blob: dc49e90a763b87a9857bda0b2ccd4a3eedf44f3f [file] [log] [blame]
// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_RELAXED_HEAP_HEADER
#define BOOST_RELAXED_HEAP_HEADER
#include <functional>
#include <boost/property_map/property_map.hpp>
#include <boost/optional.hpp>
#include <vector>
#include <climits> // for CHAR_BIT
#include <boost/none.hpp>
#ifdef BOOST_RELAXED_HEAP_DEBUG
# include <iostream>
#endif // BOOST_RELAXED_HEAP_DEBUG
#if defined(BOOST_MSVC)
# pragma warning(push)
# pragma warning(disable:4355) // complaint about using 'this' to
#endif // initialize a member
namespace boost {
template<typename IndexedType,
typename Compare = std::less<IndexedType>,
typename ID = identity_property_map>
class relaxed_heap
{
struct group;
typedef relaxed_heap self_type;
typedef std::size_t rank_type;
public:
typedef IndexedType value_type;
typedef rank_type size_type;
private:
/**
* The kind of key that a group has. The actual values are discussed
* in-depth in the documentation of the @c kind field of the @c group
* structure. Note that the order of the enumerators *IS* important
* and must not be changed.
*/
enum group_key_kind { smallest_key, stored_key, largest_key };
struct group {
explicit group(group_key_kind kind = largest_key)
: kind(kind), parent(this), rank(0) { }
/** The value associated with this group. This value is only valid
* when @c kind!=largest_key (which indicates a deleted
* element). Note that the use of boost::optional increases the
* memory requirements slightly but does not result in extraneous
* memory allocations or deallocations. The optional could be
* eliminated when @c value_type is a model of
* DefaultConstructible.
*/
::boost::optional<value_type> value;
/**
* The kind of key stored at this group. This may be @c
* smallest_key, which indicates that the key is infinitely small;
* @c largest_key, which indicates that the key is infinitely
* large; or @c stored_key, which means that the key is unknown,
* but its relationship to other keys can be determined via the
* comparison function object.
*/
group_key_kind kind;
/// The parent of this group. Will only be NULL for the dummy root group
group* parent;
/// The rank of this group. Equivalent to the number of children in
/// the group.
rank_type rank;
/** The children of this group. For the dummy root group, these are
* the roots. This is an array of length log n containing pointers
* to the child groups.
*/
group** children;
};
size_type log_base_2(size_type n) // log2 is a macro on some platforms
{
size_type leading_zeroes = 0;
do {
size_type next = n << 1;
if (n == (next >> 1)) {
++leading_zeroes;
n = next;
} else {
break;
}
} while (true);
return sizeof(size_type) * CHAR_BIT - leading_zeroes - 1;
}
public:
relaxed_heap(size_type n, const Compare& compare = Compare(),
const ID& id = ID())
: compare(compare), id(id), root(smallest_key), groups(n),
smallest_value(0)
{
if (n == 0) {
root.children = new group*[1];
return;
}
log_n = log_base_2(n);
if (log_n == 0) log_n = 1;
size_type g = n / log_n;
if (n % log_n > 0) ++g;
size_type log_g = log_base_2(g);
size_type r = log_g;
// Reserve an appropriate amount of space for data structures, so
// that we do not need to expand them.
