blob: dc23e6036d684ed571479cdbff0a6fa90e589f9d [file] [log] [blame]
#ifndef BOOST_PP_IS_ITERATING
///////////////////////////////////////////////////////////////////////////////
/// \file make_expr.hpp
/// Definition of the \c make_expr() and \c unpack_expr() utilities for
/// building Proto expression nodes from child nodes or from a Fusion
/// sequence of child nodes, respectively.
//
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_PROTO_MAKE_EXPR_HPP_EAN_04_01_2005
#define BOOST_PROTO_MAKE_EXPR_HPP_EAN_04_01_2005
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/arithmetic/dec.hpp>
#include <boost/preprocessor/arithmetic/sub.hpp>
#include <boost/preprocessor/punctuation/comma_if.hpp>
#include <boost/preprocessor/iteration/iterate.hpp>
#include <boost/preprocessor/facilities/intercept.hpp>
#include <boost/preprocessor/repetition/enum.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_shifted_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_binary_params.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
#include <boost/ref.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/add_const.hpp>
#include <boost/type_traits/add_reference.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/proto/proto_fwd.hpp>
#include <boost/proto/traits.hpp>
#include <boost/proto/domain.hpp>
#include <boost/proto/generate.hpp>
#include <boost/fusion/include/begin.hpp>
#include <boost/fusion/include/next.hpp>
#include <boost/fusion/include/value_of.hpp>
#include <boost/fusion/include/size.hpp>
#include <boost/proto/detail/poly_function.hpp>
#include <boost/proto/detail/deprecated.hpp>
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable: 4180) // qualifier applied to function type has no meaning; ignored
#endif
namespace boost { namespace proto
{
/// INTERNAL ONLY
///
#define BOOST_PROTO_AS_CHILD_TYPE(Z, N, DATA) \
typename boost::proto::detail::protoify< \
BOOST_PP_CAT(BOOST_PP_TUPLE_ELEM(3, 0, DATA), N) \
, BOOST_PP_TUPLE_ELEM(3, 2, DATA) \
>::result_type \
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_AS_CHILD(Z, N, DATA) \
boost::proto::detail::protoify< \
BOOST_PP_CAT(BOOST_PP_TUPLE_ELEM(3, 0, DATA), N) \
, BOOST_PP_TUPLE_ELEM(3, 2, DATA) \
>()(BOOST_PP_CAT(BOOST_PP_TUPLE_ELEM(3, 1, DATA), N)) \
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_FUSION_NEXT_ITERATOR_TYPE(Z, N, DATA) \
typedef typename fusion::result_of::next< \
BOOST_PP_CAT(fusion_iterator, N)>::type \
BOOST_PP_CAT(fusion_iterator, BOOST_PP_INC(N)); \
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_FUSION_ITERATORS_TYPE(N) \
typedef \
typename fusion::result_of::begin<Sequence const>::type \
fusion_iterator0; \
BOOST_PP_REPEAT(BOOST_PP_DEC(N), BOOST_PROTO_FUSION_NEXT_ITERATOR_TYPE, fusion_iterator) \
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_FUSION_AT_TYPE(Z, N, DATA) \
typename add_const< \
typename fusion::result_of::value_of< \
BOOST_PP_CAT(fusion_iterator, N) \
>::type \
>::type \
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_FUSION_NEXT_ITERATOR(Z, N, DATA) \
BOOST_PP_CAT(fusion_iterator, BOOST_PP_INC(N)) BOOST_PP_CAT(it, BOOST_PP_INC(N)) = \
fusion::next(BOOST_PP_CAT(it, N)); \
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_FUSION_ITERATORS(N) \
fusion_iterator0 it0 = fusion::begin(sequence); \
BOOST_PP_REPEAT(BOOST_PP_DEC(N), BOOST_PROTO_FUSION_NEXT_ITERATOR, fusion_iterator) \
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_FUSION_AT(Z, N, DATA) \
*BOOST_PP_CAT(it, N) \
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_FUSION_AS_CHILD_AT_TYPE(Z, N, DATA) \
typename detail::protoify< \
BOOST_PROTO_FUSION_AT_TYPE(Z, N, DATA) \
, Domain \
>::result_type \
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_FUSION_AS_CHILD_AT(Z, N, DATA) \
detail::protoify< \
BOOST_PROTO_FUSION_AT_TYPE(Z, N, DATA) \
, Domain \
>()(BOOST_PROTO_FUSION_AT(Z, N, DATA)) \
/**/
namespace detail
{
