
}
BOOST_UBLAS_INLINE
size_type nnz () const {
return data (). size ();
}
// Storage accessors
BOOST_UBLAS_INLINE
const array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
private:
BOOST_UBLAS_INLINE
size_type restrict_capacity (size_type non_zeros) const {
// Guarding against overflow - thanks to Alexei Novakov for the hint.
// non_zeros = (std::min) (non_zeros, size1_ * size2_);
if (size1_ > 0 && non_zeros / size1_ >= size2_)
non_zeros = size1_ * size2_;
return non_zeros;
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
// FIXME preserve unimplemented
BOOST_UBLAS_CHECK (!preserve, internal_logic ());
size1_ = size1;
size2_ = size2;
data ().clear ();
}
// Reserving
BOOST_UBLAS_INLINE
void reserve (size_type non_zeros, bool preserve = true) {
detail::map_reserve (data (), restrict_capacity (non_zeros));
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i, size_type j) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i, j));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i, size_type j) const {
const size_type element = layout_type::element (i, size1_, j, size2_);
const_subiterator_type it (data ().find (element));
if (it == data ().end ())
return 0;
BOOST_UBLAS_CHECK ((*it).first == element, internal_logic ()); // broken map
return &(*it).second;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
const size_type element = layout_type::element (i, size1_, j, size2_);
const_subiterator_type it (data ().find (element));
if (it == data ().end ())
return zero_;
BOOST_UBLAS_CHECK ((*it).first == element, internal_logic ()); // broken map
return (*it).second;
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
const size_type element = layout_type::element (i, size1_, j, size2_);
std::pair<subiterator_type, bool> ii (data ().insert (typename array_type::value_type (element, value_type/*zero*/())));
BOOST_UBLAS_CHECK ((ii.first)->first == element, internal_logic ()); // broken map
return (ii.first)->second;
#else
return reference (*this, i, j);
#endif
}
// Element assingment
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, size_type j, const_reference t) {
BOOST_UBLAS_CHECK (!find_element (i, j), bad_index ()); // duplicate element
const size_type element = layout_type::element (i, size1_, j, size2_);
std::pair<subiterator_type, bool> ii (data ().insert (typename array_type::value_type (element, t)));
BOOST_UBLAS_CHECK ((ii.first)->first == element, internal_logic ()); // broken map
if (!ii.second) // existing element
(ii.first)->second = t;
return (ii.first)->second;
}
BOOST_UBLAS_INLINE
void erase_element (size_type i, size_type j) {
subiterator_type it = data ().find (layout_type::element (i, size1_, j, size2_));
if (it == data ().end ())
return;
data ().erase (it);
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
data ().clear ();
}
// Assignment
BOOST_UBLAS_INLINE
mapped_matrix &operator = (const mapped_matrix &m) {
if (this != &m) {
size1_ = m.size1_;
size2_ = m.size2_;
data () = m.data ();
}
return *this;
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
mapped_matrix &operator = (const matrix_container<C> &m) {
resize (m ().size1 (), m ().size2 (), false);
assign (m);
return *this;
}
BOOST_UBLAS_INLINE
mapped_matrix &assign_temporary (mapped_matrix &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_matrix &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae, detail::map_capacity (data ()));
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_matrix &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_matrix& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae, detail::map_capacity (data ()));
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
mapped_matrix &operator += (const matrix_container<C> &m) {
plus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_matrix &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_matrix& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae, detail::map_capacity (data ()));
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
mapped_matrix &operator -= (const matrix_container<C> &m) {
minus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_matrix &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
mapped_matrix& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
mapped_matrix& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (mapped_matrix &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
data ().swap (m.data ());
}
}
BOOST_UBLAS_INLINE
friend void swap (mapped_matrix &m1, mapped_matrix &m2) {
m1.swap (m2);
}
// Iterator types
private:
// Use storage iterator
typedef typename A::const_iterator const_subiterator_type;
typedef typename A::iterator subiterator_type;
BOOST_UBLAS_INLINE
true_reference at_element (size_type i, size_type j) {
const size_type element = layout_type::element (i, size1_, j, size2_);
subiterator_type it (data ().find (element));
BOOST_UBLAS_CHECK (it != data ().end(), bad_index ());
BOOST_UBLAS_CHECK ((*it).first == element, internal_logic ()); // broken map
return it->second;
}
public:
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) const {
const_subiterator_type it (data ().lower_bound (layout_type::address (i, size1_, j, size2_)));
const_subiterator_type it_end (data ().end ());
size_type index1 = size_type (-1);
size_type index2 = size_type (-1);
while (rank == 1 && it != it_end) {
index1 = layout_type::index_i ((*it).first, size1_, size2_);
index2 = layout_type::index_j ((*it).first, size1_, size2_);
if (direction > 0) {
if ((index1 >= i && index2 == j) || (i >= size1_))
break;
++ i;
} else /* if (direction < 0) */ {
if ((index1 <= i && index2 == j) || (i == 0))
break;
-- i;
}
it = data ().lower_bound (layout_type::address (i, size1_, j, size2_));
}
if (rank == 1 && index2 != j) {
if (direction > 0)
i = size1_;
else /* if (direction < 0) */
i = 0;
rank = 0;
}
return const_iterator1 (*this, rank, i, j, it);
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) {
subiterator_type it (data ().lower_bound (layout_type::address (i, size1_, j, size2_)));
subiterator_type it_end (data ().end ());
size_type index1 = size_type (-1);
size_type index2 = size_type (-1);
while (rank == 1 && it != it_end) {
index1 = layout_type::index_i ((*it).first, size1_, size2_);
index2 = layout_type::index_j ((*it).first, size1_, size2_);
if (direction > 0) {
if ((index1 >= i && index2 == j) || (i >= size1_))
break;
++ i;
} else /* if (direction < 0) */ {
if ((index1 <= i && index2 == j) || (i == 0))
break;
-- i;
}
it = data ().lower_bound (layout_type::address (i, size1_, j, size2_));
}
if (rank == 1 && index2 != j) {
if (direction > 0)
i = size1_;
else /* if (direction < 0) */
i = 0;
rank = 0;
}
return iterator1 (*this, rank, i, j, it);
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) const {
const_subiterator_type it (data ().lower_bound (layout_type::address (i, size1_, j, size2_)));
const_subiterator_type it_end (data ().end ());
size_type index1 = size_type (-1);
size_type index2 = size_type (-1);
while (rank == 1 && it != it_end) {
index1 = layout_type::index_i ((*it).first, size1_, size2_);
index2 = layout_type::index_j ((*it).first, size1_, size2_);
if (direction > 0) {
if ((index2 >= j && index1 == i) || (j >= size2_))
break;
++ j;
} else /* if (direction < 0) */ {
if ((index2 <= j && index1 == i) || (j == 0))
break;
-- j;
}
it = data ().lower_bound (layout_type::address (i, size1_, j, size2_));
}
if (rank == 1 && index1 != i) {
if (direction > 0)
j = size2_;
else /* if (direction < 0) */
j = 0;
rank = 0;
}
return const_iterator2 (*this, rank, i, j, it);
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) {
subiterator_type it (data ().lower_bound (layout_type::address (i, size1_, j, size2_)));
subiterator_type it_end (data ().end ());
size_type index1 = size_type (-1);
size_type index2 = size_type (-1);
while (rank == 1 && it != it_end) {
index1 = layout_type::index_i ((*it).first, size1_, size2_);
index2 = layout_type::index_j ((*it).first, size1_, size2_);
if (direction > 0) {
if ((index2 >= j && index1 == i) || (j >= size2_))
break;
++ j;
} else /* if (direction < 0) */ {
if ((index2 <= j && index1 == i) || (j == 0))
break;
-- j;
}
it = data ().lower_bound (layout_type::address (i, size1_, j, size2_));
}
if (rank == 1 && index1 != i) {
if (direction > 0)
j = size2_;
else /* if (direction < 0) */
j = 0;
rank = 0;
}
return iterator2 (*this, rank, i, j, it);
}
class const_iterator1:
public container_const_reference<mapped_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename mapped_matrix::value_type value_type;
typedef typename mapped_matrix::difference_type difference_type;
typedef typename mapped_matrix::const_reference reference;
typedef const typename mapped_matrix::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, int rank, size_type i, size_type j, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else
*this = (*this) ().find1 (rank_, index1 () + 1, j_, 1);
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else
*this = (*this) ().find1 (rank_, index1 () - 1, j_, -1);
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*it_).second;
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
const self_type &m = (*this) ();
BOOST_UBLAS_CHECK (layout_type::index_i ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size1 (), bad_index ());
return layout_type::index_i ((*it_).first, m.size1 (), m.size2 ());
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
if (rank_ == 1) {
const self_type &m = (*this) ();
BOOST_UBLAS_CHECK (layout_type::index_j ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size2 (), bad_index ());
return layout_type::index_j ((*it_).first, m.size1 (), m.size2 ());
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
class iterator1:
public container_reference<mapped_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator1, value_type> {
public:
typedef typename mapped_matrix::value_type value_type;
typedef typename mapped_matrix::difference_type difference_type;
typedef typename mapped_matrix::true_reference reference;
typedef typename mapped_matrix::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, int rank, size_type i, size_type j, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else
*this = (*this) ().find1 (rank_, index1 () + 1, j_, 1);
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else
*this = (*this) ().find1 (rank_, index1 () - 1, j_, -1);
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*it_).second;
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
const self_type &m = (*this) ();
BOOST_UBLAS_CHECK (layout_type::index_i ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size1 (), bad_index ());
return layout_type::index_i ((*it_).first, m.size1 (), m.size2 ());
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
if (rank_ == 1) {
const self_type &m = (*this) ();
BOOST_UBLAS_CHECK (layout_type::index_j ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size2 (), bad_index ());
return layout_type::index_j ((*it_).first, m.size1 (), m.size2 ());
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
subiterator_type it_;
friend class const_iterator1;
};
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1_, 0);
}
class const_iterator2:
public container_const_reference<mapped_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename mapped_matrix::value_type value_type;
typedef typename mapped_matrix::difference_type difference_type;
typedef typename mapped_matrix::const_reference reference;
