blob: 11e5a00dd9806372c5cd60d051ab8605a4917c80 [file] [log] [blame]
//
// Copyright (c) 2003
// Gunter Winkler, Joerg Walter
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_VECTOR_OF_VECTOR_
#define _BOOST_UBLAS_VECTOR_OF_VECTOR_
#include <boost/type_traits.hpp>
#include <boost/numeric/ublas/storage_sparse.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
// uBLAS sparse vector based sparse matrix class
// FIXME outer vector can be sparse type but it is completely filled
template<class T, class L, class A>
class generalized_vector_of_vector:
public matrix_container<generalized_vector_of_vector<T, L, A> > {
typedef T &true_reference;
typedef T *pointer;
typedef const T *const_pointer;
typedef L layout_type;
typedef generalized_vector_of_vector<T, L, A> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_container<self_type>::operator ();
#endif
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef T value_type;
typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
typedef T &reference;
#else
typedef sparse_matrix_element<self_type> reference;
#endif
typedef A array_type;
typedef const matrix_reference<const self_type> const_closure_type;
typedef matrix_reference<self_type> closure_type;
typedef typename A::value_type vector_data_value_type;
typedef vector_data_value_type vector_temporary_type;
typedef self_type matrix_temporary_type;
typedef sparse_tag storage_category;
typedef typename L::orientation_category orientation_category;
// Construction and destruction
BOOST_UBLAS_INLINE
generalized_vector_of_vector ():
matrix_container<self_type> (),
size1_ (0), size2_ (0), data_ (1) {
const size_type sizeM = layout_type::size_M (size1_, size2_);
// create size1+1 empty vector elements
data_.insert_element (sizeM, vector_data_value_type ());
storage_invariants ();
}
BOOST_UBLAS_INLINE
generalized_vector_of_vector (size_type size1, size_type size2, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (size1), size2_ (size2), data_ (layout_type::size_M (size1_, size2_) + 1) {
const size_type sizeM = layout_type::size_M (size1_, size2_);
const size_type sizem = layout_type::size_m (size1_, size2_);
for (size_type i = 0; i < sizeM; ++ i) // create size1 vector elements
data_.insert_element (i, vector_data_value_type ()) .resize (sizem, false);
data_.insert_element (sizeM, vector_data_value_type ());
storage_invariants ();
}
BOOST_UBLAS_INLINE
generalized_vector_of_vector (const generalized_vector_of_vector &m):
matrix_container<self_type> (),
size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {
storage_invariants ();
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector (const matrix_expression<AE> &ae, size_type non_zeros = 0):
matrix_container<self_type> (),
size1_ (ae ().size1 ()), size2_ (ae ().size2 ()), data_ (layout_type::size_M (size1_, size2_) + 1) {
const size_type sizeM = layout_type::size_M (size1_, size2_);
const size_type sizem = layout_type::size_m (size1_, size2_);
for (size_type i = 0; i < sizeM; ++ i) // create size1 vector elements
data_.insert_element (i, vector_data_value_type ()) .resize (sizem, false);
data_.insert_element (sizeM, vector_data_value_type ());
storage_invariants ();
matrix_assign<scalar_assign> (*this, ae);
}
// Accessors
BOOST_UBLAS_INLINE
size_type size1 () const {
return size1_;
}
BOOST_UBLAS_INLINE
size_type size2 () const {
return size2_;
}
BOOST_UBLAS_INLINE
size_type nnz_capacity () const {
size_type non_zeros = 0;
for (const_vectoriterator_type itv = data_.begin (); itv != data_.end (); ++ itv)
non_zeros += (*itv).nnz_capacity ();
return non_zeros;
}
BOOST_UBLAS_INLINE
size_type nnz () const {
size_type non_zeros = 0;
for (const_vectoriterator_type itv = data_.begin (); itv != data_.end (); ++ itv)
non_zeros += (*itv).nnz ();
return non_zeros;
}
// Storage accessors
BOOST_UBLAS_INLINE
const array_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type &data () {
return data_;
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size1, size_type size2, bool preserve = true) {