template<typename T, typename Domain>
struct protoify
: Domain::template as_expr<T>
{};
template<typename T, typename Domain>
struct protoify<T &, Domain>
: Domain::template as_child<T>
{};
template<typename T, typename Domain>
struct protoify<boost::reference_wrapper<T>, Domain>
: Domain::template as_child<T>
{};
template<typename T, typename Domain>
struct protoify<boost::reference_wrapper<T> const, Domain>
: Domain::template as_child<T>
{};
template<typename Tag, typename Domain, typename Sequence, std::size_t Size>
struct unpack_expr_
{};
template<typename Domain, typename Sequence>
struct unpack_expr_<tag::terminal, Domain, Sequence, 1u>
{
typedef
typename add_const<
typename fusion::result_of::value_of<
typename fusion::result_of::begin<Sequence>::type
>::type
>::type
terminal_type;
typedef
typename proto::detail::protoify<
terminal_type
, Domain
>::result_type
type;
static type const call(Sequence const &sequence)
{
return proto::detail::protoify<terminal_type, Domain>()(fusion::at_c<0>(sequence));
}
};
template<typename Sequence>
struct unpack_expr_<tag::terminal, deduce_domain, Sequence, 1u>
: unpack_expr_<tag::terminal, default_domain, Sequence, 1u>
{};
template<
typename Tag
, typename Domain
BOOST_PP_ENUM_TRAILING_BINARY_PARAMS(
BOOST_PROTO_MAX_ARITY
, typename A
, = void BOOST_PP_INTERCEPT
)
, typename _ = void
>
struct make_expr_
{};
template<typename Domain, typename A>
struct make_expr_<tag::terminal, Domain, A
BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, void BOOST_PP_INTERCEPT)>
{
typedef typename proto::detail::protoify<A, Domain>::result_type result_type;
result_type operator()(typename add_reference<A>::type a) const
{
return proto::detail::protoify<A, Domain>()(a);
}
};
template<typename A>
struct make_expr_<tag::terminal, deduce_domain, A
BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, void BOOST_PP_INTERCEPT)>
: make_expr_<tag::terminal, default_domain, A>
{};
#define BOOST_PP_ITERATION_PARAMS_1 \
(4, (1, BOOST_PROTO_MAX_ARITY, <boost/proto/make_expr.hpp>, 1)) \
/**/
#include BOOST_PP_ITERATE()
}
namespace result_of
{
/// \brief Metafunction that computes the return type of the
/// \c make_expr() function, with a domain deduced from the
/// domains of the children.
///
/// Use the <tt>result_of::make_expr\<\></tt> metafunction to
/// compute the return type of the \c make_expr() function.
///
/// In this specialization, the domain is deduced from the
/// domains of the child types. (If
/// <tt>is_domain\<A0\>::value</tt> is \c true, then another
/// specialization is selected.)
template<
typename Tag
, BOOST_PP_ENUM_PARAMS(BOOST_PROTO_MAX_ARITY, typename A)
, typename Void1 // = void
, typename Void2 // = void
>
struct make_expr
{
/// Same as <tt>result_of::make_expr\<Tag, D, A0, ... AN\>::type</tt>
/// where \c D is the deduced domain, which is calculated as follows:
///
/// For each \c x in <tt>[0,N)</tt> (proceeding in order beginning with
/// <tt>x=0</tt>), if <tt>domain_of\<Ax\>::type</tt> is not
/// \c default_domain, then \c D is <tt>domain_of\<Ax\>::type</tt>.
/// Otherwise, \c D is \c default_domain.
typedef
typename detail::make_expr_<
Tag
, deduce_domain
BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, A)
>::result_type
type;
};
/// \brief Metafunction that computes the return type of the
/// \c make_expr() function, within the specified domain.
///
/// Use the <tt>result_of::make_expr\<\></tt> metafunction to compute
/// the return type of the \c make_expr() function.
template<
typename Tag
, typename Domain
BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, typename A)
>
struct make_expr<
Tag
, Domain
BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, A)
, typename Domain::proto_is_domain_
>
{
/// If \c Tag is <tt>tag::terminal</tt>, then \c type is a
/// typedef for <tt>boost::result_of\<Domain(expr\<tag::terminal,
/// term\<A0\> \>)\>::type</tt>.