typedef const typename mapped_matrix::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, int rank, size_type i, size_type j, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else
*this = (*this) ().find2 (rank_, i_, index2 () + 1, 1);
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else
*this = (*this) ().find2 (rank_, i_, index2 () - 1, -1);
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*it_).second;
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
const self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
const self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
if (rank_ == 1) {
const self_type &m = (*this) ();
BOOST_UBLAS_CHECK (layout_type::index_i ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size1 (), bad_index ());
return layout_type::index_i ((*it_).first, m.size1 (), m.size2 ());
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
const self_type &m = (*this) ();
BOOST_UBLAS_CHECK (layout_type::index_j ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size2 (), bad_index ());
return layout_type::index_j ((*it_).first, m.size1 (), m.size2 ());
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
class iterator2:
public container_reference<mapped_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator2, value_type> {
public:
typedef typename mapped_matrix::value_type value_type;
typedef typename mapped_matrix::difference_type difference_type;
typedef typename mapped_matrix::true_reference reference;
typedef typename mapped_matrix::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, int rank, size_type i, size_type j, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else
*this = (*this) ().find2 (rank_, i_, index2 () + 1, 1);
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else
*this = (*this) ().find2 (rank_, i_, index2 () - 1, -1);
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*it_).second;
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
if (rank_ == 1) {
const self_type &m = (*this) ();
BOOST_UBLAS_CHECK (layout_type::index_i ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size1 (), bad_index ());
return layout_type::index_i ((*it_).first, m.size1 (), m.size2 ());
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
const self_type &m = (*this) ();
BOOST_UBLAS_CHECK (layout_type::index_j ((*it_).first, m.size1 (), m.size2 ()) < (*this) ().size2 (), bad_index ());
return layout_type::index_j ((*it_).first, m.size1 (), m.size2 ());
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
subiterator_type it_;
friend class const_iterator2;
};
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
ar & serialization::make_nvp("size1",s1);
ar & serialization::make_nvp("size2",s2);
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
ar & serialization::make_nvp("data", data_);
}
private:
size_type size1_;
size_type size2_;
array_type data_;
static const value_type zero_;
};
template<class T, class L, class A>
const typename mapped_matrix<T, L, A>::value_type mapped_matrix<T, L, A>::zero_ = value_type/*zero*/();
// Vector index map based sparse matrix class
template<class T, class L, class A>
class mapped_vector_of_mapped_vector:
public matrix_container<mapped_vector_of_mapped_vector<T, L, A> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T *const_pointer;
typedef A array_type;
typedef const A const_array_type;
typedef L layout_type;
typedef mapped_vector_of_mapped_vector<T, L, A> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
typedef typename detail::map_traits<typename A::data_value_type, T>::reference reference;
#else
typedef sparse_matrix_element<self_type> reference;
#endif
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef mapped_vector<T, typename A::value_type> vector_temporary_type;
typedef self_type matrix_temporary_type;
typedef typename A::value_type::second_type vector_data_value_type;
typedef sparse_tag storage_category;
typedef typename L::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), data_ () {
data_ [layout_type::size_M (size1_, size2_)] = vector_data_value_type ();
}
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector (size_type size1, size_type size2, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ () {
data_ [layout_type::size_M (size1_, size2_)] = vector_data_value_type ();
}
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector (const mapped_vector_of_mapped_vector &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector (const matrix_expression<AE> &ae, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ () {
data_ [layout_type::size_M (size1_, size2_)] = vector_data_value_type ();
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
size_type nnz_capacity () const {
size_type non_zeros = 0;
for (vector_const_subiterator_type itv = data_ ().begin (); itv != data_ ().end (); ++ itv)
non_zeros += detail::map_capacity (*itv);
return non_zeros;
}
BOOST_UBLAS_INLINE
size_type nnz () const {
size_type filled = 0;
for (vector_const_subiterator_type itv = data_ ().begin (); itv != data_ ().end (); ++ itv)
filled += (*itv).size ();
return filled;
}
// Storage accessors
BOOST_UBLAS_INLINE
const_array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
// FIXME preserve unimplemented
BOOST_UBLAS_CHECK (!preserve, internal_logic ());
size1_ = size1;
size2_ = size2;
data ().clear ();
data () [layout_type::size_M (size1_, size2_)] = vector_data_value_type ();
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i, size_type j) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i, j));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i, size_type j) const {
const size_type element1 = layout_type::index_M (i, j);
const size_type element2 = layout_type::index_m (i, j);
vector_const_subiterator_type itv (data ().find (element1));
if (itv == data ().end ())
return 0;
BOOST_UBLAS_CHECK ((*itv).first == element1, internal_logic ()); // broken map
const_subiterator_type it ((*itv).second.find (element2));
if (it == (*itv).second.end ())
return 0;
BOOST_UBLAS_CHECK ((*it).first == element2, internal_logic ()); // broken map
return &(*it).second;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
const size_type element1 = layout_type::index_M (i, j);
const size_type element2 = layout_type::index_m (i, j);
vector_const_subiterator_type itv (data ().find (element1));
if (itv == data ().end ())
return zero_;
BOOST_UBLAS_CHECK ((*itv).first == element1, internal_logic ()); // broken map
const_subiterator_type it ((*itv).second.find (element2));
if (it == (*itv).second.end ())
return zero_;
BOOST_UBLAS_CHECK ((*itv).first == element1, internal_logic ()); // broken map
return (*it).second;
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
const size_type element1 = layout_type::index_M (i, j);
const size_type element2 = layout_type::index_m (i, j);
vector_data_value_type& vd (data () [element1]);
std::pair<subiterator_type, bool> ii (vd.insert (typename array_type::value_type::second_type::value_type (element2, value_type/*zero*/())));
BOOST_UBLAS_CHECK ((ii.first)->first == element2, internal_logic ()); // broken map
return (ii.first)->second;
#else
return reference (*this, i, j);
#endif
}
// Element assignment
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, size_type j, const_reference t) {
BOOST_UBLAS_CHECK (!find_element (i, j), bad_index ()); // duplicate element
const size_type element1 = layout_type::index_M (i, j);
const size_type element2 = layout_type::index_m (i, j);
vector_data_value_type& vd (data () [element1]);
std::pair<subiterator_type, bool> ii (vd.insert (typename vector_data_value_type::value_type (element2, t)));
BOOST_UBLAS_CHECK ((ii.first)->first == element2, internal_logic ()); // broken map
if (!ii.second) // existing element
(ii.first)->second = t;
return (ii.first)->second;
}
BOOST_UBLAS_INLINE
void erase_element (size_type i, size_type j) {
vector_subiterator_type itv (data ().find (layout_type::index_M (i, j)));
if (itv == data ().end ())
return;
subiterator_type it ((*itv).second.find (layout_type::index_m (i, j)));
if (it == (*itv).second.end ())
return;
(*itv).second.erase (it);
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
data ().clear ();
data_ [layout_type::size_M (size1_, size2_)] = vector_data_value_type ();
}
// Assignment
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector &operator = (const mapped_vector_of_mapped_vector &m) {
if (this != &m) {
size1_ = m.size1_;
size2_ = m.size2_;
data () = m.data ();
}
return *this;
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector &operator = (const matrix_container<C> &m) {
resize (m ().size1 (), m ().size2 ());
assign (m);
return *this;
}
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector &assign_temporary (mapped_vector_of_mapped_vector &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector &operator += (const matrix_container<C> &m) {
plus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector &operator -= (const matrix_container<C> &m) {
minus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
mapped_vector_of_mapped_vector& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (mapped_vector_of_mapped_vector &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
data ().swap (m.data ());
}
}
BOOST_UBLAS_INLINE
friend void swap (mapped_vector_of_mapped_vector &m1, mapped_vector_of_mapped_vector &m2) {
m1.swap (m2);
}
// Iterator types
private:
// Use storage iterators
typedef typename A::const_iterator vector_const_subiterator_type;
typedef typename A::iterator vector_subiterator_type;
typedef typename A::value_type::second_type::const_iterator const_subiterator_type;
typedef typename A::value_type::second_type::iterator subiterator_type;
BOOST_UBLAS_INLINE
true_reference at_element (size_type i, size_type j) {
const size_type element1 = layout_type::index_M (i, j);
const size_type element2 = layout_type::index_m (i, j);
vector_subiterator_type itv (data ().find (element1));
BOOST_UBLAS_CHECK (itv != data ().end(), bad_index ());
BOOST_UBLAS_CHECK ((*itv).first == element1, internal_logic ()); // broken map
subiterator_type it ((*itv).second.find (element2));
BOOST_UBLAS_CHECK (it != (*itv).second.end (), bad_index ());
BOOST_UBLAS_CHECK ((*it).first == element2, internal_logic ()); // broken map
return it->second;
}
public:
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) const {
BOOST_UBLAS_CHECK (data ().begin () != data ().end (), internal_logic ());
for (;;) {
vector_const_subiterator_type itv (data ().lower_bound (layout_type::index_M (i, j)));
vector_const_subiterator_type itv_end (data ().end ());
if (itv == itv_end)
return const_iterator1 (*this, rank, i, j, itv_end, (*(-- itv)).second.end ());
const_subiterator_type it ((*itv).second.lower_bound (layout_type::index_m (i, j)));
const_subiterator_type it_end ((*itv).second.end ());
if (rank == 0) {
// advance to the first available major index
size_type M = itv->first;
size_type m;
if (it != it_end) {
m = it->first;
} else {
m = layout_type::size_m(size1_, size2_);
}
size_type first_i = layout_type::index_M(M,m);
return const_iterator1 (*this, rank, first_i, j, itv, it);
}
if (it != it_end && (*it).first == layout_type::index_m (i, j))
return const_iterator1 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_i ()) {
if (it == it_end)
return const_iterator1 (*this, rank, i, j, itv, it);
i = (*it).first;
} else {
if (i >= size1_)
return const_iterator1 (*this, rank, i, j, itv, it);
++ i;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_i ()) {
if (it == (*itv).second.begin ())
return const_iterator1 (*this, rank, i, j, itv, it);