index_to_group.resize(g);
A.resize(r + 1, 0);
root.rank = r + 1;
root.children = new group*[(log_g + 1) * (g + 1)];
for (rank_type i = 0; i < r+1; ++i) root.children[i] = 0;
// Build initial heap
size_type idx = 0;
while (idx < g) {
root.children[r] = &index_to_group[idx];
idx = build_tree(root, idx, r, log_g + 1);
if (idx != g)
r = static_cast<size_type>(log_base_2(g-idx));
}
}
~relaxed_heap() { delete [] root.children; }
void push(const value_type& x)
{
groups[get(id, x)] = x;
update(x);
}
void update(const value_type& x)
{
group* a = &index_to_group[get(id, x) / log_n];
if (!a->value
|| *a->value == x
|| compare(x, *a->value)) {
if (a != smallest_value) smallest_value = 0;
a->kind = stored_key;
a->value = x;
promote(a);
}
}
void remove(const value_type& x)
{
group* a = &index_to_group[get(id, x) / log_n];
assert(groups[get(id, x)] != 0);
a->value = x;
a->kind = smallest_key;
promote(a);
smallest_value = a;
pop();
}
value_type& top()
{
find_smallest();
assert(smallest_value->value != none);
return *smallest_value->value;
}
const value_type& top() const
{
find_smallest();
assert(smallest_value->value != none);
return *smallest_value->value;
}
bool empty() const
{
find_smallest();
return !smallest_value || (smallest_value->kind == largest_key);
}
bool contains(const value_type& x) const { return groups[get(id, x)]; }
void pop()
{
// Fill in smallest_value. This is the group x.
find_smallest();
group* x = smallest_value;
smallest_value = 0;
// Make x a leaf, giving it the smallest value within its group
rank_type r = x->rank;
group* p = x->parent;
{
assert(x->value != none);
// Find x's group
size_type start = get(id, *x->value) - get(id, *x->value) % log_n;
size_type end = start + log_n;
if (end > groups.size()) end = groups.size();
// Remove the smallest value from the group, and find the new
// smallest value.
groups[get(id, *x->value)].reset();
x->value.reset();
x->kind = largest_key;
for (size_type i = start; i < end; ++i) {
if (groups[i] && (!x->value || compare(*groups[i], *x->value))) {
x->kind = stored_key;
x->value = groups[i];
}
}
}
x->rank = 0;
// Combine prior children of x with x
group* y = x;
for (size_type c = 0; c < r; ++c) {
group* child = x->children[c];
if (A[c] == child) A[c] = 0;
y = combine(y, child);
}
// If we got back something other than x, let y take x's place
if (y != x) {
y->parent = p;
p->children[r] = y;
assert(r == y->rank);
if (A[y->rank] == x)
A[y->rank] = do_compare(y, p)? y : 0;
}
}
#ifdef BOOST_RELAXED_HEAP_DEBUG
/*************************************************************************
* Debugging support *
*************************************************************************/
void dump_tree() { dump_tree(std::cout); }
void dump_tree(std::ostream& out) { dump_tree(out, &root); }
void dump_tree(std::ostream& out, group* p, bool in_progress = false)
{
if (!in_progress) {
out << "digraph heap {\n"
<< " edge[dir=\"back\"];\n";
}
size_type p_index = 0;
if (p != &root) while (&index_to_group[p_index] != p) ++p_index;
for (size_type i = 0; i < p->rank; ++i) {
group* c = p->children[i];
if (c) {
size_type c_index = 0;
if (c != &root) while (&index_to_group[c_index] != c) ++c_index;
out << " ";
if (p == &root) out << 'p'; else out << p_index;
out << " -> ";
if (c == &root) out << 'p'; else out << c_index;
if (A[c->rank] == c) out << " [style=\"dotted\"]";
out << ";\n";
dump_tree(out, c, true);
// Emit node information
out << " ";
if (c == &root) out << 'p'; else out << c_index;
out << " [label=\"";
if (c == &root) out << 'p'; else out << c_index;
out << ":";
size_type start = c_index * log_n;
size_type end = start + log_n;
if (end > groups.size()) end = groups.size();
while (start != end) {
if (groups[start]) {
out << " " << get(id, *groups[start]);
if (*groups[start] == *c->value) out << "(*)";
}
++start;
}
out << '"';
if (do_compare(c, p)) {
out << " ";
if (c == &root) out << 'p'; else out << c_index;
out << ", style=\"filled\", fillcolor=\"gray\"";
}
out << "];\n";
} else {
assert(p->parent == p);
}
}
if (!in_progress) out << "}\n";
}
bool valid()
{
// Check that the ranks in the A array match the ranks of the
// groups stored there. Also, the active groups must be the last
// child of their parent.
