blob: 50381617447e09fce092a608e447bff0762fa026 [file] [log] [blame]
/*=============================================================================
Copyright (c) 2001-2003 Daniel Nuffer
Copyright (c) 2001-2007 Hartmut Kaiser
Revised 2007, Copyright (c) Tobias Schwinger
http://spirit.sourceforge.net/
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
#ifndef BOOST_SPIRIT_TREE_COMMON_HPP
#define BOOST_SPIRIT_TREE_COMMON_HPP
#if !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
#include <vector>
#else
#include <list>
#endif
#if defined(BOOST_SPIRIT_USE_BOOST_ALLOCATOR_FOR_TREES)
#include <boost/pool/pool_alloc.hpp>
#endif
#include <algorithm>
#include <boost/ref.hpp>
#include <boost/call_traits.hpp>
#include <boost/spirit/home/classic/namespace.hpp>
#include <boost/spirit/home/classic/core.hpp>
#include <boost/detail/iterator.hpp> // for boost::detail::iterator_traits
#include <boost/assert.hpp>
#if defined(BOOST_SPIRIT_DEBUG) && \
(BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_NODES)
#include <iostream>
#include <boost/spirit/home/classic/debug/debug_node.hpp>
#endif
#include <boost/spirit/home/classic/tree/common_fwd.hpp>
namespace boost { namespace spirit {
BOOST_SPIRIT_CLASSIC_NAMESPACE_BEGIN
template <typename T>
void swap(tree_node<T>& a, tree_node<T>& b);
template <typename T, typename V>
void swap(node_iter_data<T, V>& a, node_iter_data<T, V>& b);
namespace impl {
template <typename T>
inline void cp_swap(T& t1, T& t2);
}
template <typename T>
struct tree_node
{
typedef T parse_node_t;
#if !defined(BOOST_SPIRIT_USE_BOOST_ALLOCATOR_FOR_TREES)
typedef std::allocator<tree_node<T> > allocator_type;
#elif !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
typedef boost::pool_allocator<tree_node<T> > allocator_type;
#else
typedef boost::fast_pool_allocator<tree_node<T> > allocator_type;
#endif
#if !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
typedef std::vector<tree_node<T>, allocator_type> children_t;
#else
typedef std::list<tree_node<T>, allocator_type> children_t;
#endif // BOOST_SPIRIT_USE_LIST_FOR_TREES
typedef typename children_t::iterator tree_iterator;
typedef typename children_t::const_iterator const_tree_iterator;
T value;
children_t children;
tree_node()
: value()
, children()
{}
explicit tree_node(T const& v)
: value(v)
, children()
{}
tree_node(T const& v, children_t const& c)
: value(v)
, children(c)
{}
void swap(tree_node<T>& x)
{
impl::cp_swap(value, x.value);
impl::cp_swap(children, x.children);
}
// Intel V5.0.1 has a problem without this explicit operator=
tree_node &operator= (tree_node const &rhs)
{
tree_node(rhs).swap(*this);
return *this;
}
};
#if defined(BOOST_SPIRIT_DEBUG) && \
(BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_NODES)
template <typename T>
inline std::ostream&
operator<<(std::ostream& o, tree_node<T> const& n)
{
static int depth = 0;
o << "\n";
for (int i = 0; i <= depth; ++i)
{
o << "\t";
}
o << "(depth = " << depth++ << " value = " << n.value;
int c = 0;
for (typename tree_node<T>::children_t::const_iterator it = n.children.begin();
it != n.children.end(); ++it)
{
o << " children[" << c++ << "] = " << *it;
}
o << ")";
--depth;
return o;
}
#endif
//////////////////////////////////
template <typename IteratorT, typename ValueT>
struct node_iter_data
{
typedef IteratorT iterator_t;