-- it;
i = (*it).first;
} else {
if (i == 0)
return const_iterator1 (*this, rank, i, j, itv, it);
-- i;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) {
BOOST_UBLAS_CHECK (data ().begin () != data ().end (), internal_logic ());
for (;;) {
vector_subiterator_type itv (data ().lower_bound (layout_type::index_M (i, j)));
vector_subiterator_type itv_end (data ().end ());
if (itv == itv_end)
return iterator1 (*this, rank, i, j, itv_end, (*(-- itv)).second.end ());
subiterator_type it ((*itv).second.lower_bound (layout_type::index_m (i, j)));
subiterator_type it_end ((*itv).second.end ());
if (rank == 0) {
// advance to the first available major index
size_type M = itv->first;
size_type m;
if (it != it_end) {
m = it->first;
} else {
m = layout_type::size_m(size1_, size2_);
}
size_type first_i = layout_type::index_M(M,m);
return iterator1 (*this, rank, first_i, j, itv, it);
}
if (it != it_end && (*it).first == layout_type::index_m (i, j))
return iterator1 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_i ()) {
if (it == it_end)
return iterator1 (*this, rank, i, j, itv, it);
i = (*it).first;
} else {
if (i >= size1_)
return iterator1 (*this, rank, i, j, itv, it);
++ i;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_i ()) {
if (it == (*itv).second.begin ())
return iterator1 (*this, rank, i, j, itv, it);
-- it;
i = (*it).first;
} else {
if (i == 0)
return iterator1 (*this, rank, i, j, itv, it);
-- i;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) const {
BOOST_UBLAS_CHECK (data ().begin () != data ().end (), internal_logic ());
for (;;) {
vector_const_subiterator_type itv (data ().lower_bound (layout_type::index_M (i, j)));
vector_const_subiterator_type itv_end (data ().end ());
if (itv == itv_end)
return const_iterator2 (*this, rank, i, j, itv_end, (*(-- itv)).second.end ());
const_subiterator_type it ((*itv).second.lower_bound (layout_type::index_m (i, j)));
const_subiterator_type it_end ((*itv).second.end ());
if (rank == 0) {
// advance to the first available major index
size_type M = itv->first;
size_type m;
if (it != it_end) {
m = it->first;
} else {
m = layout_type::size_m(size1_, size2_);
}
size_type first_j = layout_type::index_m(M,m);
return const_iterator2 (*this, rank, i, first_j, itv, it);
}
if (it != it_end && (*it).first == layout_type::index_m (i, j))
return const_iterator2 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_j ()) {
if (it == it_end)
return const_iterator2 (*this, rank, i, j, itv, it);
j = (*it).first;
} else {
if (j >= size2_)
return const_iterator2 (*this, rank, i, j, itv, it);
++ j;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_j ()) {
if (it == (*itv).second.begin ())
return const_iterator2 (*this, rank, i, j, itv, it);
-- it;
j = (*it).first;
} else {
if (j == 0)
return const_iterator2 (*this, rank, i, j, itv, it);
-- j;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) {
BOOST_UBLAS_CHECK (data ().begin () != data ().end (), internal_logic ());
for (;;) {
vector_subiterator_type itv (data ().lower_bound (layout_type::index_M (i, j)));
vector_subiterator_type itv_end (data ().end ());
if (itv == itv_end)
return iterator2 (*this, rank, i, j, itv_end, (*(-- itv)).second.end ());
subiterator_type it ((*itv).second.lower_bound (layout_type::index_m (i, j)));
subiterator_type it_end ((*itv).second.end ());
if (rank == 0) {
// advance to the first available major index
size_type M = itv->first;
size_type m;
if (it != it_end) {
m = it->first;
} else {
m = layout_type::size_m(size1_, size2_);
}
size_type first_j = layout_type::index_m(M,m);
return iterator2 (*this, rank, i, first_j, itv, it);
}
if (it != it_end && (*it).first == layout_type::index_m (i, j))
return iterator2 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_j ()) {
if (it == it_end)
return iterator2 (*this, rank, i, j, itv, it);
j = (*it).first;
} else {
if (j >= size2_)
return iterator2 (*this, rank, i, j, itv, it);
++ j;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_j ()) {
if (it == (*itv).second.begin ())
return iterator2 (*this, rank, i, j, itv, it);
-- it;
j = (*it).first;
} else {
if (j == 0)
return iterator2 (*this, rank, i, j, itv, it);
-- j;
}
}
}
}
class const_iterator1:
public container_const_reference<mapped_vector_of_mapped_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename mapped_vector_of_mapped_vector::value_type value_type;
typedef typename mapped_vector_of_mapped_vector::difference_type difference_type;
typedef typename mapped_vector_of_mapped_vector::const_reference reference;
typedef const typename mapped_vector_of_mapped_vector::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, int rank, size_type i, size_type j, const vector_const_subiterator_type &itv, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), itv_ (it.itv_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else {
const self_type &m = (*this) ();
if (rank_ == 0) {
++ itv_;
i_ = itv_->first;
} else {
i_ = index1 () + 1;
}
if (rank_ == 1 && ++ itv_ == m.end1 ().itv_)
*this = m.find1 (rank_, i_, j_, 1);
else if (rank_ == 1) {
it_ = (*itv_).second.begin ();
if (it_ == (*itv_).second.end () || index2 () != j_)
*this = m.find1 (rank_, i_, j_, 1);
}
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else {
const self_type &m = (*this) ();
if (rank_ == 0) {
-- itv_;
i_ = itv_->first;
} else {
i_ = index1 () - 1;
}
// FIXME: this expression should never become true!
if (rank_ == 1 && -- itv_ == m.end1 ().itv_)
*this = m.find1 (rank_, i_, j_, -1);
else if (rank_ == 1) {
it_ = (*itv_).second.begin ();
if (it_ == (*itv_).second.end () || index2 () != j_)
*this = m.find1 (rank_, i_, j_, -1);
}
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*it_).second;
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M ((*itv_).first, (*it_).first) < (*this) ().size1 (), bad_index ());
return layout_type::index_M ((*itv_).first, (*it_).first);
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m ((*itv_).first, (*it_).first) < (*this) ().size2 (), bad_index ());
return layout_type::index_m ((*itv_).first, (*it_).first);
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_const_subiterator_type itv_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
class iterator1:
public container_reference<mapped_vector_of_mapped_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator1, value_type> {
public:
typedef typename mapped_vector_of_mapped_vector::value_type value_type;
typedef typename mapped_vector_of_mapped_vector::difference_type difference_type;
typedef typename mapped_vector_of_mapped_vector::true_reference reference;
typedef typename mapped_vector_of_mapped_vector::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, int rank, size_type i, size_type j, const vector_subiterator_type &itv, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else {
self_type &m = (*this) ();
if (rank_ == 0) {
++ itv_;
i_ = itv_->first;
} else {
i_ = index1 () + 1;
}
if (rank_ == 1 && ++ itv_ == m.end1 ().itv_)
*this = m.find1 (rank_, i_, j_, 1);
else if (rank_ == 1) {
it_ = (*itv_).second.begin ();
if (it_ == (*itv_).second.end () || index2 () != j_)
*this = m.find1 (rank_, i_, j_, 1);
}
}
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else {
self_type &m = (*this) ();
if (rank_ == 0) {
-- itv_;
i_ = itv_->first;
} else {
i_ = index1 () - 1;
}
// FIXME: this expression should never become true!
if (rank_ == 1 && -- itv_ == m.end1 ().itv_)
*this = m.find1 (rank_, i_, j_, -1);
else if (rank_ == 1) {
it_ = (*itv_).second.begin ();
if (it_ == (*itv_).second.end () || index2 () != j_)
*this = m.find1 (rank_, i_, j_, -1);
}
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*it_).second;
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M ((*itv_).first, (*it_).first) < (*this) ().size1 (), bad_index ());
return layout_type::index_M ((*itv_).first, (*it_).first);
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m ((*itv_).first, (*it_).first) < (*this) ().size2 (), bad_index ());
return layout_type::index_m ((*itv_).first, (*it_).first);
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_subiterator_type itv_;
subiterator_type it_;
friend class const_iterator1;
};
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1_, 0);
}
class const_iterator2:
public container_const_reference<mapped_vector_of_mapped_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename mapped_vector_of_mapped_vector::value_type value_type;
typedef typename mapped_vector_of_mapped_vector::difference_type difference_type;
typedef typename mapped_vector_of_mapped_vector::const_reference reference;
typedef const typename mapped_vector_of_mapped_vector::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, int rank, size_type i, size_type j, const vector_const_subiterator_type &itv, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), itv_ (it.itv_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else {
const self_type &m = (*this) ();
if (rank_ == 0) {
++ itv_;
j_ = itv_->first;
} else {
j_ = index2 () + 1;
}
if (rank_ == 1 && ++ itv_ == m.end2 ().itv_)
*this = m.find2 (rank_, i_, j_, 1);
else if (rank_ == 1) {
it_ = (*itv_).second.begin ();
if (it_ == (*itv_).second.end () || index1 () != i_)
*this = m.find2 (rank_, i_, j_, 1);
}
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else {
const self_type &m = (*this) ();
if (rank_ == 0) {
-- itv_;
j_ = itv_->first;
} else {
j_ = index2 () - 1;
}
// FIXME: this expression should never become true!
if (rank_ == 1 && -- itv_ == m.end2 ().itv_)
*this = m.find2 (rank_, i_, j_, -1);
else if (rank_ == 1) {
it_ = (*itv_).second.begin ();
if (it_ == (*itv_).second.end () || index1 () != i_)
*this = m.find2 (rank_, i_, j_, -1);
}
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*it_).second;
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
const self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
const self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M ((*itv_).first, (*it_).first) < (*this) ().size1 (), bad_index ());
return layout_type::index_M ((*itv_).first, (*it_).first);
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m ((*itv_).first, (*it_).first) < (*this) ().size2 (), bad_index ());
return layout_type::index_m ((*itv_).first, (*it_).first);
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_const_subiterator_type itv_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
class iterator2:
public container_reference<mapped_vector_of_mapped_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator2, value_type> {
public:
typedef typename mapped_vector_of_mapped_vector::value_type value_type;
typedef typename mapped_vector_of_mapped_vector::difference_type difference_type;
typedef typename mapped_vector_of_mapped_vector::true_reference reference;
typedef typename mapped_vector_of_mapped_vector::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, int rank, size_type i, size_type j, const vector_subiterator_type &itv, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else {
self_type &m = (*this) ();
if (rank_ == 0) {
++ itv_;
j_ = itv_->first;
} else {
j_ = index2 () + 1;
}
if (rank_ == 1 && ++ itv_ == m.end2 ().itv_)
*this = m.find2 (rank_, i_, j_, 1);
else if (rank_ == 1) {
it_ = (*itv_).second.begin ();
if (it_ == (*itv_).second.end () || index1 () != i_)
*this = m.find2 (rank_, i_, j_, 1);
}
}
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else {
self_type &m = (*this) ();
if (rank_ == 0) {
-- itv_;
j_ = itv_->first;
} else {
j_ = index2 () - 1;
}
// FIXME: this expression should never become true!