for (size_type r = 0; r < A.size(); ++r) {
if (A[r] && A[r]->rank != r) return false;
if (A[r] && A[r]->parent->children[A[r]->parent->rank-1] != A[r])
return false;
}
// The root must have no value and a key of -Infinity
if (root.kind != smallest_key) return false;
return valid(&root);
}
bool valid(group* p)
{
for (size_type i = 0; i < p->rank; ++i) {
group* c = p->children[i];
if (c) {
// Check link structure
if (c->parent != p) return false;
if (c->rank != i) return false;
// A bad group must be active
if (do_compare(c, p) && A[i] != c) return false;
// Check recursively
if (!valid(c)) return false;
} else {
// Only the root may
if (p != &root) return false;
}
}
return true;
}
#endif // BOOST_RELAXED_HEAP_DEBUG
private:
size_type
build_tree(group& parent, size_type idx, size_type r, size_type max_rank)
{
group& this_group = index_to_group[idx];
this_group.parent = &parent;
++idx;
this_group.children = root.children + (idx * max_rank);
this_group.rank = r;
for (size_type i = 0; i < r; ++i) {
this_group.children[i] = &index_to_group[idx];
idx = build_tree(this_group, idx, i, max_rank);
}
return idx;
}
void find_smallest() const
{
group** roots = root.children;
if (!smallest_value) {
std::size_t i;
for (i = 0; i < root.rank; ++i) {
if (roots[i] &&
(!smallest_value || do_compare(roots[i], smallest_value))) {
smallest_value = roots[i];
}
}
for (i = 0; i < A.size(); ++i) {
if (A[i] && (!smallest_value || do_compare(A[i], smallest_value)))
smallest_value = A[i];
}
}
}
bool do_compare(group* x, group* y) const
{
return (x->kind < y->kind
|| (x->kind == y->kind
&& x->kind == stored_key
&& compare(*x->value, *y->value)));
}
void promote(group* a)
{
assert(a != 0);
rank_type r = a->rank;
group* p = a->parent;
assert(p != 0);
if (do_compare(a, p)) {
// s is the rank + 1 sibling
group* s = p->rank > r + 1? p->children[r + 1] : 0;
// If a is the last child of p
if (r == p->rank - 1) {
if (!A[r]) A[r] = a;
else if (A[r] != a) pair_transform(a);
} else {
assert(s != 0);
if (A[r + 1] == s) active_sibling_transform(a, s);
else good_sibling_transform(a, s);
}
}
}
group* combine(group* a1, group* a2)
{
assert(a1->rank == a2->rank);
if (do_compare(a2, a1)) do_swap(a1, a2);
a1->children[a1->rank++] = a2;
a2->parent = a1;
clean(a1);
return a1;
}
void clean(group* q)
{
if (2 > q->rank) return;
group* qp = q->children[q->rank-1];
rank_type s = q->rank - 2;
group* x = q->children[s];
group* xp = qp->children[s];
assert(s == x->rank);
// If x is active, swap x and xp
if (A[s] == x) {
q->children[s] = xp;
xp->parent = q;
qp->children[s] = x;
x->parent = qp;
}
}
void pair_transform(group* a)
{
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
std::cerr << "- pair transform\n";
#endif
rank_type r = a->rank;
// p is a's parent
group* p = a->parent;
assert(p != 0);
// g is p's parent (a's grandparent)
group* g = p->parent;
assert(g != 0);
// a' <- A(r)
assert(A[r] != 0);
group* ap = A[r];
assert(ap != 0);
// A(r) <- nil
A[r] = 0;
// let a' have parent p'
group* pp = ap->parent;
assert(pp != 0);
// let a' have grandparent g'
group* gp = pp->parent;
assert(gp != 0);
// Remove a and a' from their parents
assert(ap == pp->children[pp->rank-1]); // Guaranteed because ap is active
--pp->rank;
// Guaranteed by caller
assert(a == p->children[p->rank-1]);
--p->rank;
// Note: a, ap, p, pp all have rank r
if (do_compare(pp, p)) {
do_swap(a, ap);
do_swap(p, pp);
do_swap(g, gp);
}
