blob: 17d475cbfdab9862a7d990edd817c3117338316d [file] [log] [blame]
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_STORAGE_SPARSE_
#define _BOOST_UBLAS_STORAGE_SPARSE_
#include <map>
#include <boost/serialization/collection_size_type.hpp>
#include <boost/serialization/nvp.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/map.hpp>
#include <boost/serialization/base_object.hpp>
#include <boost/numeric/ublas/storage.hpp>
namespace boost { namespace numeric { namespace ublas {
namespace detail {
template<class I, class T, class C>
BOOST_UBLAS_INLINE
I lower_bound (const I &begin, const I &end, const T &t, C compare) {
// t <= *begin <=> ! (*begin < t)
if (begin == end || ! compare (*begin, t))
return begin;
if (compare (*(end - 1), t))
return end;
return std::lower_bound (begin, end, t, compare);
}
template<class I, class T, class C>
BOOST_UBLAS_INLINE
I upper_bound (const I &begin, const I &end, const T &t, C compare) {
if (begin == end || compare (t, *begin))
return begin;
// (*end - 1) <= t <=> ! (t < *end)
if (! compare (t, *(end - 1)))
return end;
return std::upper_bound (begin, end, t, compare);
}
template<class P>
struct less_pair {
BOOST_UBLAS_INLINE
bool operator () (const P &p1, const P &p2) {
return p1.first < p2.first;
}
};
template<class T>
struct less_triple {
BOOST_UBLAS_INLINE
bool operator () (const T &t1, const T &t2) {
return t1.first.first < t2.first.first ||
(t1.first.first == t2.first.first && t1.first.second < t2.first.second);
}
};
}
#ifdef BOOST_UBLAS_STRICT_MAP_ARRAY
template<class A>
class sparse_storage_element:
public container_reference<A> {
public:
typedef A array_type;
typedef typename A::key_type index_type;
typedef typename A::mapped_type data_value_type;
// typedef const data_value_type &data_const_reference;
typedef typename type_traits<data_value_type>::const_reference data_const_reference;
typedef data_value_type &data_reference;
typedef typename A::value_type value_type;
typedef value_type *pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
sparse_storage_element (array_type &a, pointer it):
container_reference<array_type> (a), it_ (it), i_ (it->first), d_ (it->second), dirty_ (false) {}
BOOST_UBLAS_INLINE
sparse_storage_element (array_type &a, index_type i):
container_reference<array_type> (a), it_ (), i_ (i), d_ (), dirty_ (false) {
pointer it = (*this) ().find (i_);
if (it == (*this) ().end ())
it = (*this) ().insert ((*this) ().end (), value_type (i_, d_));
d_ = it->second;
}
BOOST_UBLAS_INLINE
~sparse_storage_element () {
if (dirty_) {
if (! it_)
it_ = (*this) ().find (i_);
BOOST_UBLAS_CHECK (it_ != (*this) ().end (), internal_logic ());
it_->second = d_;
}
}
// Element access - only if data_const_reference is defined
BOOST_UBLAS_INLINE
typename data_value_type::data_const_reference
operator [] (index_type i) const {
return d_ [i];
}
// Assignment
BOOST_UBLAS_INLINE
sparse_storage_element &operator = (const sparse_storage_element &p) {
// Overide the implict copy assignment
d_ = p.d_;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator = (const D &d) {
d_ = d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator += (const D &d) {
d_ += d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator -= (const D &d) {
d_ -= d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator *= (const D &d) {
d_ *= d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator /= (const D &d) {
d_ /= d;
dirty_ = true;
return *this;
}
// Comparison
template<class D>
BOOST_UBLAS_INLINE
bool operator == (const D &d) const {
return d_ == d;
}
template<class D>
BOOST_UBLAS_INLINE
bool operator != (const D &d) const {
return d_ != d;
}
// Conversion
BOOST_UBLAS_INLINE
operator data_const_reference () const {
return d_;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (sparse_storage_element p) {
if (this != &p) {
dirty_ = true;
p.dirty_ = true;
std::swap (d_, p.d_);
}
}
BOOST_UBLAS_INLINE
friend void swap (sparse_storage_element p1, sparse_storage_element p2) {
p1.swap (p2);
}
private:
pointer it_;
index_type i_;
data_value_type d_;
bool dirty_;
};
#endif
// Default map type is simply forwarded to std::map
// FIXME should use ALLOC for map but std::allocator of std::pair<const I, T> and std::pair<I,T> fail to compile
template<class I, class T, class ALLOC>
class map_std : public std::map<I, T /*, ALLOC */> {
public:
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
ar & serialization::make_nvp("base", boost::serialization::base_object< std::map<I, T /*, ALLOC */> >(*this));
}
};
// Map array
// Implementation requires pair<I, T> allocator definition (without const)
template<class I, class T, class ALLOC>
class map_array {
public:
typedef ALLOC allocator_type;
typedef typename ALLOC::size_type size_type;
typedef typename ALLOC::difference_type difference_type;
typedef std::pair<I,T> value_type;
typedef I key_type;
typedef T mapped_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef const value_type *const_pointer;
typedef value_type *pointer;
// Iterators simply are pointers.