const size_type oldM = layout_type::size_M (size1_, size2_);
size1_ = size1;
size2_ = size2;
const size_type sizeM = layout_type::size_M (size1_, size2_);
const size_type sizem = layout_type::size_m (size1_, size2_);
data ().resize (sizeM + 1, preserve);
if (preserve) {
for (size_type i = 0; (i <= oldM) && (i < sizeM); ++ i)
ref (data () [i]).resize (sizem, preserve);
for (size_type i = oldM+1; i < sizeM; ++ i) // create new vector elements
data_.insert_element (i, vector_data_value_type ()) .resize (sizem, false);
if (sizeM > oldM) {
data_.insert_element (sizeM, vector_data_value_type ());
} else {
ref (data () [sizeM]).resize (0, false);
}
} else {
for (size_type i = 0; i < sizeM; ++ i)
data_.insert_element (i, vector_data_value_type ()) .resize (sizem, false);
data_.insert_element (sizeM, vector_data_value_type ());
}
storage_invariants ();
}
// Element support
BOOST_UBLAS_INLINE
pointer find_element (size_type i, size_type j) {
return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i, j));
}
BOOST_UBLAS_INLINE
const_pointer find_element (size_type i, size_type j) const {
const size_type elementM = layout_type::index_M (i, j);
const size_type elementm = layout_type::index_m (i, j);
// optimise: check the storage_type and index directly if element always exists
if (boost::is_convertible<typename array_type::storage_category, packed_tag>::value) {
return & (data () [elementM] [elementm]);
}
else {
const typename array_type::value_type *pv = data ().find_element (elementM);
if (!pv)
return 0;
return pv->find_element (elementm);
}
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i, size_type j) const {
const_pointer p = find_element (i, j);
// optimise: check the storage_type and index directly if element always exists
if (boost::is_convertible<typename array_type::storage_category, packed_tag>::value) {
BOOST_UBLAS_CHECK (p, internal_logic () );
return *p;
}
else {
if (p)
return *p;
else
return zero_;
}
}
BOOST_UBLAS_INLINE
reference operator () (size_type i, size_type j) {
#ifndef BOOST_UBLAS_STRICT_MATRIX_SPARSE
return at_element (i, j);
#else
return reference (*this, i, j);
#endif
}
// Assignment
BOOST_UBLAS_INLINE
generalized_vector_of_vector &operator = (const generalized_vector_of_vector &m) {
if (this != &m) {
size1_ = m.size1_;
size2_ = m.size2_;
data () = m.data ();
}
storage_invariants ();
return *this;
}
BOOST_UBLAS_INLINE
generalized_vector_of_vector &assign_temporary (generalized_vector_of_vector &m) {
swap (m);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &operator = (const matrix_expression<AE> &ae) {
self_type temporary (ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator += (const matrix_expression<AE> &ae) {
self_type temporary (*this + ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &plus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator -= (const matrix_expression<AE> &ae) {
self_type temporary (*this - ae);
return assign_temporary (temporary);
}
template<class AE>
BOOST_UBLAS_INLINE
generalized_vector_of_vector &minus_assign (const matrix_expression<AE> &ae) {
matrix_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator *= (const AT &at) {
matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
generalized_vector_of_vector& operator /= (const AT &at) {
matrix_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (generalized_vector_of_vector &m) {
if (this != &m) {
std::swap (size1_, m.size1_);
std::swap (size2_, m.size2_);
data ().swap (m.data ());
}
storage_invariants ();
}
BOOST_UBLAS_INLINE
friend void swap (generalized_vector_of_vector &m1, generalized_vector_of_vector &m2) {
m1.swap (m2);
}
// Sorting
void sort () {
vectoriterator_type itv (data ().begin ());
vectoriterator_type itv_end (data ().end ());
while (itv != itv_end) {
(*itv).sort ();
++ itv;
}
}
// Element insertion and erasure
BOOST_UBLAS_INLINE
true_reference insert_element (size_type i, size_type j, const_reference t) {
const size_type elementM = layout_type::index_M (i, j);
const size_type elementm = layout_type::index_m (i, j);