if (rank_ == 1 && -- itv_ == m.end2 ().itv_)
*this = m.find2 (rank_, i_, j_, -1);
else if (rank_ == 1) {
it_ = (*itv_).second.begin ();
if (it_ == (*itv_).second.end () || index1 () != i_)
*this = m.find2 (rank_, i_, j_, -1);
}
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*it_).second;
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M ((*itv_).first, (*it_).first) < (*this) ().size1 (), bad_index ());
return layout_type::index_M ((*itv_).first, (*it_).first);
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m ((*itv_).first, (*it_).first) < (*this) ().size2 (), bad_index ());
return layout_type::index_m ((*itv_).first, (*it_).first);
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_subiterator_type itv_;
subiterator_type it_;
friend class const_iterator2;
};
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
ar & serialization::make_nvp("size1",s1);
ar & serialization::make_nvp("size2",s2);
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
ar & serialization::make_nvp("data", data_);
}
private:
size_type size1_;
size_type size2_;
array_type data_;
static const value_type zero_;
};
template<class T, class L, class A>
const typename mapped_vector_of_mapped_vector<T, L, A>::value_type mapped_vector_of_mapped_vector<T, L, A>::zero_ = value_type/*zero*/();
// Comperssed array based sparse matrix class
// Thanks to Kresimir Fresl for extending this to cover different index bases.
template<class T, class L, std::size_t IB, class IA, class TA>
class compressed_matrix:
public matrix_container<compressed_matrix<T, L, IB, IA, TA> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T *const_pointer;
typedef L layout_type;
typedef compressed_matrix<T, L, IB, IA, TA> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
// ISSUE require type consistency check
// is_convertable (IA::size_type, TA::size_type)
typedef typename IA::value_type size_type;
// size_type for the data arrays.
typedef typename IA::size_type array_size_type;
// FIXME difference type for sparse storage iterators should it be in the container?
typedef typename IA::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
typedef T &reference;
#else
typedef sparse_matrix_element<self_type> reference;
#endif
typedef IA index_array_type;
typedef TA value_array_type;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef compressed_vector<T, IB, IA, TA> vector_temporary_type;
typedef self_type matrix_temporary_type;
typedef sparse_tag storage_category;
typedef typename L::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
compressed_matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), capacity_ (restrict_capacity (0)),
filled1_ (1), filled2_ (0),
index1_data_ (layout_type::size_M (size1_, size2_) + 1), index2_data_ (capacity_), value_data_ (capacity_) {
index1_data_ [filled1_ - 1] = k_based (filled2_);
storage_invariants ();
}
BOOST_UBLAS_INLINE
compressed_matrix (size_type size1, size_type size2, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), capacity_ (restrict_capacity (non_zeros)),
filled1_ (1), filled2_ (0),
index1_data_ (layout_type::size_M (size1_, size2_) + 1), index2_data_ (capacity_), value_data_ (capacity_) {
index1_data_ [filled1_ - 1] = k_based (filled2_);
storage_invariants ();
}
BOOST_UBLAS_INLINE
compressed_matrix (const compressed_matrix &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), capacity_ (m.capacity_),
filled1_ (m.filled1_), filled2_ (m.filled2_),
index1_data_ (m.index1_data_), index2_data_ (m.index2_data_), value_data_ (m.value_data_) {
storage_invariants ();
}
BOOST_UBLAS_INLINE
compressed_matrix (const coordinate_matrix<T, L, IB, IA, TA> &m):
matrix_container<self_type> (),
size1_ (m.size1()), size2_ (m.size2()),
index1_data_ (layout_type::size_M (size1_, size2_) + 1)
{
m.sort();
reserve(m.nnz(), false);
filled2_ = m.nnz();
const_subiterator_type i_start = m.index1_data().begin();
const_subiterator_type i_end = (i_start + filled2_);
const_subiterator_type i = i_start;
size_type r = 1;
for (; (r < layout_type::size_M (size1_, size2_)) && (i != i_end); ++r) {
i = std::lower_bound(i, i_end, r);
index1_data_[r] = k_based( i - i_start );
}
filled1_ = r + 1;
std::copy( m.index2_data().begin(), m.index2_data().begin() + filled2_, index2_data_.begin());
std::copy( m.value_data().begin(), m.value_data().begin() + filled2_, value_data_.begin());
index1_data_ [filled1_ - 1] = k_based(filled2_);
storage_invariants ();
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_matrix (const matrix_expression<AE> &ae, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), capacity_ (restrict_capacity (non_zeros)),
filled1_ (1), filled2_ (0),
index1_data_ (layout_type::size_M (ae ().size1 (), ae ().size2 ()) + 1),
index2_data_ (capacity_), value_data_ (capacity_) {
index1_data_ [filled1_ - 1] = k_based (filled2_);
storage_invariants ();
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
size_type nnz_capacity () const {
return capacity_;
}
BOOST_UBLAS_INLINE
size_type nnz () const {
return filled2_;
}
// Storage accessors
BOOST_UBLAS_INLINE
static size_type index_base () {
return IB;
}
BOOST_UBLAS_INLINE
array_size_type filled1 () const {
return filled1_;
}
BOOST_UBLAS_INLINE
array_size_type filled2 () const {
return filled2_;
}
BOOST_UBLAS_INLINE
const index_array_type &index1_data () const {
return index1_data_;
}
BOOST_UBLAS_INLINE
const index_array_type &index2_data () const {
return index2_data_;
}
BOOST_UBLAS_INLINE
const value_array_type &value_data () const {
return value_data_;
}
BOOST_UBLAS_INLINE
void set_filled (const array_size_type& filled1, const array_size_type& filled2) {
filled1_ = filled1;
filled2_ = filled2;
storage_invariants ();
}
BOOST_UBLAS_INLINE
index_array_type &index1_data () {
return index1_data_;
}
BOOST_UBLAS_INLINE
index_array_type &index2_data () {
return index2_data_;
}
BOOST_UBLAS_INLINE
value_array_type &value_data () {
return value_data_;
}
BOOST_UBLAS_INLINE
void complete_index1_data () {
while (filled1_ <= layout_type::size_M (size1_, size2_)) {
this->index1_data_ [filled1_] = k_based (filled2_);
++ this->filled1_;
}
}
// Resizing
private:
BOOST_UBLAS_INLINE
size_type restrict_capacity (size_type non_zeros) const {
non_zeros = (std::max) (non_zeros, (std::min) (size1_, size2_));
// Guarding against overflow - Thanks to Alexei Novakov for the hint.