typedef const_pointer const_iterator;
typedef pointer iterator;
typedef const T &data_const_reference;
#ifndef BOOST_UBLAS_STRICT_MAP_ARRAY
typedef T &data_reference;
#else
typedef sparse_storage_element<map_array> data_reference;
#endif
// Construction and destruction
BOOST_UBLAS_INLINE
map_array (const ALLOC &a = ALLOC()):
alloc_(a), capacity_ (0), size_ (0) {
data_ = 0;
}
BOOST_UBLAS_INLINE
map_array (const map_array &c):
alloc_ (c.alloc_), capacity_ (c.size_), size_ (c.size_) {
if (capacity_) {
data_ = alloc_.allocate (capacity_);
std::uninitialized_copy (data_, data_ + capacity_, c.data_);
// capacity != size_ requires uninitialized_fill (size_ to capacity_)
}
else
data_ = 0;
}
BOOST_UBLAS_INLINE
~map_array () {
if (capacity_) {
std::for_each (data_, data_ + capacity_, static_destroy);
alloc_.deallocate (data_, capacity_);
}
}
private:
// Resizing - implicitly exposses uninitialized (but default constructed) mapped_type
BOOST_UBLAS_INLINE
void resize (size_type size) {
BOOST_UBLAS_CHECK (size_ <= capacity_, internal_logic ());
if (size > capacity_) {
const size_type capacity = size << 1;
BOOST_UBLAS_CHECK (capacity, internal_logic ());
pointer data = alloc_.allocate (capacity);
std::uninitialized_copy (data_, data_ + (std::min) (size, size_), data);
std::uninitialized_fill (data + (std::min) (size, size_), data + capacity, value_type ());
if (capacity_) {
std::for_each (data_, data_ + capacity_, static_destroy);
alloc_.deallocate (data_, capacity_);
}
capacity_ = capacity;
data_ = data;
}
size_ = size;
BOOST_UBLAS_CHECK (size_ <= capacity_, internal_logic ());
}
public:
// Reserving
BOOST_UBLAS_INLINE
void reserve (size_type capacity) {
BOOST_UBLAS_CHECK (size_ <= capacity_, internal_logic ());
// Reduce capacity_ if size_ allows
BOOST_UBLAS_CHECK (capacity >= size_, bad_size ());
pointer data;
if (capacity) {
data = alloc_.allocate (capacity);
std::uninitialized_copy (data_, data_ + size_, data);
std::uninitialized_fill (data + size_, data + capacity, value_type ());
}
else
data = 0;
if (capacity_) {
std::for_each (data_, data_ + capacity_, static_destroy);
alloc_.deallocate (data_, capacity_);
}
capacity_ = capacity;
data_ = data;
BOOST_UBLAS_CHECK (size_ <= capacity_, internal_logic ());
}
// Random Access Container
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
BOOST_UBLAS_INLINE
size_type capacity () const {
return capacity_;
}
BOOST_UBLAS_INLINE
size_type max_size () const {
return 0; //TODO
}
BOOST_UBLAS_INLINE
bool empty () const {
return size_ == 0;
}
// Element access
BOOST_UBLAS_INLINE
data_reference operator [] (key_type i) {
#ifndef BOOST_UBLAS_STRICT_MAP_ARRAY
pointer it = find (i);
if (it == end ())
it = insert (end (), value_type (i, mapped_type (0)));
BOOST_UBLAS_CHECK (it != end (), internal_logic ());
return it->second;
#else
return data_reference (*this, i);
#endif
}
// Assignment
BOOST_UBLAS_INLINE
map_array &operator = (const map_array &a) {
if (this != &a) {
resize (a.size_);
std::copy (a.data_, a.data_ + a.size_, data_);
}
return *this;
}
BOOST_UBLAS_INLINE
map_array &assign_temporary (map_array &a) {
swap (a);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (map_array &a) {
if (this != &a) {
std::swap (capacity_, a.capacity_);
std::swap (data_, a.data_);
std::swap (size_, a.size_);
}
}
BOOST_UBLAS_INLINE
friend void swap (map_array &a1, map_array &a2) {
a1.swap (a2);
}
// Element insertion and deletion
// From Back Insertion Sequence concept
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator push_back (iterator it, const value_type &p) {
if (size () == 0 || (it = end () - 1)->first < p.first) {
resize (size () + 1);
*(it = end () - 1) = p;
return it;
}
external_logic ().raise ();
return it;
}
// Form Unique Associative Container concept
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::pair<iterator,bool> insert (const value_type &p) {
iterator it = detail::lower_bound (begin (), end (), p, detail::less_pair<value_type> ());
if (it != end () && it->first == p.first)