vector_data_value_type& vd (ref (data () [elementM]));
storage_invariants ();
return vd.insert_element (elementm, t);
}
BOOST_UBLAS_INLINE
void append_element (size_type i, size_type j, const_reference t) {
const size_type elementM = layout_type::index_M (i, j);
const size_type elementm = layout_type::index_m (i, j);
vector_data_value_type& vd (ref (data () [elementM]));
storage_invariants ();
return vd.append_element (elementm, t);
}
BOOST_UBLAS_INLINE
void erase_element (size_type i, size_type j) {
vectoriterator_type itv (data ().find (layout_type::index_M (i, j)));
if (itv == data ().end ())
return;
(*itv).erase_element (layout_type::index_m (i, j));
storage_invariants ();
}
BOOST_UBLAS_INLINE
void clear () {
const size_type sizeM = layout_type::size_M (size1_, size2_);
// FIXME should clear data () if this is done via value_type/*zero*/() then it is not size preserving
for (size_type i = 0; i < sizeM; ++ i)
ref (data () [i]).clear ();
storage_invariants ();
}
// Iterator types
private:
// Use vector iterator
typedef typename A::const_iterator const_vectoriterator_type;
typedef typename A::iterator vectoriterator_type;
typedef typename A::value_type::const_iterator const_subiterator_type;
typedef typename A::value_type::iterator subiterator_type;
BOOST_UBLAS_INLINE
true_reference at_element (size_type i, size_type j) {
return ref (ref (data () [layout_type::index_M (i, j)]) [layout_type::index_m (i, j)]);
}
public:
class const_iterator1;
class iterator1;
class const_iterator2;
class iterator2;
typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
typedef reverse_iterator_base1<iterator1> reverse_iterator1;
typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
typedef reverse_iterator_base2<iterator2> reverse_iterator2;
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) const {
for (;;) {
const_vectoriterator_type itv (data ().find (layout_type::index_M (i, j)));
const_vectoriterator_type itv_end (data ().end ());
if (itv == itv_end)
return const_iterator1 (*this, rank, i, j, itv_end, (*(-- itv)).end ());
const_subiterator_type it ((*itv).find (layout_type::index_m (i, j)));
const_subiterator_type it_end ((*itv).end ());
if (rank == 0)
return const_iterator1 (*this, rank, i, j, itv, it);
if (it != it_end && it.index () == layout_type::index_m (i, j))
return const_iterator1 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_i ()) {
if (it == it_end)
return const_iterator1 (*this, rank, i, j, itv, it);
i = it.index ();
} else {
if (i >= size1_)
return const_iterator1 (*this, rank, i, j, itv, it);
++ i;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_i ()) {
if (it == (*itv).begin ())
return const_iterator1 (*this, rank, i, j, itv, it);
--it;
i = it.index ();
} else {
if (i == 0)
return const_iterator1 (*this, rank, i, j, itv, it);
-- i;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator1 find1 (int rank, size_type i, size_type j, int direction = 1) {
for (;;) {
vectoriterator_type itv (data ().find (layout_type::index_M (i, j)));
vectoriterator_type itv_end (data ().end ());
if (itv == itv_end)
return iterator1 (*this, rank, i, j, itv_end, (*(-- itv)).end ());
subiterator_type it ((*itv).find (layout_type::index_m (i, j)));
subiterator_type it_end ((*itv).end ());
if (rank == 0)
return iterator1 (*this, rank, i, j, itv, it);
if (it != it_end && it.index () == layout_type::index_m (i, j))
return iterator1 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_i ()) {
if (it == it_end)
return iterator1 (*this, rank, i, j, itv, it);
i = it.index ();
} else {
if (i >= size1_)
return iterator1 (*this, rank, i, j, itv, it);
++ i;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_i ()) {
if (it == (*itv).begin ())
return iterator1 (*this, rank, i, j, itv, it);
--it;
i = it.index ();
} else {
if (i == 0)
return iterator1 (*this, rank, i, j, itv, it);
-- i;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) const {
for (;;) {
const_vectoriterator_type itv (data ().find (layout_type::index_M (i, j)));
const_vectoriterator_type itv_end (data ().end ());