///
/// Otherwise, \c type is a typedef for <tt>boost::result_of\<Domain(expr\<Tag,
/// listN\< as_child\<A0\>::type, ... as_child\<AN\>::type\>)
/// \>::type</tt>, where \c N is the number of non-void template
/// arguments, and <tt>as_child\<A\>::type</tt> is evaluated as
/// follows:
///
/// \li If <tt>is_expr\<A\>::value</tt> is \c true, then the
/// child type is \c A.
/// \li If \c A is <tt>B &</tt> or <tt>cv boost::reference_wrapper\<B\></tt>,
/// and <tt>is_expr\<B\>::value</tt> is \c true, then the
/// child type is <tt>B &</tt>.
/// \li If <tt>is_expr\<A\>::value</tt> is \c false, then the
/// child type is <tt>boost::result_of\<Domain(expr\<tag::terminal, term\<A\> \>
/// )\>::type</tt>.
/// \li If \c A is <tt>B &</tt> or <tt>cv boost::reference_wrapper\<B\></tt>,
/// and <tt>is_expr\<B\>::value</tt> is \c false, then the
/// child type is <tt>boost::result_of\<Domain(expr\<tag::terminal, term\<B &\> \>
/// )\>::type</tt>.
typedef
typename detail::make_expr_<
Tag
, Domain
BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, A)
>::result_type
type;
};
/// \brief Metafunction that computes the return type of the
/// \c unpack_expr() function, with a domain deduced from the
/// domains of the children.
///
/// Use the <tt>result_of::unpack_expr\<\></tt> metafunction to
/// compute the return type of the \c unpack_expr() function.
///
/// \c Sequence is a Fusion Forward Sequence.
///
/// In this specialization, the domain is deduced from the
/// domains of the child types. (If
/// <tt>is_domain\<Sequence>::value</tt> is \c true, then another
/// specialization is selected.)
template<
typename Tag
, typename Sequence
, typename Void1 // = void
, typename Void2 // = void
>
struct unpack_expr
{
/// Let \c S be the type of a Fusion Random Access Sequence
/// equivalent to \c Sequence. Then \c type is the
/// same as <tt>result_of::make_expr\<Tag,
/// fusion::result_of::value_at_c\<S, 0\>::type, ...
/// fusion::result_of::value_at_c\<S, N-1\>::type\>::type</tt>,
/// where \c N is the size of \c S.
typedef
typename detail::unpack_expr_<
Tag
, deduce_domain
, Sequence
, fusion::result_of::size<Sequence>::type::value
>::type
type;
};
/// \brief Metafunction that computes the return type of the
/// \c unpack_expr() function, within the specified domain.
///
/// Use the <tt>result_of::make_expr\<\></tt> metafunction to compute
/// the return type of the \c make_expr() function.
template<typename Tag, typename Domain, typename Sequence>
struct unpack_expr<Tag, Domain, Sequence, typename Domain::proto_is_domain_>
{
/// Let \c S be the type of a Fusion Random Access Sequence
/// equivalent to \c Sequence. Then \c type is the
/// same as <tt>result_of::make_expr\<Tag, Domain,
/// fusion::result_of::value_at_c\<S, 0\>::type, ...
/// fusion::result_of::value_at_c\<S, N-1\>::type\>::type</tt>,
/// where \c N is the size of \c S.
typedef
typename detail::unpack_expr_<
Tag
, Domain
, Sequence
, fusion::result_of::size<Sequence>::type::value
>::type
type;
};
}
namespace functional
{
/// \brief A callable function object equivalent to the
/// \c proto::make_expr() function.
///
/// In all cases, <tt>functional::make_expr\<Tag, Domain\>()(a0, ... aN)</tt>
/// is equivalent to <tt>proto::make_expr\<Tag, Domain\>(a0, ... aN)</tt>.
///
/// <tt>functional::make_expr\<Tag\>()(a0, ... aN)</tt>
/// is equivalent to <tt>proto::make_expr\<Tag\>(a0, ... aN)</tt>.
template<typename Tag, typename Domain /* = deduce_domain*/>
struct make_expr
{
BOOST_PROTO_CALLABLE()
BOOST_PROTO_POLY_FUNCTION()
template<typename Sig>
struct result;
template<typename This, typename A0>
struct result<This(A0)>
{
typedef
typename result_of::make_expr<
Tag
, Domain
, A0
>::type
type;
};
/// Construct an expression node with tag type \c Tag
/// and in the domain \c Domain.