// non_zeros = (std::min) (non_zeros, size1_ * size2_);
if (size1_ > 0 && non_zeros / size1_ >= size2_)
non_zeros = size1_ * size2_;
return non_zeros;
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
// FIXME preserve unimplemented
BOOST_UBLAS_CHECK (!preserve, internal_logic ());
size1_ = size1;
size2_ = size2;
capacity_ = restrict_capacity (capacity_);
filled1_ = 1;
filled2_ = 0;
index1_data_.resize (layout_type::size_M (size1_, size2_) + 1);
index2_data_.resize (capacity_);
value_data_.resize (capacity_);
index1_data_ [filled1_ - 1] = k_based (filled2_);
storage_invariants ();
}
// Reserving
BOOST_UBLAS_INLINE
void reserve (size_type non_zeros, bool preserve = true) {
capacity_ = restrict_capacity (non_zeros);
if (preserve) {
index2_data_.resize (capacity_, size_type ());
value_data_.resize (capacity_, value_type ());
filled2_ = (std::min) (capacity_, filled2_);
}
else {
index2_data_.resize (capacity_);
value_data_.resize (capacity_);
filled1_ = 1;
filled2_ = 0;
index1_data_ [filled1_ - 1] = k_based (filled2_);
}
storage_invariants ();
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i, size_type j) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i, j));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i, size_type j) const {
size_type element1 (layout_type::index_M (i, j));
size_type element2 (layout_type::index_m (i, j));
if (filled1_ <= element1 + 1)
return 0;
vector_const_subiterator_type itv (index1_data_.begin () + element1);
const_subiterator_type it_begin (index2_data_.begin () + zero_based (*itv));
const_subiterator_type it_end (index2_data_.begin () + zero_based (*(itv + 1)));
const_subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (element2), std::less<size_type> ()));
if (it == it_end || *it != k_based (element2))
return 0;
return &value_data_ [it - index2_data_.begin ()];
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
const_pointer p = find_element (i, j);
if (p)
return *p;
else
return zero_;
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
size_type element1 (layout_type::index_M (i, j));
size_type element2 (layout_type::index_m (i, j));
if (filled1_ <= element1 + 1)
return insert_element (i, j, value_type/*zero*/());
pointer p = find_element (i, j);
if (p)
return *p;
else
return insert_element (i, j, value_type/*zero*/());
#else
return reference (*this, i, j);
#endif
}
// Element assignment
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, size_type j, const_reference t) {
BOOST_UBLAS_CHECK (!find_element (i, j), bad_index ()); // duplicate element
if (filled2_ >= capacity_)
reserve (2 * filled2_, true);
BOOST_UBLAS_CHECK (filled2_ < capacity_, internal_logic ());
size_type element1 = layout_type::index_M (i, j);
size_type element2 = layout_type::index_m (i, j);
while (filled1_ <= element1 + 1) {
index1_data_ [filled1_] = k_based (filled2_);
++ filled1_;
}
vector_subiterator_type itv (index1_data_.begin () + element1);
subiterator_type it_begin (index2_data_.begin () + zero_based (*itv));
subiterator_type it_end (index2_data_.begin () + zero_based (*(itv + 1)));
subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (element2), std::less<size_type> ()));
typename std::iterator_traits<subiterator_type>::difference_type n = it - index2_data_.begin ();
BOOST_UBLAS_CHECK (it == it_end || *it != k_based (element2), internal_logic ()); // duplicate bound by lower_bound
++ filled2_;
it = index2_data_.begin () + n;
std::copy_backward (it, index2_data_.begin () + filled2_ - 1, index2_data_.begin () + filled2_);
*it = k_based (element2);
typename value_array_type::iterator itt (value_data_.begin () + n);
std::copy_backward (itt, value_data_.begin () + filled2_ - 1, value_data_.begin () + filled2_);
*itt = t;
while (element1 + 1 < filled1_) {
++ index1_data_ [element1 + 1];
++ element1;
}
storage_invariants ();
return *itt;
}
BOOST_UBLAS_INLINE
void erase_element (size_type i, size_type j) {
size_type element1 = layout_type::index_M (i, j);
size_type element2 = layout_type::index_m (i, j);
if (element1 + 1 >= filled1_)
return;
vector_subiterator_type itv (index1_data_.begin () + element1);
subiterator_type it_begin (index2_data_.begin () + zero_based (*itv));
subiterator_type it_end (index2_data_.begin () + zero_based (*(itv + 1)));
subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (element2), std::less<size_type> ()));
if (it != it_end && *it == k_based (element2)) {
typename std::iterator_traits<subiterator_type>::difference_type n = it - index2_data_.begin ();
std::copy (it + 1, index2_data_.begin () + filled2_, it);
typename value_array_type::iterator itt (value_data_.begin () + n);
std::copy (itt + 1, value_data_.begin () + filled2_, itt);
-- filled2_;
while (index1_data_ [filled1_ - 2] > k_based (filled2_)) {
index1_data_ [filled1_ - 1] = 0;
-- filled1_;
}
while (element1 + 1 < filled1_) {
-- index1_data_ [element1 + 1];
++ element1;
}
}
storage_invariants ();
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
filled1_ = 1;
filled2_ = 0;
index1_data_ [filled1_ - 1] = k_based (filled2_);
storage_invariants ();
}
// Assignment
BOOST_UBLAS_INLINE
compressed_matrix &operator = (const compressed_matrix &m) {
if (this != &m) {
size1_ = m.size1_;
size2_ = m.size2_;
capacity_ = m.capacity_;
filled1_ = m.filled1_;
filled2_ = m.filled2_;
index1_data_ = m.index1_data_;
index2_data_ = m.index2_data_;
value_data_ = m.value_data_;
}
storage_invariants ();
return *this;
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
compressed_matrix &operator = (const matrix_container<C> &m) {
resize (m ().size1 (), m ().size2 (), false);
assign (m);
return *this;
}
BOOST_UBLAS_INLINE
compressed_matrix &assign_temporary (compressed_matrix &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_matrix &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae, capacity_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_matrix &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_matrix& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae, capacity_);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
compressed_matrix &operator += (const matrix_container<C> &m) {
plus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_matrix &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_matrix& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae, capacity_);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
compressed_matrix &operator -= (const matrix_container<C> &m) {
minus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
compressed_matrix &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
compressed_matrix& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
compressed_matrix& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (compressed_matrix &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
std::swap (capacity_, m.capacity_);
std::swap (filled1_, m.filled1_);
std::swap (filled2_, m.filled2_);
index1_data_.swap (m.index1_data_);
index2_data_.swap (m.index2_data_);
value_data_.swap (m.value_data_);
}
storage_invariants ();
}
BOOST_UBLAS_INLINE
friend void swap (compressed_matrix &m1, compressed_matrix &m2) {
m1.swap (m2);
}
// Back element insertion and erasure
BOOST_UBLAS_INLINE
void push_back (size_type i, size_type j, const_reference t) {
if (filled2_ >= capacity_)
reserve (2 * filled2_, true);
BOOST_UBLAS_CHECK (filled2_ < capacity_, internal_logic ());
size_type element1 = layout_type::index_M (i, j);
size_type element2 = layout_type::index_m (i, j);
while (filled1_ < element1 + 2) {
index1_data_ [filled1_] = k_based (filled2_);
++ filled1_;
}
// must maintain sort order
BOOST_UBLAS_CHECK ((filled1_ == element1 + 2 &&
(filled2_ == zero_based (index1_data_ [filled1_ - 2]) ||
index2_data_ [filled2_ - 1] < k_based (element2))), external_logic ());
++ filled2_;
index1_data_ [filled1_ - 1] = k_based (filled2_);
index2_data_ [filled2_ - 1] = k_based (element2);
value_data_ [filled2_ - 1] = t;
storage_invariants ();
}
BOOST_UBLAS_INLINE
void pop_back () {
BOOST_UBLAS_CHECK (filled1_ > 0 && filled2_ > 0, external_logic ());
-- filled2_;
while (index1_data_ [filled1_ - 2] > k_based (filled2_)) {
index1_data_ [filled1_ - 1] = 0;
-- filled1_;
}
-- index1_data_ [filled1_ - 1];
storage_invariants ();
}
// Iterator types
private:
// Use index array iterator
typedef typename IA::const_iterator vector_const_subiterator_type;
typedef typename IA::iterator vector_subiterator_type;
typedef typename IA::const_iterator const_subiterator_type;
typedef typename IA::iterator subiterator_type;
BOOST_UBLAS_INLINE
true_reference at_element (size_type i, size_type j) {
pointer p = find_element (i, j);
BOOST_UBLAS_CHECK (p, bad_index ());
return *p;
}
public:
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) const {
for (;;) {
array_size_type address1 (layout_type::index_M (i, j));
array_size_type address2 (layout_type::index_m (i, j));
vector_const_subiterator_type itv (index1_data_.begin () + (std::min) (filled1_ - 1, address1));
if (filled1_ <= address1 + 1)
return const_iterator1 (*this, rank, i, j, itv, index2_data_.begin () + filled2_);
const_subiterator_type it_begin (index2_data_.begin () + zero_based (*itv));
const_subiterator_type it_end (index2_data_.begin () + zero_based (*(itv + 1)));
const_subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (address2), std::less<size_type> ()));
if (rank == 0)
return const_iterator1 (*this, rank, i, j, itv, it);
if (it != it_end && zero_based (*it) == address2)
return const_iterator1 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_i ()) {
if (it == it_end)
return const_iterator1 (*this, rank, i, j, itv, it);
i = zero_based (*it);
} else {
if (i >= size1_)
return const_iterator1 (*this, rank, i, j, itv, it);
++ i;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_i ()) {
if (it == index2_data_.begin () + zero_based (*itv))
return const_iterator1 (*this, rank, i, j, itv, it);
i = zero_based (*(it - 1));
} else {
if (i == 0)
return const_iterator1 (*this, rank, i, j, itv, it);
-- i;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) {
for (;;) {
array_size_type address1 (layout_type::index_M (i, j));
array_size_type address2 (layout_type::index_m (i, j));
vector_subiterator_type itv (index1_data_.begin () + (std::min) (filled1_ - 1, address1));
if (filled1_ <= address1 + 1)
return iterator1 (*this, rank, i, j, itv, index2_data_.begin () + filled2_);
subiterator_type it_begin (index2_data_.begin () + zero_based (*itv));
subiterator_type it_end (index2_data_.begin () + zero_based (*(itv + 1)));
subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (address2), std::less<size_type> ()));
if (rank == 0)
return iterator1 (*this, rank, i, j, itv, it);
if (it != it_end && zero_based (*it) == address2)
return iterator1 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_i ()) {
if (it == it_end)
return iterator1 (*this, rank, i, j, itv, it);
i = zero_based (*it);
} else {
if (i >= size1_)
return iterator1 (*this, rank, i, j, itv, it);
++ i;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_i ()) {
if (it == index2_data_.begin () + zero_based (*itv))
return iterator1 (*this, rank, i, j, itv, it);
i = zero_based (*(it - 1));
} else {
if (i == 0)
return iterator1 (*this, rank, i, j, itv, it);
-- i;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) const {
for (;;) {
array_size_type address1 (layout_type::index_M (i, j));
array_size_type address2 (layout_type::index_m (i, j));
vector_const_subiterator_type itv (index1_data_.begin () + (std::min) (filled1_ - 1, address1));
if (filled1_ <= address1 + 1)
return const_iterator2 (*this, rank, i, j, itv, index2_data_.begin () + filled2_);
const_subiterator_type it_begin (index2_data_.begin () + zero_based (*itv));
const_subiterator_type it_end (index2_data_.begin () + zero_based (*(itv + 1)));
const_subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (address2), std::less<size_type> ()));
if (rank == 0)
return const_iterator2 (*this, rank, i, j, itv, it);
if (it != it_end && zero_based (*it) == address2)
return const_iterator2 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_j ()) {
if (it == it_end)