typedef IteratorT /*const*/ const_iterator_t;
node_iter_data()
: first(), last(), is_root_(false), parser_id_(), value_()
{}
node_iter_data(IteratorT const& _first, IteratorT const& _last)
: first(_first), last(_last), is_root_(false), parser_id_(), value_()
{}
void swap(node_iter_data& x)
{
impl::cp_swap(first, x.first);
impl::cp_swap(last, x.last);
impl::cp_swap(parser_id_, x.parser_id_);
impl::cp_swap(is_root_, x.is_root_);
impl::cp_swap(value_, x.value_);
}
IteratorT begin()
{
return first;
}
IteratorT const& begin() const
{
return first;
}
IteratorT end()
{
return last;
}
IteratorT const& end() const
{
return last;
}
bool is_root() const
{
return is_root_;
}
void is_root(bool b)
{
is_root_ = b;
}
parser_id id() const
{
return parser_id_;
}
void id(parser_id r)
{
parser_id_ = r;
}
ValueT const& value() const
{
return value_;
}
void value(ValueT const& v)
{
value_ = v;
}
private:
IteratorT first, last;
bool is_root_;
parser_id parser_id_;
ValueT value_;
public:
};
#if defined(BOOST_SPIRIT_DEBUG) && \
(BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_NODES)
// value is default nil_t, so provide an operator<< for nil_t
inline std::ostream&
operator<<(std::ostream& o, nil_t const&)
{
return o;
}
template <typename IteratorT, typename ValueT>
inline std::ostream&
operator<<(std::ostream& o, node_iter_data<IteratorT, ValueT> const& n)
{
o << "(id = " << n.id() << " text = \"";
typedef typename node_iter_data<IteratorT, ValueT>::const_iterator_t
iterator_t;
for (iterator_t it = n.begin(); it != n.end(); ++it)
impl::token_printer(o, *it);
o << "\" is_root = " << n.is_root()
<< /*" value = " << n.value() << */")";
return o;
}
#endif
//////////////////////////////////
template <typename IteratorT = char const*, typename ValueT = nil_t>
struct node_val_data
{
typedef
typename boost::detail::iterator_traits<IteratorT>::value_type
value_type;
#if !defined(BOOST_SPIRIT_USE_BOOST_ALLOCATOR_FOR_TREES)
typedef std::allocator<value_type> allocator_type;
#elif !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
typedef boost::pool_allocator<value_type> allocator_type;
#else
typedef boost::fast_pool_allocator<value_type> allocator_type;
#endif
#if !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
typedef std::vector<value_type, allocator_type> container_t;
#else
typedef std::list<value_type, allocator_type> container_t;
#endif
typedef typename container_t::iterator iterator_t;
typedef typename container_t::const_iterator const_iterator_t;
node_val_data()
: text(), is_root_(false), parser_id_(), value_()
{}
#if defined(BOOST_NO_TEMPLATED_ITERATOR_CONSTRUCTORS)
node_val_data(IteratorT const& _first, IteratorT const& _last)
: text(), is_root_(false), parser_id_(), value_()
{
std::copy(_first, _last, std::inserter(text, text.end()));
}
// This constructor is for building text out of iterators
template <typename IteratorT2>
node_val_data(IteratorT2 const& _first, IteratorT2 const& _last)
: text(), is_root_(false), parser_id_(), value_()
{
std::copy(_first, _last, std::inserter(text, text.end()));
}
#else
node_val_data(IteratorT const& _first, IteratorT const& _last)
: text(_first, _last), is_root_(false), parser_id_(), value_()
{}
// This constructor is for building text out of iterators
template <typename IteratorT2>
node_val_data(IteratorT2 const& _first, IteratorT2 const& _last)