///
/// \return <tt>proto::make_expr\<Tag, Domain\>(a0,...aN)</tt>
template<typename A0>
typename result_of::make_expr<
Tag
, Domain
, A0 const
>::type const
operator ()(A0 const &a0) const
{
return proto::detail::make_expr_<
Tag
, Domain
, A0 const
>()(a0);
}
// Additional overloads generated by the preprocessor ...
#define BOOST_PP_ITERATION_PARAMS_1 \
(4, (2, BOOST_PROTO_MAX_ARITY, <boost/proto/make_expr.hpp>, 2)) \
/**/
#include BOOST_PP_ITERATE()
/// INTERNAL ONLY
///
template<
BOOST_PP_ENUM_BINARY_PARAMS(
BOOST_PROTO_MAX_ARITY
, typename A
, = void BOOST_PP_INTERCEPT
)
>
struct impl
: detail::make_expr_<
Tag
, Domain
BOOST_PP_ENUM_TRAILING_PARAMS(BOOST_PROTO_MAX_ARITY, A)
>
{};
};
/// \brief A callable function object equivalent to the
/// \c proto::unpack_expr() function.
///
/// In all cases, <tt>functional::unpack_expr\<Tag, Domain\>()(seq)</tt>
/// is equivalent to <tt>proto::unpack_expr\<Tag, Domain\>(seq)</tt>.
///
/// <tt>functional::unpack_expr\<Tag\>()(seq)</tt>
/// is equivalent to <tt>proto::unpack_expr\<Tag\>(seq)</tt>.
template<typename Tag, typename Domain /* = deduce_domain*/>
struct unpack_expr
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result;
template<typename This, typename Sequence>
struct result<This(Sequence)>
{
typedef
typename result_of::unpack_expr<
Tag
, Domain
, typename remove_reference<Sequence>::type
>::type
type;
};
/// Construct an expression node with tag type \c Tag
/// and in the domain \c Domain.
///
/// \param sequence A Fusion Forward Sequence
/// \return <tt>proto::unpack_expr\<Tag, Domain\>(sequence)</tt>
template<typename Sequence>
typename result_of::unpack_expr<Tag, Domain, Sequence const>::type const
operator ()(Sequence const &sequence) const
{
return proto::detail::unpack_expr_<
Tag
, Domain
, Sequence const
, fusion::result_of::size<Sequence>::type::value
>::call(sequence);
}
};
} // namespace functional
/// \brief Construct an expression of the requested tag type
/// with a domain and with the specified arguments as children.
///
/// This function template may be invoked either with or without
/// specifying a \c Domain argument. If no domain is specified,
/// the domain is deduced by examining in order the domains of
/// the given arguments and taking the first that is not
/// \c default_domain, if any such domain exists, or
/// \c default_domain otherwise.
///
/// Let \c wrap_(x) be defined such that:
/// \li If \c x is a <tt>boost::reference_wrapper\<\></tt>,
/// \c wrap_(x) is equivalent to <tt>as_child\<Domain\>(x.get())</tt>.
/// \li Otherwise, \c wrap_(x) is equivalent to
/// <tt>as_expr\<Domain\>(x)</tt>.
///
/// Let <tt>make_\<Tag\>(b0,...bN)</tt> be defined as
/// <tt>expr\<Tag, listN\<C0,...CN\> \>::make(c0,...cN)</tt>
/// where \c Bx is the type of \c bx.
///
/// \return <tt>Domain()(make_\<Tag\>(wrap_(a0),...wrap_(aN)))</tt>.
template<typename Tag, typename A0>
typename lazy_disable_if<
is_domain<A0>
, result_of::make_expr<
Tag
, A0 const
>
>::type const
make_expr(A0 const &a0)
{
return proto::detail::make_expr_<
Tag
, deduce_domain
, A0 const
>()(a0);
}
/// \overload
///
template<typename Tag, typename Domain, typename C0>
typename result_of::make_expr<
Tag
, Domain
, C0 const
>::type const
make_expr(C0 const &c0)
{
return proto::detail::make_expr_<
Tag
, Domain
, C0 const
>()(c0);
}
// Additional overloads generated by the preprocessor...
#define BOOST_PP_ITERATION_PARAMS_1 \
(4, (2, BOOST_PROTO_MAX_ARITY, <boost/proto/make_expr.hpp>, 3)) \
/**/
#include BOOST_PP_ITERATE()
/// \brief Construct an expression of the requested tag type
/// with a domain and with childres from the specified Fusion
/// Forward Sequence.
