blob: cc1fe25ddbdf8d941dd6e1c48626ad535245226f [file] [log] [blame]
// Copyright (C) 2000, 2001 Stephen Cleary
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_SIMPLE_SEGREGATED_STORAGE_HPP
#define BOOST_SIMPLE_SEGREGATED_STORAGE_HPP
// std::greater
#include <functional>
#include <boost/pool/poolfwd.hpp>
namespace boost {
template <typename SizeType>
class simple_segregated_storage
{
public:
typedef SizeType size_type;
private:
simple_segregated_storage(const simple_segregated_storage &);
void operator=(const simple_segregated_storage &);
// pre: (n > 0), (start != 0), (nextof(start) != 0)
// post: (start != 0)
static void * try_malloc_n(void * & start, size_type n,
size_type partition_size);
protected:
void * first;
// Traverses the free list referred to by "first",
// and returns the iterator previous to where
// "ptr" would go if it was in the free list.
// Returns 0 if "ptr" would go at the beginning
// of the free list (i.e., before "first")
void * find_prev(void * ptr);
// for the sake of code readability :)
static void * & nextof(void * const ptr)
{ return *(static_cast<void **>(ptr)); }
public:
// Post: empty()
simple_segregated_storage()
:first(0) { }
// pre: npartition_sz >= sizeof(void *)
// npartition_sz = sizeof(void *) * i, for some integer i
// nsz >= npartition_sz
// block is properly aligned for an array of object of
// size npartition_sz and array of void *
// The requirements above guarantee that any pointer to a chunk
// (which is a pointer to an element in an array of npartition_sz)
// may be cast to void **.
static void * segregate(void * block,
size_type nsz, size_type npartition_sz,
void * end = 0);
// Same preconditions as 'segregate'
// Post: !empty()
void add_block(void * const block,
const size_type nsz, const size_type npartition_sz)
{
// Segregate this block and merge its free list into the
// free list referred to by "first"
first = segregate(block, nsz, npartition_sz, first);
}
// Same preconditions as 'segregate'
// Post: !empty()
void add_ordered_block(void * const block,
const size_type nsz, const size_type npartition_sz)
{
// This (slower) version of add_block segregates the
// block and merges its free list into our free list
// in the proper order
// Find where "block" would go in the free list
void * const loc = find_prev(block);
// Place either at beginning or in middle/end
if (loc == 0)
add_block(block, nsz, npartition_sz);
else
nextof(loc) = segregate(block, nsz, npartition_sz, nextof(loc));
}
// default destructor
bool empty() const { return (first == 0); }
// pre: !empty()
void * malloc BOOST_PREVENT_MACRO_SUBSTITUTION()
{
void * const ret = first;
// Increment the "first" pointer to point to the next chunk
first = nextof(first);
return ret;
}
// pre: chunk was previously returned from a malloc() referring to the
// same free list
// post: !empty()
void free BOOST_PREVENT_MACRO_SUBSTITUTION(void * const chunk)
{
nextof(chunk) = first;
first = chunk;
}
// pre: chunk was previously returned from a malloc() referring to the
// same free list
// post: !empty()
void ordered_free(void * const chunk)
{
// This (slower) implementation of 'free' places the memory
// back in the list in its proper order.
// Find where "chunk" goes in the free list
void * const loc = find_prev(chunk);
// Place either at beginning or in middle/end
if (loc == 0)
(free)(chunk);
else
{
nextof(chunk) = nextof(loc);
nextof(loc) = chunk;
}
}
// Note: if you're allocating/deallocating n a lot, you should
// be using an ordered pool.
void * malloc_n(size_type n, size_type partition_size);
// pre: chunks was previously allocated from *this with the same
// values for n and partition_size
// post: !empty()
// Note: if you're allocating/deallocating n a lot, you should
// be using an ordered pool.
void free_n(void * const chunks, const size_type n,
const size_type partition_size)
{
if(n != 0)
add_block(chunks, n * partition_size, partition_size);
}
// pre: chunks was previously allocated from *this with the same
// values for n and partition_size
// post: !empty()
void ordered_free_n(void * const chunks, const size_type n,
const size_type partition_size)
{
if(n != 0)
add_ordered_block(chunks, n * partition_size, partition_size);
}
};
template <typename SizeType>
void * simple_segregated_storage<SizeType>::find_prev(void * const ptr)
{
// Handle border case
if (first == 0 || std::greater<void *>()(first, ptr))
return 0;
void * iter = first;
while (true)
{
// if we're about to hit the end or
// if we've found where "ptr" goes
if (nextof(iter) == 0 || std::greater<void *>()(nextof(iter), ptr))
return iter;
iter = nextof(iter);
}
}
template <typename SizeType>
void * simple_segregated_storage<SizeType>::segregate(
void * const block,
const size_type sz,
const size_type partition_sz,
void * const end)
{
// Get pointer to last valid chunk, preventing overflow on size calculations
// The division followed by the multiplication just makes sure that
// old == block + partition_sz * i, for some integer i, even if the
// block size (sz) is not a multiple of the partition size.
char * old = static_cast<char *>(block)
+ ((sz - partition_sz) / partition_sz) * partition_sz;
// Set it to point to the end
nextof(old) = end;
// Handle border case where sz == partition_sz (i.e., we're handling an array
// of 1 element)
if (old == block)
return block;
// Iterate backwards, building a singly-linked list of pointers
for (char * iter = old - partition_sz; iter != block;
old = iter, iter -= partition_sz)
nextof(iter) = old;
// Point the first pointer, too
nextof(block) = old;
return block;
}
// The following function attempts to find n contiguous chunks
// of size partition_size in the free list, starting at start.
// If it succeds, it returns the last chunk in that contiguous
// sequence, so that the sequence is known by [start, {retval}]
// If it fails, it does do either because it's at the end of the
// free list or hits a non-contiguous chunk. In either case,
// it will return 0, and set start to the last considered
// chunk. You are at the end of the free list if
// nextof(start) == 0. Otherwise, start points to the last
// chunk in the contiguous sequence, and nextof(start) points
// to the first chunk in the next contiguous sequence (assuming
// an ordered free list)
template <typename SizeType>
void * simple_segregated_storage<SizeType>::try_malloc_n(
void * & start, size_type n, const size_type partition_size)
{
void * iter = nextof(start);
while (--n != 0)
{
void * next = nextof(iter);
if (next != static_cast<char *>(iter) + partition_size)
{
// next == 0 (end-of-list) or non-contiguous chunk found
start = iter;
return 0;
}
iter = next;
}
return iter;
}
template <typename SizeType>
void * simple_segregated_storage<SizeType>::malloc_n(const size_type n,
const size_type partition_size)
{
if(n == 0)
return 0;
void * start = &first;
void * iter;
do
{
if (nextof(start) == 0)
return 0;
iter = try_malloc_n(start, n, partition_size);
} while (iter == 0);
void * const ret = nextof(start);
nextof(start) = nextof(iter);
return ret;
}
} // namespace boost
#endif