: text(_first, _last), is_root_(false), parser_id_(), value_()
{}
#endif
void swap(node_val_data& x)
{
impl::cp_swap(text, x.text);
impl::cp_swap(is_root_, x.is_root_);
impl::cp_swap(parser_id_, x.parser_id_);
impl::cp_swap(value_, x.value_);
}
typename container_t::iterator begin()
{
return text.begin();
}
typename container_t::const_iterator begin() const
{
return text.begin();
}
typename container_t::iterator end()
{
return text.end();
}
typename container_t::const_iterator end() const
{
return text.end();
}
bool is_root() const
{
return is_root_;
}
void is_root(bool b)
{
is_root_ = b;
}
parser_id id() const
{
return parser_id_;
}
void id(parser_id r)
{
parser_id_ = r;
}
ValueT const& value() const
{
return value_;
}
void value(ValueT const& v)
{
value_ = v;
}
private:
container_t text;
bool is_root_;
parser_id parser_id_;
ValueT value_;
};
#if defined(BOOST_SPIRIT_DEBUG) && \
(BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_NODES)
template <typename IteratorT, typename ValueT>
inline std::ostream&
operator<<(std::ostream& o, node_val_data<IteratorT, ValueT> const& n)
{
o << "(id = " << n.id() << " text = \"";
typedef typename node_val_data<IteratorT, ValueT>::const_iterator_t
iterator_t;
for (iterator_t it = n.begin(); it != n.end(); ++it)
impl::token_printer(o, *it);
o << "\" is_root = " << n.is_root()
<< " value = " << n.value() << ")";
return o;
}
#endif
template <typename T>
inline void
swap(tree_node<T>& a, tree_node<T>& b)
{
a.swap(b);
}
template <typename T, typename V>
inline void
swap(node_iter_data<T, V>& a, node_iter_data<T, V>& b)
{
a.swap(b);
}
//////////////////////////////////
template <typename ValueT>
class node_iter_data_factory
{
public:
// This inner class is so that node_iter_data_factory can simulate
// a template template parameter
template <typename IteratorT>
class factory
{
public:
typedef IteratorT iterator_t;
typedef node_iter_data<iterator_t, ValueT> node_t;
static node_t create_node(iterator_t const& first, iterator_t const& last,
bool /*is_leaf_node*/)
{
return node_t(first, last);
}
static node_t empty_node()
{
return node_t();
}
// precondition: ContainerT contains a tree_node<node_t>. And all
// iterators in the container point to the same sequence.
template <typename ContainerT>
static node_t group_nodes(ContainerT const& nodes)
{
return node_t(nodes.begin()->value.begin(),
nodes.back().value.end());
}
};
};
//////////////////////////////////
template <typename ValueT>
class node_val_data_factory
{
public:
// This inner class is so that node_val_data_factory can simulate
// a template template parameter
template <typename IteratorT>
class factory
{
public:
typedef IteratorT iterator_t;
typedef node_val_data<iterator_t, ValueT> node_t;
static node_t create_node(iterator_t const& first, iterator_t const& last,
bool is_leaf_node)
{
if (is_leaf_node)
return node_t(first, last);
else
return node_t();
}
static node_t empty_node()
{
return node_t();
}
template <typename ContainerT>
static node_t group_nodes(ContainerT const& nodes)
{
typename node_t::container_t c;
typename ContainerT::const_iterator i_end = nodes.end();
// copy all the nodes text into a new one
for (typename ContainerT::const_iterator i = nodes.begin();
i != i_end; ++i)
{
// See docs: reduced_node_d cannot be used with a
// rule inside the [].