if (itv == itv_end)
return const_iterator2 (*this, rank, i, j, itv_end, (*(-- itv)).end ());
const_subiterator_type it ((*itv).find (layout_type::index_m (i, j)));
const_subiterator_type it_end ((*itv).end ());
if (rank == 0)
return const_iterator2 (*this, rank, i, j, itv, it);
if (it != it_end && it.index () == layout_type::index_m (i, j))
return const_iterator2 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_j ()) {
if (it == it_end)
return const_iterator2 (*this, rank, i, j, itv, it);
j = it.index ();
} else {
if (j >= size2_)
return const_iterator2 (*this, rank, i, j, itv, it);
++ j;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_j ()) {
if (it == (*itv).begin ())
return const_iterator2 (*this, rank, i, j, itv, it);
--it;
j = it.index ();
} else {
if (j == 0)
return const_iterator2 (*this, rank, i, j, itv, it);
-- j;
}
}
}
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator2 find2 (int rank, size_type i, size_type j, int direction = 1) {
for (;;) {
vectoriterator_type itv (data ().find (layout_type::index_M (i, j)));
vectoriterator_type itv_end (data ().end ());
if (itv == itv_end)
return iterator2 (*this, rank, i, j, itv_end, (*(-- itv)).end ());
subiterator_type it ((*itv).find (layout_type::index_m (i, j)));
subiterator_type it_end ((*itv).end ());
if (rank == 0)
return iterator2 (*this, rank, i, j, itv, it);
if (it != it_end && it.index () == layout_type::index_m (i, j))
return iterator2 (*this, rank, i, j, itv, it);
if (direction > 0) {
if (layout_type::fast_j ()) {
if (it == it_end)
return iterator2 (*this, rank, i, j, itv, it);
j = it.index ();
} else {
if (j >= size2_)
return iterator2 (*this, rank, i, j, itv, it);
++ j;
}
} else /* if (direction < 0) */ {
if (layout_type::fast_j ()) {
if (it == (*itv).begin ())
return iterator2 (*this, rank, i, j, itv, it);
--it;
j = it.index ();
} else {
if (j == 0)
return iterator2 (*this, rank, i, j, itv, it);
-- j;
}
}
}
}
class const_iterator1:
public container_const_reference<generalized_vector_of_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator1, value_type> {
public:
typedef typename generalized_vector_of_vector::difference_type difference_type;
typedef typename generalized_vector_of_vector::value_type value_type;
typedef typename generalized_vector_of_vector::const_reference reference;
typedef const typename generalized_vector_of_vector::pointer pointer;
typedef const_iterator2 dual_iterator_type;
typedef const_reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator1 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator1 (const self_type &m, int rank, size_type i, size_type j, const const_vectoriterator_type &itv, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator1 (const iterator1 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), itv_ (it.itv_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else {
const self_type &m = (*this) ();
i_ = index1 () + 1;
if (rank_ == 1 && ++ itv_ == m.end1 ().itv_)
*this = m.find1 (rank_, i_, j_, 1);
else if (rank_ == 1) {
it_ = (*itv_).begin ();
if (it_ == (*itv_).end () || index2 () != j_)
*this = m.find1 (rank_, i_, j_, 1);
}
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else {
const self_type &m = (*this) ();
i_ = index1 () - 1;
if (rank_ == 1 && -- itv_ == m.end1 ().itv_)
*this = m.find1 (rank_, i_, j_, -1);
else if (rank_ == 1) {
it_ = (*itv_).begin ();
if (it_ == (*itv_).end () || index2 () != j_)
*this = m.find1 (rank_, i_, j_, -1);
}
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return *it_;
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 begin () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator2 end () const {
const self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rbegin () const {
return const_reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator2 rend () const {
return const_reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M (itv_.index (), it_.index ()) < (*this) ().size1 (), bad_index ());
return layout_type::index_M (itv_.index (), it_.index ());
