blob: b63a3a96605cf43f83ce725e8b4d74ddb3f452ea [file] [log] [blame]
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_OPERATION_SPARSE_
#define _BOOST_UBLAS_OPERATION_SPARSE_
#include <boost/numeric/ublas/traits.hpp>
// These scaled additions were borrowed from MTL unashamedly.
// But Alexei Novakov had a lot of ideas to improve these. Thanks.
namespace boost { namespace numeric { namespace ublas {
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
row_major_tag) {
typedef M matrix_type;
typedef TRI triangular_restriction;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
// ISSUE why is there a dense vector here?
vector<value_type> temporary (e2 ().size2 ());
temporary.clear ();
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
while (it1 != it1_end) {
size_type jb (temporary.size ());
size_type je (0);
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator2 it2 (it1.begin ());
typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
// temporary.plus_assign (*it2 * row (e2 (), it2.index2 ()));
matrix_row<expression2_type> mr (e2 (), it2.index2 ());
typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
while (itr != itr_end) {
size_type j (itr.index ());
temporary (j) += *it2 * *itr;
jb = (std::min) (jb, j);
je = (std::max) (je, j);
++ itr;
}
++ it2;
}
for (size_type j = jb; j < je + 1; ++ j) {
if (temporary (j) != value_type/*zero*/()) {
// FIXME we'll need to extend the container interface!
// m.push_back (it1.index1 (), j, temporary (j));
// FIXME What to do with adaptors?
// m.insert (it1.index1 (), j, temporary (j));
if (triangular_restriction::other (it1.index1 (), j))
m (it1.index1 (), j) = temporary (j);
temporary (j) = value_type/*zero*/();
}
}
++ it1;
}
return m;
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
column_major_tag) {
typedef M matrix_type;
typedef TRI triangular_restriction;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
// ISSUE why is there a dense vector here?
vector<value_type> temporary (e1 ().size1 ());
temporary.clear ();
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
while (it2 != it2_end) {
size_type ib (temporary.size ());
size_type ie (0);
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator1 it1 (it2.begin ());
typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
// column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
matrix_column<expression1_type> mc (e1 (), it1.index1 ());
typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
while (itc != itc_end) {
size_type i (itc.index ());
temporary (i) += *it1 * *itc;
ib = (std::min) (ib, i);
ie = (std::max) (ie, i);
++ itc;
}
++ it1;
}
for (size_type i = ib; i < ie + 1; ++ i) {
if (temporary (i) != value_type/*zero*/()) {
// FIXME we'll need to extend the container interface!
// m.push_back (i, it2.index2 (), temporary (i));
// FIXME What to do with adaptors?
// m.insert (i, it2.index2 (), temporary (i));
if (triangular_restriction::other (i, it2.index2 ()))
m (i, it2.index2 ()) = temporary (i);
temporary (i) = value_type/*zero*/();
}
}
++ it2;
}
return m;
}
// Dispatcher
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI, bool init = true) {
typedef typename M::value_type value_type;
typedef TRI triangular_restriction;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return sparse_prod (e1, e2, m, triangular_restriction (), orientation_category ());
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
TRI) {
typedef M matrix_type;
typedef TRI triangular_restriction;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
// FIXME needed for c_matrix?!
// return sparse_prod (e1, e2, m, triangular_restriction (), false);
return sparse_prod (e1, e2, m, triangular_restriction (), true);
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return sparse_prod (e1, e2, m, full (), orientation_category ());
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef M matrix_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
// FIXME needed for c_matrix?!
// return sparse_prod (e1, e2, m, full (), false);
return sparse_prod (e1, e2, m, full (), true);
}
}}}
#endif