BOOST_ASSERT(i->children.size() == 0);
c.insert(c.end(), i->value.begin(), i->value.end());
}
return node_t(c.begin(), c.end());
}
};
};
//////////////////////////////////
template <typename ValueT>
class node_all_val_data_factory
{
public:
// This inner class is so that node_all_val_data_factory can simulate
// a template template parameter
template <typename IteratorT>
class factory
{
public:
typedef IteratorT iterator_t;
typedef node_val_data<iterator_t, ValueT> node_t;
static node_t create_node(iterator_t const& first, iterator_t const& last,
bool /*is_leaf_node*/)
{
return node_t(first, last);
}
static node_t empty_node()
{
return node_t();
}
template <typename ContainerT>
static node_t group_nodes(ContainerT const& nodes)
{
typename node_t::container_t c;
typename ContainerT::const_iterator i_end = nodes.end();
// copy all the nodes text into a new one
for (typename ContainerT::const_iterator i = nodes.begin();
i != i_end; ++i)
{
BOOST_ASSERT(i->children.size() == 0);
c.insert(c.end(), i->value.begin(), i->value.end());
}
return node_t(c.begin(), c.end());
}
};
};
namespace impl {
///////////////////////////////////////////////////////////////////////////
// can't call unqualified swap from within classname::swap
// as Koenig lookup rules will find only the classname::swap
// member function not the global declaration, so use cp_swap
// as a forwarding function (JM):
#if __GNUC__ == 2
using ::std::swap;
#endif
template <typename T>
inline void cp_swap(T& t1, T& t2)
{
using std::swap;
using BOOST_SPIRIT_CLASSIC_NS::swap;
using boost::swap;
swap(t1, t2);
}
}
//////////////////////////////////
template <typename IteratorT, typename NodeFactoryT, typename T>
class tree_match : public match<T>
{
public:
typedef typename NodeFactoryT::template factory<IteratorT> node_factory_t;
typedef typename node_factory_t::node_t parse_node_t;
typedef tree_node<parse_node_t> node_t;
typedef typename node_t::children_t container_t;
typedef typename container_t::iterator tree_iterator;
typedef typename container_t::const_iterator const_tree_iterator;
typedef T attr_t;
typedef typename boost::call_traits<T>::param_type param_type;
typedef typename boost::call_traits<T>::reference reference;
typedef typename boost::call_traits<T>::const_reference const_reference;
tree_match()
: match<T>(), trees()
{}
explicit
tree_match(std::size_t length_)
: match<T>(length_), trees()
{}
tree_match(std::size_t length_, parse_node_t const& n)
: match<T>(length_), trees()
{
trees.push_back(node_t(n));
}
tree_match(std::size_t length_, param_type val, parse_node_t const& n)
: match<T>(length_, val), trees()
{
#if !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
trees.reserve(10); // this is more or less an arbitrary number...
#endif
trees.push_back(node_t(n));
}
// attention, these constructors will change the second parameter!
tree_match(std::size_t length_, container_t& c)
: match<T>(length_), trees()
{
impl::cp_swap(trees, c);
}
tree_match(std::size_t length_, param_type val, container_t& c)
: match<T>(length_, val), trees()
{
impl::cp_swap(trees, c);
}
template <typename T2>
tree_match(match<T2> const& other)
: match<T>(other), trees()
{}
template <typename T2, typename T3, typename T4>
tree_match(tree_match<T2, T3, T4> const& other)
: match<T>(other), trees()
{ impl::cp_swap(trees, other.trees); }
template <typename T2>
tree_match&
operator=(match<T2> const& other)
{
match<T>::operator=(other);
return *this;
}
template <typename T2, typename T3, typename T4>
tree_match&
operator=(tree_match<T2, T3, T4> const& other)
{
match<T>::operator=(other);
impl::cp_swap(trees, other.trees);
return *this;
}