///
/// This function template may be invoked either with or without
/// specifying a \c Domain argument. If no domain is specified,
/// the domain is deduced by examining in order the domains of the
/// elements of \c sequence and taking the first that is not
/// \c default_domain, if any such domain exists, or
/// \c default_domain otherwise.
///
/// Let \c s be a Fusion Random Access Sequence equivalent to \c sequence.
/// Let <tt>wrap_\<N\>(s)</tt>, where \c s has type \c S, be defined
/// such that:
/// \li If <tt>fusion::result_of::value_at_c\<S,N\>::type</tt> is a reference,
/// <tt>wrap_\<N\>(s)</tt> is equivalent to
/// <tt>as_child\<Domain\>(fusion::at_c\<N\>(s))</tt>.
/// \li Otherwise, <tt>wrap_\<N\>(s)</tt> is equivalent to
/// <tt>as_expr\<Domain\>(fusion::at_c\<N\>(s))</tt>.
///
/// Let <tt>make_\<Tag\>(b0,...bN)</tt> be defined as
/// <tt>expr\<Tag, listN\<B0,...BN\> \>::make(b0,...bN)</tt>
/// where \c Bx is the type of \c bx.
///
/// \param sequence a Fusion Forward Sequence.
/// \return <tt>Domain()(make_\<Tag\>(wrap_\<0\>(s),...wrap_\<N-1\>(s)))</tt>,
/// where N is the size of \c Sequence.
template<typename Tag, typename Sequence>
typename lazy_disable_if<
is_domain<Sequence>
, result_of::unpack_expr<Tag, Sequence const>
>::type const
unpack_expr(Sequence const &sequence)
{
return proto::detail::unpack_expr_<
Tag
, deduce_domain
, Sequence const
, fusion::result_of::size<Sequence>::type::value
>::call(sequence);
}
/// \overload
///
template<typename Tag, typename Domain, typename Sequence2>
typename result_of::unpack_expr<Tag, Domain, Sequence2 const>::type const
unpack_expr(Sequence2 const &sequence2)
{
return proto::detail::unpack_expr_<
Tag
, Domain
, Sequence2 const
, fusion::result_of::size<Sequence2>::type::value
>::call(sequence2);
}
/// INTERNAL ONLY
///
template<typename Tag, typename Domain>
struct is_callable<functional::make_expr<Tag, Domain> >
: mpl::true_
{};
/// INTERNAL ONLY
///
template<typename Tag, typename Domain>
struct is_callable<functional::unpack_expr<Tag, Domain> >
: mpl::true_
{};
}}
#ifdef _MSC_VER
# pragma warning(pop)
#endif
#undef BOOST_PROTO_FUSION_AT
#undef BOOST_PROTO_FUSION_AT_TYPE
#undef BOOST_PROTO_FUSION_AS_CHILD_AT
#undef BOOST_PROTO_FUSION_AS_CHILD_AT_TYPE
#undef BOOST_PROTO_FUSION_NEXT_ITERATOR
#undef BOOST_PROTO_FUSION_NEXT_ITERATOR_TYPE
#undef BOOST_PROTO_FUSION_ITERATORS
#undef BOOST_PROTO_FUSION_ITERATORS_TYPE
#endif // BOOST_PROTO_MAKE_EXPR_HPP_EAN_04_01_2005
#elif BOOST_PP_ITERATION_FLAGS() == 1
#define N BOOST_PP_ITERATION()
#define M BOOST_PP_SUB(BOOST_PROTO_MAX_ARITY, N)
template<typename Tag, typename Domain BOOST_PP_ENUM_TRAILING_PARAMS(N, typename A)>
struct make_expr_<Tag, Domain BOOST_PP_ENUM_TRAILING_PARAMS(N, A)
BOOST_PP_ENUM_TRAILING_PARAMS(M, void BOOST_PP_INTERCEPT), void>
{
typedef
BOOST_PP_CAT(list, N)<
BOOST_PP_ENUM(N, BOOST_PROTO_AS_CHILD_TYPE, (A, ~, Domain))
>
proto_args;
typedef typename base_expr<Domain, Tag, proto_args>::type expr_type;
typedef typename Domain::proto_generator proto_generator;
typedef typename proto_generator::template result<proto_generator(expr_type)>::type result_type;
result_type operator()(BOOST_PP_ENUM_BINARY_PARAMS(N, typename add_reference<A, >::type a)) const