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m (itv_.index (), it_.index ()) < (*this) ().size2 (), bad_index ());
return layout_type::index_m (itv_.index (), it_.index ());
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator1 &operator = (const const_iterator1 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
const_vectoriterator_type itv_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator1 begin1 () const {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator1 end1 () const {
return find1 (0, size1_, 0);
}
class iterator1:
public container_reference<generalized_vector_of_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator1, value_type> {
public:
typedef typename generalized_vector_of_vector::difference_type difference_type;
typedef typename generalized_vector_of_vector::value_type value_type;
typedef typename generalized_vector_of_vector::true_reference reference;
typedef typename generalized_vector_of_vector::pointer pointer;
typedef iterator2 dual_iterator_type;
typedef reverse_iterator2 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator1 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator1 (self_type &m, int rank, size_type i, size_type j, const vectoriterator_type &itv, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator1 &operator ++ () {
if (rank_ == 1 && layout_type::fast_i ())
++ it_;
else {
self_type &m = (*this) ();
i_ = index1 () + 1;
if (rank_ == 1 && ++ itv_ == m.end1 ().itv_)
*this = m.find1 (rank_, i_, j_, 1);
else if (rank_ == 1) {
it_ = (*itv_).begin ();
if (it_ == (*itv_).end () || index2 () != j_)
*this = m.find1 (rank_, i_, j_, 1);
}
}
return *this;
}
BOOST_UBLAS_INLINE
iterator1 &operator -- () {
if (rank_ == 1 && layout_type::fast_i ())
-- it_;
else {
self_type &m = (*this) ();
i_ = index1 () - 1;
if (rank_ == 1 && -- itv_ == m.end1 ().itv_)
*this = m.find1 (rank_, i_, j_, -1);
else if (rank_ == 1) {
it_ = (*itv_).begin ();
if (it_ == (*itv_).end () || index2 () != j_)
*this = m.find1 (rank_, i_, j_, -1);
}
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
true_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return *it_;
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 begin () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), 0);
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator2 end () const {
self_type &m = (*this) ();
return m.find2 (1, index1 (), m.size2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rbegin () const {
return reverse_iterator2 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator2 rend () const {
return reverse_iterator2 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M (itv_.index (), it_.index ()) < (*this) ().size1 (), bad_index ());
return layout_type::index_M (itv_.index (), it_.index ());
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find1 (0, (*this) ().size1 (), j_), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m (itv_.index (), it_.index ()) < (*this) ().size2 (), bad_index ());
return layout_type::index_m (itv_.index (), it_.index ());
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator1 &operator = (const iterator1 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator1 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vectoriterator_type itv_;
subiterator_type it_;
friend class const_iterator1;
};
BOOST_UBLAS_INLINE
iterator1 begin1 () {
return find1 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator1 end1 () {
return find1 (0, size1_, 0);
}
class const_iterator2:
public container_const_reference<generalized_vector_of_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
const_iterator2, value_type> {
public:
typedef typename generalized_vector_of_vector::difference_type difference_type;
typedef typename generalized_vector_of_vector::value_type value_type;
typedef typename generalized_vector_of_vector::const_reference reference;
typedef const typename generalized_vector_of_vector::pointer pointer;
typedef const_iterator1 dual_iterator_type;