return const_iterator2 (*this, rank, i, j, itv, it);
j = zero_based (*it);
} else {
if (j >= size2_)
return const_iterator2 (*this, rank, i, j, itv, it);
++ j;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_j ()) {
if (it == index2_data_.begin () + zero_based (*itv))
return const_iterator2 (*this, rank, i, j, itv, it);
j = zero_based (*(it - 1));
} else {
if (j == 0)
return const_iterator2 (*this, rank, i, j, itv, it);
-- j;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) {
for (;;) {
array_size_type address1 (layout_type::index_M (i, j));
array_size_type address2 (layout_type::index_m (i, j));
vector_subiterator_type itv (index1_data_.begin () + (std::min) (filled1_ - 1, address1));
if (filled1_ <= address1 + 1)
return iterator2 (*this, rank, i, j, itv, index2_data_.begin () + filled2_);
subiterator_type it_begin (index2_data_.begin () + zero_based (*itv));
subiterator_type it_end (index2_data_.begin () + zero_based (*(itv + 1)));
subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (address2), std::less<size_type> ()));
if (rank == 0)
return iterator2 (*this, rank, i, j, itv, it);
if (it != it_end && zero_based (*it) == address2)
return iterator2 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_j ()) {
if (it == it_end)
return iterator2 (*this, rank, i, j, itv, it);
j = zero_based (*it);
} else {
if (j >= size2_)
return iterator2 (*this, rank, i, j, itv, it);
++ j;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_j ()) {
if (it == index2_data_.begin () + zero_based (*itv))
return iterator2 (*this, rank, i, j, itv, it);
j = zero_based (*(it - 1));
} else {
if (j == 0)
return iterator2 (*this, rank, i, j, itv, it);
-- j;
}
}
}
}
class const_iterator1:
public container_const_reference<compressed_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename compressed_matrix::value_type value_type;
typedef typename compressed_matrix::difference_type difference_type;
typedef typename compressed_matrix::const_reference reference;
typedef const typename compressed_matrix::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, int rank, size_type i, size_type j, const vector_const_subiterator_type &itv, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), itv_ (it.itv_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else {
i_ = index1 () + 1;
if (rank_ == 1)
*this = (*this) ().find1 (rank_, i_, j_, 1);
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else {
--i_;
if (rank_ == 1)
*this = (*this) ().find1 (rank_, i_, j_, -1);
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*this) ().value_data_ [it_ - (*this) ().index2_data_.begin ()];
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_)) < (*this) ().size1 (), bad_index ());
return layout_type::index_M (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_));
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_)) < (*this) ().size2 (), bad_index ());
return layout_type::index_m (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_));
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_const_subiterator_type itv_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
class iterator1:
public container_reference<compressed_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator1, value_type> {
public:
typedef typename compressed_matrix::value_type value_type;
typedef typename compressed_matrix::difference_type difference_type;
typedef typename compressed_matrix::true_reference reference;
typedef typename compressed_matrix::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, int rank, size_type i, size_type j, const vector_subiterator_type &itv, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else {
i_ = index1 () + 1;
if (rank_ == 1)
*this = (*this) ().find1 (rank_, i_, j_, 1);
}
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else {
--i_;
if (rank_ == 1)
*this = (*this) ().find1 (rank_, i_, j_, -1);
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*this) ().value_data_ [it_ - (*this) ().index2_data_.begin ()];
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_)) < (*this) ().size1 (), bad_index ());
return layout_type::index_M (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_));
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_)) < (*this) ().size2 (), bad_index ());
return layout_type::index_m (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_));
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_subiterator_type itv_;
subiterator_type it_;
friend class const_iterator1;
};
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1_, 0);
}
class const_iterator2:
public container_const_reference<compressed_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename compressed_matrix::value_type value_type;
typedef typename compressed_matrix::difference_type difference_type;
typedef typename compressed_matrix::const_reference reference;
typedef const typename compressed_matrix::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, int rank, size_type i, size_type j, const vector_const_subiterator_type itv, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), itv_ (it.itv_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else {
j_ = index2 () + 1;
if (rank_ == 1)
*this = (*this) ().find2 (rank_, i_, j_, 1);
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else {
--j_;
if (rank_ == 1)
*this = (*this) ().find2 (rank_, i_, j_, -1);
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*this) ().value_data_ [it_ - (*this) ().index2_data_.begin ()];
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
const self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
const self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_)) < (*this) ().size1 (), bad_index ());
return layout_type::index_M (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_));
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_)) < (*this) ().size2 (), bad_index ());
return layout_type::index_m (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_));
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_const_subiterator_type itv_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
class iterator2:
public container_reference<compressed_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator2, value_type> {
public:
typedef typename compressed_matrix::value_type value_type;
typedef typename compressed_matrix::difference_type difference_type;
typedef typename compressed_matrix::true_reference reference;
typedef typename compressed_matrix::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, int rank, size_type i, size_type j, const vector_subiterator_type &itv, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else {
j_ = index2 () + 1;
if (rank_ == 1)
*this = (*this) ().find2 (rank_, i_, j_, 1);
}
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else {
--j_;
if (rank_ == 1)
*this = (*this) ().find2 (rank_, i_, j_, -1);
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*this) ().value_data_ [it_ - (*this) ().index2_data_.begin ()];
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_)) < (*this) ().size1 (), bad_index ());
return layout_type::index_M (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_));
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_)) < (*this) ().size2 (), bad_index ());
return layout_type::index_m (itv_ - (*this) ().index1_data_.begin (), (*this) ().zero_based (*it_));
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_subiterator_type itv_;
subiterator_type it_;
friend class const_iterator2;
};
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
ar & serialization::make_nvp("size1",s1);
ar & serialization::make_nvp("size2",s2);
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
ar & serialization::make_nvp("capacity", capacity_);
ar & serialization::make_nvp("filled1", filled1_);
ar & serialization::make_nvp("filled2", filled2_);
ar & serialization::make_nvp("index1_data", index1_data_);
ar & serialization::make_nvp("index2_data", index2_data_);
ar & serialization::make_nvp("value_data", value_data_);
storage_invariants();
}
private:
void storage_invariants () const {
BOOST_UBLAS_CHECK (layout_type::size_M (size1_, size2_) + 1 == index1_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (capacity_ == index2_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (capacity_ == value_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (filled1_ > 0 && filled1_ <= layout_type::size_M (size1_, size2_) + 1, internal_logic ());
BOOST_UBLAS_CHECK (filled2_ <= capacity_, internal_logic ());
BOOST_UBLAS_CHECK (index1_data_ [filled1_ - 1] == k_based (filled2_), internal_logic ());
}
size_type size1_;
size_type size2_;
array_size_type capacity_;
array_size_type filled1_;
array_size_type filled2_;
index_array_type index1_data_;
index_array_type index2_data_;
value_array_type value_data_;
static const value_type zero_;
BOOST_UBLAS_INLINE
static size_type zero_based (size_type k_based_index) {
return k_based_index - IB;
}
BOOST_UBLAS_INLINE
static size_type k_based (size_type zero_based_index) {
return zero_based_index + IB;
}
friend class iterator1;
friend class iterator2;
friend class const_iterator1;
friend class const_iterator2;
};
template<class T, class L, std::size_t IB, class IA, class TA>
const typename compressed_matrix<T, L, IB, IA, TA>::value_type compressed_matrix<T, L, IB, IA, TA>::zero_ = value_type/*zero*/();
// Coordinate array based sparse matrix class
// Thanks to Kresimir Fresl for extending this to cover different index bases.
template<class T, class L, std::size_t IB, class IA, class TA>
class coordinate_matrix:
public matrix_container<coordinate_matrix<T, L, IB, IA, TA> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T *const_pointer;
typedef L layout_type;
typedef coordinate_matrix<T, L, IB, IA, TA> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
// ISSUE require type consistency check, is_convertable (IA::size_type, TA::size_type)
typedef typename IA::value_type size_type;
// ISSUE difference_type cannot be deduced for sparse indices, we only know the value_type
typedef std::ptrdiff_t difference_type;
// size_type for the data arrays.
typedef typename IA::size_type array_size_type;
typedef T value_type;
typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
typedef T &reference;
#else
typedef sparse_matrix_element<self_type> reference;
#endif
typedef IA index_array_type;
typedef TA value_array_type;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef coordinate_vector<T, IB, IA, TA> vector_temporary_type;
typedef self_type matrix_temporary_type;
typedef sparse_tag storage_category;
typedef typename L::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
coordinate_matrix ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), capacity_ (restrict_capacity (0)),
filled_ (0), sorted_filled_ (filled_), sorted_ (true),
index1_data_ (capacity_), index2_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
}
BOOST_UBLAS_INLINE
coordinate_matrix (size_type size1, size_type size2, array_size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), capacity_ (restrict_capacity (non_zeros)),
filled_ (0), sorted_filled_ (filled_), sorted_ (true),
index1_data_ (capacity_), index2_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
}
BOOST_UBLAS_INLINE
coordinate_matrix (const coordinate_matrix &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), capacity_ (m.capacity_),
filled_ (m.filled_), sorted_filled_ (m.sorted_filled_), sorted_ (m.sorted_),
index1_data_ (m.index1_data_), index2_data_ (m.index2_data_), value_data_ (m.value_data_) {
storage_invariants ();
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_matrix (const matrix_expression<AE> &ae, array_size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), capacity_ (restrict_capacity (non_zeros)),
filled_ (0), sorted_filled_ (filled_), sorted_ (true),
index1_data_ (capacity_), index2_data_ (capacity_), value_data_ (capacity_) {
storage_invariants ();
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
size_type nnz_capacity () const {
return capacity_;
}
BOOST_UBLAS_INLINE
size_type nnz () const {
return filled_;
}
// Storage accessors
BOOST_UBLAS_INLINE
static size_type index_base () {