// Assuming k(p) <= k(p')
// make p' the rank r child of p
assert(r == p->rank);
p->children[p->rank++] = pp;
pp->parent = p;
// Combine a, ap into a rank r+1 group c
group* c = combine(a, ap);
// make c the rank r+1 child of g'
assert(gp->rank > r+1);
gp->children[r+1] = c;
c->parent = gp;
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
std::cerr << "After pair transform...\n";
dump_tree();
#endif
if (A[r+1] == pp) A[r+1] = c;
else promote(c);
}
void active_sibling_transform(group* a, group* s)
{
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
std::cerr << "- active sibling transform\n";
#endif
group* p = a->parent;
group* g = p->parent;
// remove a, s from their parents
assert(s->parent == p);
assert(p->children[p->rank-1] == s);
--p->rank;
assert(p->children[p->rank-1] == a);
--p->rank;
rank_type r = a->rank;
A[r+1] = 0;
a = combine(p, a);
group* c = combine(a, s);
// make c the rank r+2 child of g
assert(g->children[r+2] == p);
g->children[r+2] = c;
c->parent = g;
if (A[r+2] == p) A[r+2] = c;
else promote(c);
}
void good_sibling_transform(group* a, group* s)
{
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
std::cerr << "- good sibling transform\n";
#endif
rank_type r = a->rank;
group* c = s->children[s->rank-1];
assert(c->rank == r);
if (A[r] == c) {
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
std::cerr << "- good sibling pair transform\n";
#endif
A[r] = 0;
group* p = a->parent;
// Remove c from its parent
--s->rank;
// Make s the rank r child of p
s->parent = p;
p->children[r] = s;
// combine a, c and let the result by the rank r+1 child of p
assert(p->rank > r+1);
group* x = combine(a, c);
x->parent = p;
p->children[r+1] = x;
if (A[r+1] == s) A[r+1] = x;
else promote(x);
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
dump_tree(std::cerr);
#endif
// pair_transform(a);
} else {
// Clean operation
group* p = a->parent;
s->children[r] = a;
a->parent = s;
p->children[r] = c;
c->parent = p;
promote(a);
}
}
static void do_swap(group*& x, group*& y)
{
group* tmp = x;
x = y;
y = tmp;
}
/// Function object that compares two values in the heap
Compare compare;
/// Mapping from values to indices in the range [0, n).
ID id;
/** The root group of the queue. This group is special because it will
* never store a value, but it acts as a parent to all of the
* roots. Thus, its list of children is the list of roots.
*/
group root;
/** Mapping from the group index of a value to the group associated
* with that value. If a value is not in the queue, then the "value"
* field will be empty.
*/
std::vector<group> index_to_group;
/** Flat data structure containing the values in each of the
* groups. It will be indexed via the id of the values. The groups
* are each log_n long, with the last group potentially being
* smaller.
*/
std::vector< ::boost::optional<value_type> > groups;
/** The list of active groups, indexed by rank. When A[r] is null,
* there is no active group of rank r. Otherwise, A[r] is the active
* group of rank r.
*/
std::vector<group*> A;
/** The group containing the smallest value in the queue, which must
* be either a root or an active group. If this group is null, then we
* will need to search for this group when it is needed.
*/
mutable group* smallest_value;
/// Cached value log_base_2(n)
size_type log_n;
};
} // end namespace boost
#if defined(BOOST_MSVC)
# pragma warning(pop)
#endif
#endif // BOOST_RELAXED_HEAP_HEADER