return std::make_pair (it, false);
difference_type n = it - begin ();
resize (size () + 1);
it = begin () + n; // allow for invalidation
std::copy_backward (it, end () - 1, end ());
*it = p;
return std::make_pair (it, true);
}
// Form Sorted Associative Container concept
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator insert (iterator hint, const value_type &p) {
return insert (p).first;
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void erase (iterator it) {
BOOST_UBLAS_CHECK (begin () <= it && it < end (), bad_index ());
std::copy (it + 1, end (), it);
resize (size () - 1);
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void erase (iterator it1, iterator it2) {
if (it1 == it2) return /* nothing to erase */;
BOOST_UBLAS_CHECK (begin () <= it1 && it1 < it2 && it2 <= end (), bad_index ());
std::copy (it2, end (), it1);
resize (size () - (it2 - it1));
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void clear () {
resize (0);
}
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator find (key_type i) const {
const_iterator it (detail::lower_bound (begin (), end (), value_type (i, mapped_type (0)), detail::less_pair<value_type> ()));
if (it == end () || it->first != i)
it = end ();
return it;
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator find (key_type i) {
iterator it (detail::lower_bound (begin (), end (), value_type (i, mapped_type (0)), detail::less_pair<value_type> ()));
if (it == end () || it->first != i)
it = end ();
return it;
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator lower_bound (key_type i) const {
return detail::lower_bound (begin (), end (), value_type (i, mapped_type (0)), detail::less_pair<value_type> ());
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator lower_bound (key_type i) {
return detail::lower_bound (begin (), end (), value_type (i, mapped_type (0)), detail::less_pair<value_type> ());
}
BOOST_UBLAS_INLINE
const_iterator begin () const {
return data_;
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return data_ + size_;
}
BOOST_UBLAS_INLINE
iterator begin () {
return data_;
}
BOOST_UBLAS_INLINE
iterator end () {
return data_ + size_;
}
// Reverse iterators
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
// Allocator
allocator_type get_allocator () {
return alloc_;
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
serialization::collection_size_type s (size_);
ar & serialization::make_nvp("size",s);
if (Archive::is_loading::value) {
resize(s);
}
ar & serialization::make_array(data_, s);
}
private:
// Provide destroy as a non member function
BOOST_UBLAS_INLINE
static void static_destroy (reference p) {
(&p) -> ~value_type ();
}
ALLOC alloc_;
size_type capacity_;
pointer data_;
size_type size_;
};
namespace detail {
template<class A, class T>
struct map_traits {
typedef typename A::mapped_type &reference;
};
template<class I, class T, class ALLOC>
struct map_traits<map_array<I, T, ALLOC>, T > {
typedef typename map_array<I, T, ALLOC>::data_reference reference;
};
// reserve helpers for map_array and generic maps
// ISSUE should be in map_traits but want to use on all compilers
template<class M>
BOOST_UBLAS_INLINE
void map_reserve (M &/* m */, typename M::size_type /* capacity */) {
}
template<class I, class T, class ALLOC>
BOOST_UBLAS_INLINE
void map_reserve (map_array<I, T, ALLOC> &m, typename map_array<I, T, ALLOC>::size_type capacity) {
m.reserve (capacity);
}
template<class M>
struct map_capacity_traits {
typedef typename M::size_type type ;
type operator() ( M const& m ) const {
return m.size ();
}
} ;
template<class I, class T, class ALLOC>
struct map_capacity_traits< map_array<I, T, ALLOC> > {
typedef typename map_array<I, T, ALLOC>::size_type type ;
type operator() ( map_array<I, T, ALLOC> const& m ) const {
return m.capacity ();
}
} ;
template<class M>
BOOST_UBLAS_INLINE
typename map_capacity_traits<M>::type map_capacity (M const& m) {
return map_capacity_traits<M>() ( m );
}
}
}}}
#endif