return IB;
}
BOOST_UBLAS_INLINE
array_size_type filled () const {
return filled_;
}
BOOST_UBLAS_INLINE
const index_array_type &index1_data () const {
return index1_data_;
}
BOOST_UBLAS_INLINE
const index_array_type &index2_data () const {
return index2_data_;
}
BOOST_UBLAS_INLINE
const value_array_type &value_data () const {
return value_data_;
}
BOOST_UBLAS_INLINE
void set_filled (const array_size_type &filled) {
// Make sure that storage_invariants() succeeds
if (sorted_ && filled < filled_)
sorted_filled_ = filled;
else
sorted_ = (sorted_filled_ == filled);
filled_ = filled;
storage_invariants ();
}
BOOST_UBLAS_INLINE
index_array_type &index1_data () {
return index1_data_;
}
BOOST_UBLAS_INLINE
index_array_type &index2_data () {
return index2_data_;
}
BOOST_UBLAS_INLINE
value_array_type &value_data () {
return value_data_;
}
// Resizing
private:
BOOST_UBLAS_INLINE
array_size_type restrict_capacity (array_size_type non_zeros) const {
// minimum non_zeros
non_zeros = (std::max) (non_zeros, array_size_type((std::min) (size1_, size2_)));
// ISSUE no maximum as coordinate may contain inserted duplicates
return non_zeros;
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
// FIXME preserve unimplemented
BOOST_UBLAS_CHECK (!preserve, internal_logic ());
size1_ = size1;
size2_ = size2;
capacity_ = restrict_capacity (capacity_);
index1_data_.resize (capacity_);
index2_data_.resize (capacity_);
value_data_.resize (capacity_);
filled_ = 0;
sorted_filled_ = filled_;
sorted_ = true;
storage_invariants ();
}
// Reserving
BOOST_UBLAS_INLINE
void reserve (array_size_type non_zeros, bool preserve = true) {
sort (); // remove duplicate elements
capacity_ = restrict_capacity (non_zeros);
if (preserve) {
index1_data_.resize (capacity_, size_type ());
index2_data_.resize (capacity_, size_type ());
value_data_.resize (capacity_, value_type ());
filled_ = (std::min) (capacity_, filled_);
}
else {
index1_data_.resize (capacity_);
index2_data_.resize (capacity_);
value_data_.resize (capacity_);
filled_ = 0;
}
sorted_filled_ = filled_;
storage_invariants ();
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i, size_type j) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i, j));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i, size_type j) const {
sort ();
size_type element1 (layout_type::index_M (i, j));
size_type element2 (layout_type::index_m (i, j));
vector_const_subiterator_type itv_begin (detail::lower_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (element1), std::less<size_type> ()));
vector_const_subiterator_type itv_end (detail::upper_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (element1), std::less<size_type> ()));
if (itv_begin == itv_end)
return 0;
const_subiterator_type it_begin (index2_data_.begin () + (itv_begin - index1_data_.begin ()));
const_subiterator_type it_end (index2_data_.begin () + (itv_end - index1_data_.begin ()));
const_subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (element2), std::less<size_type> ()));
if (it == it_end || *it != k_based (element2))
return 0;
return &value_data_ [it - index2_data_.begin ()];
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
const_pointer p = find_element (i, j);
if (p)
return *p;
else
return zero_;
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
pointer p = find_element (i, j);
if (p)
return *p;
else
return insert_element (i, j, value_type/*zero*/());
#else
return reference (*this, i, j);
#endif
}
// Element assignment
BOOST_UBLAS_INLINE
void append_element (size_type i, size_type j, const_reference t) {
if (filled_ >= capacity_)
reserve (2 * filled_, true);
BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ());
size_type element1 = layout_type::index_M (i, j);
size_type element2 = layout_type::index_m (i, j);
index1_data_ [filled_] = k_based (element1);
index2_data_ [filled_] = k_based (element2);
value_data_ [filled_] = t;
++ filled_;
sorted_ = false;
storage_invariants ();
}
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, size_type j, const_reference t) {
BOOST_UBLAS_CHECK (!find_element (i, j), bad_index ()); // duplicate element
append_element (i, j, t);
return value_data_ [filled_ - 1];
}
BOOST_UBLAS_INLINE
void erase_element (size_type i, size_type j) {
size_type element1 = layout_type::index_M (i, j);
size_type element2 = layout_type::index_m (i, j);
sort ();
vector_subiterator_type itv_begin (detail::lower_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (element1), std::less<size_type> ()));
vector_subiterator_type itv_end (detail::upper_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (element1), std::less<size_type> ()));
subiterator_type it_begin (index2_data_.begin () + (itv_begin - index1_data_.begin ()));
subiterator_type it_end (index2_data_.begin () + (itv_end - index1_data_.begin ()));
subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (element2), std::less<size_type> ()));
if (it != it_end && *it == k_based (element2)) {
typename std::iterator_traits<subiterator_type>::difference_type n = it - index2_data_.begin ();
vector_subiterator_type itv (index1_data_.begin () + n);
std::copy (itv + 1, index1_data_.begin () + filled_, itv);
std::copy (it + 1, index2_data_.begin () + filled_, it);
typename value_array_type::iterator itt (value_data_.begin () + n);
std::copy (itt + 1, value_data_.begin () + filled_, itt);
-- filled_;
sorted_filled_ = filled_;
}
storage_invariants ();
}
// Zeroing
BOOST_UBLAS_INLINE
void clear () {
filled_ = 0;
sorted_filled_ = filled_;
sorted_ = true;
storage_invariants ();
}
// Assignment
BOOST_UBLAS_INLINE
coordinate_matrix &operator = (const coordinate_matrix &m) {
if (this != &m) {
size1_ = m.size1_;
size2_ = m.size2_;
capacity_ = m.capacity_;
filled_ = m.filled_;
sorted_filled_ = m.sorted_filled_;
sorted_ = m.sorted_;
index1_data_ = m.index1_data_;
index2_data_ = m.index2_data_;
value_data_ = m.value_data_;
BOOST_UBLAS_CHECK (capacity_ == index1_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (capacity_ == index2_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (capacity_ == value_data_.size (), internal_logic ());
}
storage_invariants ();
return *this;
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
coordinate_matrix &operator = (const matrix_container<C> &m) {
resize (m ().size1 (), m ().size2 (), false);
assign (m);
return *this;
}
BOOST_UBLAS_INLINE
coordinate_matrix &assign_temporary (coordinate_matrix &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_matrix &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae, capacity_);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_matrix &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_matrix& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae, capacity_);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
coordinate_matrix &operator += (const matrix_container<C> &m) {
plus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_matrix &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_matrix& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae, capacity_);
return assign_temporary (temporary);
}
template<class C> // Container assignment without temporary
BOOST_UBLAS_INLINE
coordinate_matrix &operator -= (const matrix_container<C> &m) {
minus_assign (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
coordinate_matrix &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
coordinate_matrix& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
coordinate_matrix& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (coordinate_matrix &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
std::swap (capacity_, m.capacity_);
std::swap (filled_, m.filled_);
std::swap (sorted_filled_, m.sorted_filled_);
std::swap (sorted_, m.sorted_);
index1_data_.swap (m.index1_data_);
index2_data_.swap (m.index2_data_);
value_data_.swap (m.value_data_);
}
storage_invariants ();
}
BOOST_UBLAS_INLINE
friend void swap (coordinate_matrix &m1, coordinate_matrix &m2) {
m1.swap (m2);
}
// Sorting and summation of duplicates
BOOST_UBLAS_INLINE
void sort () const {
if (! sorted_ && filled_ > 0) {
typedef index_triple_array<index_array_type, index_array_type, value_array_type> array_triple;
array_triple ita (filled_, index1_data_, index2_data_, value_data_);
const typename array_triple::iterator iunsorted = ita.begin () + sorted_filled_;
// sort new elements and merge
std::sort (iunsorted, ita.end ());
std::inplace_merge (ita.begin (), iunsorted, ita.end ());
// sum duplicates with += and remove
array_size_type filled = 0;
for (array_size_type i = 1; i < filled_; ++ i) {
if (index1_data_ [filled] != index1_data_ [i] ||
index2_data_ [filled] != index2_data_ [i]) {
++ filled;
if (filled != i) {
index1_data_ [filled] = index1_data_ [i];
index2_data_ [filled] = index2_data_ [i];
value_data_ [filled] = value_data_ [i];
}
} else {
value_data_ [filled] += value_data_ [i];
}
}
filled_ = filled + 1;
sorted_filled_ = filled_;
sorted_ = true;
storage_invariants ();
}
}
// Back element insertion and erasure
BOOST_UBLAS_INLINE
void push_back (size_type i, size_type j, const_reference t) {
size_type element1 = layout_type::index_M (i, j);
size_type element2 = layout_type::index_m (i, j);
// must maintain sort order
BOOST_UBLAS_CHECK (sorted_ &&
(filled_ == 0 ||
index1_data_ [filled_ - 1] < k_based (element1) ||
(index1_data_ [filled_ - 1] == k_based (element1) && index2_data_ [filled_ - 1] < k_based (element2)))
, external_logic ());
if (filled_ >= capacity_)
reserve (2 * filled_, true);
BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ());
index1_data_ [filled_] = k_based (element1);
index2_data_ [filled_] = k_based (element2);
value_data_ [filled_] = t;
++ filled_;
sorted_filled_ = filled_;
storage_invariants ();
}
BOOST_UBLAS_INLINE
void pop_back () {
// ISSUE invariants could be simpilfied if sorted required as precondition
BOOST_UBLAS_CHECK (filled_ > 0, external_logic ());
-- filled_;
sorted_filled_ = (std::min) (sorted_filled_, filled_);
sorted_ = sorted_filled_ = filled_;
storage_invariants ();
}
// Iterator types
private:
// Use index array iterator
typedef typename IA::const_iterator vector_const_subiterator_type;
typedef typename IA::iterator vector_subiterator_type;
typedef typename IA::const_iterator const_subiterator_type;
typedef typename IA::iterator subiterator_type;
BOOST_UBLAS_INLINE
true_reference at_element (size_type i, size_type j) {
pointer p = find_element (i, j);
BOOST_UBLAS_CHECK (p, bad_index ());
return *p;
}
public:
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) const {
sort ();
for (;;) {
size_type address1 (layout_type::index_M (i, j));
size_type address2 (layout_type::index_m (i, j));
vector_const_subiterator_type itv_begin (detail::lower_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (address1), std::less<size_type> ()));
vector_const_subiterator_type itv_end (detail::upper_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (address1), std::less<size_type> ()));
const_subiterator_type it_begin (index2_data_.begin () + (itv_begin - index1_data_.begin ()));
const_subiterator_type it_end (index2_data_.begin () + (itv_end - index1_data_.begin ()));
const_subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (address2), std::less<size_type> ()));
vector_const_subiterator_type itv (index1_data_.begin () + (it - index2_data_.begin ()));
if (rank == 0)
return const_iterator1 (*this, rank, i, j, itv, it);
if (it != it_end && zero_based (*it) == address2)
return const_iterator1 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_i ()) {
if (it == it_end)
return const_iterator1 (*this, rank, i, j, itv, it);
i = zero_based (*it);
} else {
if (i >= size1_)
return const_iterator1 (*this, rank, i, j, itv, it);
++ i;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_i ()) {
if (it == index2_data_.begin () + array_size_type (zero_based (*itv)))
return const_iterator1 (*this, rank, i, j, itv, it);
i = zero_based (*(it - 1));
} else {
if (i == 0)
return const_iterator1 (*this, rank, i, j, itv, it);
-- i;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) {
sort ();
for (;;) {
size_type address1 (layout_type::index_M (i, j));