{
expr_type const that = {
BOOST_PP_ENUM(N, BOOST_PROTO_AS_CHILD, (A, a, Domain))
};
return proto_generator()(that);
}
};
template<typename Tag BOOST_PP_ENUM_TRAILING_PARAMS(N, typename A)>
struct make_expr_<Tag, deduce_domain BOOST_PP_ENUM_TRAILING_PARAMS(N, A)
BOOST_PP_ENUM_TRAILING_PARAMS(M, void BOOST_PP_INTERCEPT), void>
: make_expr_<
Tag
, typename BOOST_PP_CAT(deduce_domain, N)<BOOST_PP_ENUM_PARAMS(N, A)>::type
BOOST_PP_ENUM_TRAILING_PARAMS(N, A)
>
{};
template<typename Tag, typename Domain, typename Sequence>
struct unpack_expr_<Tag, Domain, Sequence, N>
{
BOOST_PROTO_FUSION_ITERATORS_TYPE(N)
typedef
BOOST_PP_CAT(list, N)<
BOOST_PP_ENUM(N, BOOST_PROTO_FUSION_AS_CHILD_AT_TYPE, ~)
>
proto_args;
typedef typename base_expr<Domain, Tag, proto_args>::type expr_type;
typedef typename Domain::proto_generator proto_generator;
typedef typename proto_generator::template result<proto_generator(expr_type)>::type type;
static type const call(Sequence const &sequence)
{
BOOST_PROTO_FUSION_ITERATORS(N)
expr_type const that = {
BOOST_PP_ENUM(N, BOOST_PROTO_FUSION_AS_CHILD_AT, ~)
};
return proto_generator()(that);
}
};
template<typename Tag, typename Sequence>
struct unpack_expr_<Tag, deduce_domain, Sequence, N>
{
BOOST_PROTO_FUSION_ITERATORS_TYPE(N)
typedef
unpack_expr_<
Tag
, typename BOOST_PP_CAT(deduce_domain, N)<
BOOST_PP_ENUM(N, BOOST_PROTO_FUSION_AT_TYPE, ~)
>::type
, Sequence
, N
>
other;
typedef typename other::type type;
static type const call(Sequence const &sequence)
{
return other::call(sequence);
}
};
#undef N
#undef M
#elif BOOST_PP_ITERATION_FLAGS() == 2
#define N BOOST_PP_ITERATION()
template<typename This BOOST_PP_ENUM_TRAILING_PARAMS(N, typename A)>
struct result<This(BOOST_PP_ENUM_PARAMS(N, A))>
{
typedef
typename result_of::make_expr<
Tag
, Domain
BOOST_PP_ENUM_TRAILING_PARAMS(N, A)
>::type
type;
};
/// \overload
///
template<BOOST_PP_ENUM_PARAMS(N, typename A)>
typename result_of::make_expr<
Tag
, Domain
BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)
>::type const
operator ()(BOOST_PP_ENUM_BINARY_PARAMS(N, const A, &a)) const
{
return proto::detail::make_expr_<
Tag
, Domain
BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)
>()(BOOST_PP_ENUM_PARAMS(N, a));
}
#undef N
#elif BOOST_PP_ITERATION_FLAGS() == 3
#define N BOOST_PP_ITERATION()
/// \overload
///
template<typename Tag BOOST_PP_ENUM_TRAILING_PARAMS(N, typename A)>
typename lazy_disable_if<
is_domain<A0>
, result_of::make_expr<
Tag
BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)
>
>::type const
make_expr(BOOST_PP_ENUM_BINARY_PARAMS(N, const A, &a))
{
return proto::detail::make_expr_<
Tag
, deduce_domain
BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)
>()(BOOST_PP_ENUM_PARAMS(N, a));
}
/// \overload
///
template<typename Tag, typename Domain BOOST_PP_ENUM_TRAILING_PARAMS(N, typename C)>
typename result_of::make_expr<
Tag
, Domain
BOOST_PP_ENUM_TRAILING_PARAMS(N, const C)
>::type const
make_expr(BOOST_PP_ENUM_BINARY_PARAMS(N, const C, &c))
{
return proto::detail::make_expr_<
Tag
, Domain
BOOST_PP_ENUM_TRAILING_PARAMS(N, const C)
>()(BOOST_PP_ENUM_PARAMS(N, c));
}
#undef N
#endif // BOOST_PP_IS_ITERATING