typedef const_reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator2 ():
container_const_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator2 (const self_type &m, int rank, size_type i, size_type j, const const_vectoriterator_type &itv, const const_subiterator_type &it):
container_const_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator2 (const iterator2 &it):
container_const_reference<self_type> (it ()), rank_ (it.rank_), i_ (it.i_), j_ (it.j_), itv_ (it.itv_), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else {
const self_type &m = (*this) ();
j_ = index2 () + 1;
if (rank_ == 1 && ++ itv_ == m.end2 ().itv_)
*this = m.find2 (rank_, i_, j_, 1);
else if (rank_ == 1) {
it_ = (*itv_).begin ();
if (it_ == (*itv_).end () || index1 () != i_)
*this = m.find2 (rank_, i_, j_, 1);
}
}
return *this;
}
BOOST_UBLAS_INLINE
const_iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else {
const self_type &m = (*this) ();
j_ = index2 () - 1;
if (rank_ == 1 && -- itv_ == m.end2 ().itv_)
*this = m.find2 (rank_, i_, j_, -1);
else if (rank_ == 1) {
it_ = (*itv_).begin ();
if (it_ == (*itv_).end () || index1 () != i_)
*this = m.find2 (rank_, i_, j_, -1);
}
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return *it_;
} else {
return (*this) () (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 begin () const {
const self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_iterator1 end () const {
const self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rbegin () const {
return const_reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
const_reverse_iterator1 rend () const {
return const_reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M (itv_.index (), it_.index ()) < (*this) ().size1 (), bad_index ());
return layout_type::index_M (itv_.index (), it_.index ());
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m (itv_.index (), it_.index ()) < (*this) ().size2 (), bad_index ());
return layout_type::index_m (itv_.index (), it_.index ());
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator2 &operator = (const const_iterator2 &it) {
container_const_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
const_vectoriterator_type itv_;
const_subiterator_type it_;
};
BOOST_UBLAS_INLINE
const_iterator2 begin2 () const {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
const_iterator2 end2 () const {
return find2 (0, 0, size2_);
}
class iterator2:
public container_reference<generalized_vector_of_vector>,
public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
iterator2, value_type> {
public:
typedef typename generalized_vector_of_vector::difference_type difference_type;
typedef typename generalized_vector_of_vector::value_type value_type;
typedef typename generalized_vector_of_vector::true_reference reference;
typedef typename generalized_vector_of_vector::pointer pointer;
typedef iterator1 dual_iterator_type;
typedef reverse_iterator1 dual_reverse_iterator_type;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator2 ():
container_reference<self_type> (), rank_ (), i_ (), j_ (), itv_ (), it_ () {}
BOOST_UBLAS_INLINE
iterator2 (self_type &m, int rank, size_type i, size_type j, const vectoriterator_type &itv, const subiterator_type &it):
container_reference<self_type> (m), rank_ (rank), i_ (i), j_ (j), itv_ (itv), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator2 &operator ++ () {
if (rank_ == 1 && layout_type::fast_j ())
++ it_;
else {
self_type &m = (*this) ();
j_ = index2 () + 1;
if (rank_ == 1 && ++ itv_ == m.end2 ().itv_)
*this = m.find2 (rank_, i_, j_, 1);
else if (rank_ == 1) {
it_ = (*itv_).begin ();
if (it_ == (*itv_).end () || index1 () != i_)
*this = m.find2 (rank_, i_, j_, 1);
}
}
return *this;
}
BOOST_UBLAS_INLINE
iterator2 &operator -- () {
if (rank_ == 1 && layout_type::fast_j ())
-- it_;
else {
self_type &m = (*this) ();
j_ = index2 () - 1;
if (rank_ == 1 && -- itv_ == m.end2 ().itv_)
*this = m.find2 (rank_, i_, j_, -1);
else if (rank_ == 1) {
it_ = (*itv_).begin ();
if (it_ == (*itv_).end () || index1 () != i_)