size_type address2 (layout_type::index_m (i, j));
vector_subiterator_type itv_begin (detail::lower_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (address1), std::less<size_type> ()));
vector_subiterator_type itv_end (detail::upper_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (address1), std::less<size_type> ()));
subiterator_type it_begin (index2_data_.begin () + (itv_begin - index1_data_.begin ()));
subiterator_type it_end (index2_data_.begin () + (itv_end - index1_data_.begin ()));
subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (address2), std::less<size_type> ()));
vector_subiterator_type itv (index1_data_.begin () + (it - index2_data_.begin ()));
if (rank == 0)
return iterator1 (*this, rank, i, j, itv, it);
if (it != it_end && zero_based (*it) == address2)
return iterator1 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_i ()) {
if (it == it_end)
return iterator1 (*this, rank, i, j, itv, it);
i = zero_based (*it);
} else {
if (i >= size1_)
return iterator1 (*this, rank, i, j, itv, it);
++ i;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_i ()) {
if (it == index2_data_.begin () + array_size_type (zero_based (*itv)))
return iterator1 (*this, rank, i, j, itv, it);
i = zero_based (*(it - 1));
} else {
if (i == 0)
return iterator1 (*this, rank, i, j, itv, it);
-- i;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) const {
sort ();
for (;;) {
size_type address1 (layout_type::index_M (i, j));
size_type address2 (layout_type::index_m (i, j));
vector_const_subiterator_type itv_begin (detail::lower_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (address1), std::less<size_type> ()));
vector_const_subiterator_type itv_end (detail::upper_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (address1), std::less<size_type> ()));
const_subiterator_type it_begin (index2_data_.begin () + (itv_begin - index1_data_.begin ()));
const_subiterator_type it_end (index2_data_.begin () + (itv_end - index1_data_.begin ()));
const_subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (address2), std::less<size_type> ()));
vector_const_subiterator_type itv (index1_data_.begin () + (it - index2_data_.begin ()));
if (rank == 0)
return const_iterator2 (*this, rank, i, j, itv, it);
if (it != it_end && zero_based (*it) == address2)
return const_iterator2 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_j ()) {
if (it == it_end)
return const_iterator2 (*this, rank, i, j, itv, it);
j = zero_based (*it);
} else {
if (j >= size2_)
return const_iterator2 (*this, rank, i, j, itv, it);
++ j;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_j ()) {
if (it == index2_data_.begin () + array_size_type (zero_based (*itv)))
return const_iterator2 (*this, rank, i, j, itv, it);
j = zero_based (*(it - 1));
} else {
if (j == 0)
return const_iterator2 (*this, rank, i, j, itv, it);
-- j;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) {
sort ();
for (;;) {
size_type address1 (layout_type::index_M (i, j));
size_type address2 (layout_type::index_m (i, j));
vector_subiterator_type itv_begin (detail::lower_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (address1), std::less<size_type> ()));
vector_subiterator_type itv_end (detail::upper_bound (index1_data_.begin (), index1_data_.begin () + filled_, k_based (address1), std::less<size_type> ()));
subiterator_type it_begin (index2_data_.begin () + (itv_begin - index1_data_.begin ()));
subiterator_type it_end (index2_data_.begin () + (itv_end - index1_data_.begin ()));
subiterator_type it (detail::lower_bound (it_begin, it_end, k_based (address2), std::less<size_type> ()));
vector_subiterator_type itv (index1_data_.begin () + (it - index2_data_.begin ()));
if (rank == 0)
return iterator2 (*this, rank, i, j, itv, it);
if (it != it_end && zero_based (*it) == address2)
return iterator2 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_j ()) {
if (it == it_end)
return iterator2 (*this, rank, i, j, itv, it);
j = zero_based (*it);
} else {
if (j >= size2_)
return iterator2 (*this, rank, i, j, itv, it);
++ j;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_j ()) {
if (it == index2_data_.begin () + array_size_type (zero_based (*itv)))
return iterator2 (*this, rank, i, j, itv, it);
j = zero_based (*(it - 1));
} else {
if (j == 0)
return iterator2 (*this, rank, i, j, itv, it);
-- j;
}
}
}
}
class const_iterator1:
public container_const_reference<coordinate_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename coordinate_matrix::value_type value_type;
typedef typename coordinate_matrix::difference_type difference_type;
typedef typename coordinate_matrix::const_reference reference;
typedef const typename coordinate_matrix::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, int rank, size_type i, size_type j, const vector_const_subiterator_type &itv, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), itv_ (it.itv_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else {
i_ = index1 () + 1;
if (rank_ == 1)
*this = (*this) ().find1 (rank_, i_, j_, 1);
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else {
i_ = index1 () - 1;
if (rank_ == 1)
*this = (*this) ().find1 (rank_, i_, j_, -1);
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*this) ().value_data_ [it_ - (*this) ().index2_data_.begin ()];
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_)) < (*this) ().size1 (), bad_index ());
return layout_type::index_M ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_));
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_)) < (*this) ().size2 (), bad_index ());
return layout_type::index_m ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_));
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_const_subiterator_type itv_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
class iterator1:
public container_reference<coordinate_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator1, value_type> {
public:
typedef typename coordinate_matrix::value_type value_type;
typedef typename coordinate_matrix::difference_type difference_type;
typedef typename coordinate_matrix::true_reference reference;
typedef typename coordinate_matrix::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, int rank, size_type i, size_type j, const vector_subiterator_type &itv, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else {
i_ = index1 () + 1;
if (rank_ == 1)
*this = (*this) ().find1 (rank_, i_, j_, 1);
}
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else {
i_ = index1 () - 1;
if (rank_ == 1)
*this = (*this) ().find1 (rank_, i_, j_, -1);
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*this) ().value_data_ [it_ - (*this) ().index2_data_.begin ()];
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_)) < (*this) ().size1 (), bad_index ());
return layout_type::index_M ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_));
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_)) < (*this) ().size2 (), bad_index ());
return layout_type::index_m ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_));
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_subiterator_type itv_;
subiterator_type it_;
friend class const_iterator1;
};
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1_, 0);
}
class const_iterator2:
public container_const_reference<coordinate_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename coordinate_matrix::value_type value_type;
typedef typename coordinate_matrix::difference_type difference_type;
typedef typename coordinate_matrix::const_reference reference;
typedef const typename coordinate_matrix::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, int rank, size_type i, size_type j, const vector_const_subiterator_type itv, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), itv_ (it.itv_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else {
j_ = index2 () + 1;
if (rank_ == 1)
*this = (*this) ().find2 (rank_, i_, j_, 1);
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else {
j_ = index2 () - 1;
if (rank_ == 1)
*this = (*this) ().find2 (rank_, i_, j_, -1);
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*this) ().value_data_ [it_ - (*this) ().index2_data_.begin ()];
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
const self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
const self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_)) < (*this) ().size1 (), bad_index ());
return layout_type::index_M ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_));
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_)) < (*this) ().size2 (), bad_index ());
return layout_type::index_m ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_));
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_const_subiterator_type itv_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
class iterator2:
public container_reference<coordinate_matrix>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator2, value_type> {
public:
typedef typename coordinate_matrix::value_type value_type;
typedef typename coordinate_matrix::difference_type difference_type;
typedef typename coordinate_matrix::true_reference reference;
typedef typename coordinate_matrix::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, int rank, size_type i, size_type j, const vector_subiterator_type &itv, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else {
j_ = index2 () + 1;
if (rank_ == 1)
*this = (*this) ().find2 (rank_, i_, j_, 1);
}
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else {
j_ = index2 ();
if (rank_ == 1)
*this = (*this) ().find2 (rank_, i_, j_, -1);
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return (*this) ().value_data_ [it_ - (*this) ().index2_data_.begin ()];
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_)) < (*this) ().size1 (), bad_index ());
return layout_type::index_M ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_));
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_)) < (*this) ().size2 (), bad_index ());
return layout_type::index_m ((*this) ().zero_based (*itv_), (*this) ().zero_based (*it_));
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vector_subiterator_type itv_;
subiterator_type it_;
friend class const_iterator2;
};
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
ar & serialization::make_nvp("size1",s1);
ar & serialization::make_nvp("size2",s2);
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
ar & serialization::make_nvp("capacity", capacity_);
ar & serialization::make_nvp("filled", filled_);
ar & serialization::make_nvp("sorted_filled", sorted_filled_);
ar & serialization::make_nvp("sorted", sorted_);
ar & serialization::make_nvp("index1_data", index1_data_);
ar & serialization::make_nvp("index2_data", index2_data_);
ar & serialization::make_nvp("value_data", value_data_);
storage_invariants();
}
private:
void storage_invariants () const
{
BOOST_UBLAS_CHECK (capacity_ == index1_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (capacity_ == index2_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (capacity_ == value_data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (filled_ <= capacity_, internal_logic ());
BOOST_UBLAS_CHECK (sorted_filled_ <= filled_, internal_logic ());
BOOST_UBLAS_CHECK (sorted_ == (sorted_filled_ == filled_), internal_logic ());
}
size_type size1_;
size_type size2_;
array_size_type capacity_;
mutable array_size_type filled_;
mutable array_size_type sorted_filled_;
mutable bool sorted_;
mutable index_array_type index1_data_;
mutable index_array_type index2_data_;
mutable value_array_type value_data_;
static const value_type zero_;
BOOST_UBLAS_INLINE
static size_type zero_based (size_type k_based_index) {
return k_based_index - IB;
}
BOOST_UBLAS_INLINE
static size_type k_based (size_type zero_based_index) {
return zero_based_index + IB;
}
friend class iterator1;
friend class iterator2;
friend class const_iterator1;
friend class const_iterator2;
};
template<class T, class L, std::size_t IB, class IA, class TA>
const typename coordinate_matrix<T, L, IB, IA, TA>::value_type coordinate_matrix<T, L, IB, IA, TA>::zero_ = value_type/*zero*/();
}}}
#endif