tree_match(tree_match const& x)
: match<T>(x), trees()
{
// use auto_ptr like ownership for the trees data member
impl::cp_swap(trees, x.trees);
}
tree_match& operator=(tree_match const& x)
{
tree_match tmp(x);
this->swap(tmp);
return *this;
}
void swap(tree_match& x)
{
match<T>::swap(x);
impl::cp_swap(trees, x.trees);
}
mutable container_t trees;
};
#if defined(BOOST_SPIRIT_DEBUG) && \
(BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_NODES)
template <typename IteratorT, typename NodeFactoryT, typename T>
inline std::ostream&
operator<<(std::ostream& o, tree_match<IteratorT, NodeFactoryT, T> const& m)
{
typedef
typename tree_match<IteratorT, NodeFactoryT, T>::container_t::iterator
iterator;
o << "(length = " << (int)m.length();
int c = 0;
for (iterator i = m.trees.begin(); i != m.trees.end(); ++i)
{
o << " trees[" << c++ << "] = " << *i;
}
o << "\n)";
return o;
}
#endif
//////////////////////////////////
struct tree_policy
{
template <typename FunctorT, typename MatchT>
static void apply_op_to_match(FunctorT const& /*op*/, MatchT& /*m*/)
{}
template <typename MatchT, typename Iterator1T, typename Iterator2T>
static void group_match(MatchT& /*m*/, parser_id const& /*id*/,
Iterator1T const& /*first*/, Iterator2T const& /*last*/)
{}
template <typename MatchT>
static void concat(MatchT& /*a*/, MatchT const& /*b*/)
{}
};
//////////////////////////////////
template <
typename MatchPolicyT,
typename IteratorT,
typename NodeFactoryT,
typename TreePolicyT,
typename T
>
struct common_tree_match_policy : public match_policy
{
common_tree_match_policy()
{
}
template <typename PolicyT>
common_tree_match_policy(PolicyT const & policies)
: match_policy((match_policy const &)policies)
{
}
template <typename U>
struct result { typedef tree_match<IteratorT, NodeFactoryT, U> type; };
typedef tree_match<IteratorT, NodeFactoryT, T> match_t;
typedef IteratorT iterator_t;
typedef TreePolicyT tree_policy_t;
typedef NodeFactoryT factory_t;
static const match_t no_match() { return match_t(); }
static const match_t empty_match()
{ return match_t(0, tree_policy_t::empty_node()); }
template <typename AttrT, typename Iterator1T, typename Iterator2T>
static tree_match<IteratorT, NodeFactoryT, AttrT> create_match(
std::size_t length,
AttrT const& val,
Iterator1T const& first,
Iterator2T const& last)
{
#if defined(BOOST_SPIRIT_DEBUG) && \
(BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_NODES)
BOOST_SPIRIT_DEBUG_OUT << "\n>>> create_node(begin) <<<\n"
"creating node text: \"";
for (Iterator1T it = first; it != last; ++it)
impl::token_printer(BOOST_SPIRIT_DEBUG_OUT, *it);
BOOST_SPIRIT_DEBUG_OUT << "\"\n";
BOOST_SPIRIT_DEBUG_OUT << ">>> create_node(end) <<<\n\n";
#endif
return tree_match<IteratorT, NodeFactoryT, AttrT>(length, val,
tree_policy_t::create_node(length, first, last, true));
}
template <typename Match1T, typename Match2T>
static void concat_match(Match1T& a, Match2T const& b)
{
#if defined(BOOST_SPIRIT_DEBUG) && \
(BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_NODES)
BOOST_SPIRIT_DEBUG_OUT << "\n>>> concat_match(begin) <<<\n";
BOOST_SPIRIT_DEBUG_OUT << "tree a:\n" << a << "\n";
BOOST_SPIRIT_DEBUG_OUT << "tree b:\n" << b << "\n";
BOOST_SPIRIT_DEBUG_OUT << ">>> concat_match(end) <<<\n\n";
#endif
BOOST_SPIRIT_ASSERT(a && b);
if (a.length() == 0)
{
a = b;
return;
}
else if (b.length() == 0
#ifdef BOOST_SPIRIT_NO_TREE_NODE_COLLAPSING
&& !b.trees.begin()->value.id().to_long()
#endif
)
{
return;
}
a.concat(b);
tree_policy_t::concat(a, b);
}
template <typename MatchT, typename IteratorT2>
void
group_match(
MatchT& m,
parser_id const& id,
IteratorT2 const& first,
IteratorT2 const& last) const