*this = m.find2 (rank_, i_, j_, -1);
}
}
return *this;
}
// Dereference
BOOST_UBLAS_INLINE
true_reference operator * () const {
BOOST_UBLAS_CHECK (index1 () < (*this) ().size1 (), bad_index ());
BOOST_UBLAS_CHECK (index2 () < (*this) ().size2 (), bad_index ());
if (rank_ == 1) {
return *it_;
} else {
return (*this) ().at_element (i_, j_);
}
}
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 begin () const {
self_type &m = (*this) ();
return m.find1 (1, 0, index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
iterator1 end () const {
self_type &m = (*this) ();
return m.find1 (1, m.size1 (), index2 ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rbegin () const {
return reverse_iterator1 (end ());
}
BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION
typename self_type::
#endif
reverse_iterator1 rend () const {
return reverse_iterator1 (begin ());
}
#endif
// Indices
BOOST_UBLAS_INLINE
size_type index1 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_M (itv_.index (), it_.index ()) < (*this) ().size1 (), bad_index ());
return layout_type::index_M (itv_.index (), it_.index ());
} else {
return i_;
}
}
BOOST_UBLAS_INLINE
size_type index2 () const {
BOOST_UBLAS_CHECK (*this != (*this) ().find2 (0, i_, (*this) ().size2 ()), bad_index ());
if (rank_ == 1) {
BOOST_UBLAS_CHECK (layout_type::index_m (itv_.index (), it_.index ()) < (*this) ().size2 (), bad_index ());
return layout_type::index_m (itv_.index (), it_.index ());
} else {
return j_;
}
}
// Assignment
BOOST_UBLAS_INLINE
iterator2 &operator = (const iterator2 &it) {
container_reference<self_type>::assign (&it ());
rank_ = it.rank_;
i_ = it.i_;
j_ = it.j_;
itv_ = it.itv_;
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator2 &it) const {
BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
// BOOST_UBLAS_CHECK (rank_ == it.rank_, internal_logic ());
if (rank_ == 1 || it.rank_ == 1) {
return it_ == it.it_;
} else {
return i_ == it.i_ && j_ == it.j_;
}
}
private:
int rank_;
size_type i_;
size_type j_;
vectoriterator_type itv_;
subiterator_type it_;
friend class const_iterator2;
};
BOOST_UBLAS_INLINE
iterator2 begin2 () {
return find2 (0, 0, 0);
}
BOOST_UBLAS_INLINE
iterator2 end2 () {
return find2 (0, 0, size2_);
}
// Reverse iterators
BOOST_UBLAS_INLINE
const_reverse_iterator1 rbegin1 () const {
return const_reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator1 rend1 () const {
return const_reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rbegin1 () {
return reverse_iterator1 (end1 ());
}
BOOST_UBLAS_INLINE
reverse_iterator1 rend1 () {
return reverse_iterator1 (begin1 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rbegin2 () const {
return const_reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator2 rend2 () const {
return const_reverse_iterator2 (begin2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rbegin2 () {
return reverse_iterator2 (end2 ());
}
BOOST_UBLAS_INLINE
reverse_iterator2 rend2 () {
return reverse_iterator2 (begin2 ());
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
// we need to copy to a collection_size_type to get a portable
// and efficient serialization
serialization::collection_size_type s1 (size1_);
serialization::collection_size_type s2 (size2_);
// serialize the sizes
ar & serialization::make_nvp("size1",s1)
& serialization::make_nvp("size2",s2);
// copy the values back if loading
if (Archive::is_loading::value) {
size1_ = s1;
size2_ = s2;
}
ar & serialization::make_nvp("data", data_);
storage_invariants();
}
private:
void storage_invariants () const
{
BOOST_UBLAS_CHECK (layout_type::size_M (size1_, size2_) + 1 == data_.size (), internal_logic ());
BOOST_UBLAS_CHECK (data ().begin () != data ().end (), internal_logic ());
}
size_type size1_;
size_type size2_;
array_type data_;
static const value_type zero_;
};
template<class T, class L, class A>
const typename generalized_vector_of_vector<T, L, A>::value_type generalized_vector_of_vector<T, L, A>::zero_ = value_type/*zero*/();
}}}
#endif