{
if (!m) return;
#if defined(BOOST_SPIRIT_DEBUG) && \
(BOOST_SPIRIT_DEBUG_FLAGS & BOOST_SPIRIT_DEBUG_FLAGS_TREES)
BOOST_SPIRIT_DEBUG_OUT << "\n>>> group_match(begin) <<<\n"
"new node(" << id << ") \"";
for (IteratorT2 it = first; it != last; ++it)
impl::token_printer(BOOST_SPIRIT_DEBUG_OUT, *it);
BOOST_SPIRIT_DEBUG_OUT << "\"\n";
BOOST_SPIRIT_DEBUG_OUT << "new child tree (before grouping):\n" << m << "\n";
tree_policy_t::group_match(m, id, first, last);
BOOST_SPIRIT_DEBUG_OUT << "new child tree (after grouping):\n" << m << "\n";
BOOST_SPIRIT_DEBUG_OUT << ">>> group_match(end) <<<\n\n";
#else
tree_policy_t::group_match(m, id, first, last);
#endif
}
};
//////////////////////////////////
template <typename MatchPolicyT, typename NodeFactoryT>
struct common_tree_tree_policy
{
typedef typename MatchPolicyT::iterator_t iterator_t;
typedef typename MatchPolicyT::match_t match_t;
typedef typename NodeFactoryT::template factory<iterator_t> factory_t;
typedef typename factory_t::node_t node_t;
template <typename Iterator1T, typename Iterator2T>
static node_t
create_node(std::size_t /*length*/, Iterator1T const& first,
Iterator2T const& last, bool leaf_node)
{
return factory_t::create_node(first, last, leaf_node);
}
static node_t
empty_node()
{
return factory_t::empty_node();
}
template <typename FunctorT>
static void apply_op_to_match(FunctorT const& op, match_t& m)
{
op(m);
}
};
//////////////////////////////////
// directives to modify how the parse tree is generated
struct no_tree_gen_node_parser_gen;
template <typename T>
struct no_tree_gen_node_parser
: public unary<T, parser<no_tree_gen_node_parser<T> > >
{
typedef no_tree_gen_node_parser<T> self_t;
typedef no_tree_gen_node_parser_gen parser_generator_t;
typedef unary_parser_category parser_category_t;
no_tree_gen_node_parser(T const& a)
: unary<T, parser<no_tree_gen_node_parser<T> > >(a) {}
template <typename ScannerT>
typename parser_result<self_t, ScannerT>::type
parse(ScannerT const& scanner) const
{
typedef typename ScannerT::iteration_policy_t iteration_policy_t;
typedef match_policy match_policy_t;
typedef typename ScannerT::action_policy_t action_policy_t;
typedef scanner_policies<
iteration_policy_t,
match_policy_t,
action_policy_t
> policies_t;
return this->subject().parse(scanner.change_policies(policies_t(scanner)));
}
};
struct no_tree_gen_node_parser_gen
{
template <typename T>
struct result {
typedef no_tree_gen_node_parser<T> type;
};
template <typename T>
static no_tree_gen_node_parser<T>
generate(parser<T> const& s)
{
return no_tree_gen_node_parser<T>(s.derived());
}
template <typename T>
no_tree_gen_node_parser<T>
operator[](parser<T> const& s) const
{
return no_tree_gen_node_parser<T>(s.derived());
}
};
const no_tree_gen_node_parser_gen no_node_d = no_tree_gen_node_parser_gen();
//////////////////////////////////
struct leaf_node_parser_gen;
template<typename T>
struct leaf_node_parser
: public unary<T, parser<leaf_node_parser<T> > >
{
typedef leaf_node_parser<T> self_t;
typedef leaf_node_parser_gen parser_generator_t;
typedef unary_parser_category parser_category_t;
leaf_node_parser(T const& a)
: unary<T, parser<leaf_node_parser<T> > >(a) {}
template <typename ScannerT>
typename parser_result<self_t, ScannerT>::type
parse(ScannerT const& scanner) const
{
typedef scanner_policies< typename ScannerT::iteration_policy_t,
match_policy, typename ScannerT::action_policy_t > policies_t;
typedef typename ScannerT::iterator_t iterator_t;
typedef typename parser_result<self_t, ScannerT>::type result_t;
typedef typename result_t::node_factory_t factory_t;
iterator_t from = scanner.first;
result_t hit = impl::contiguous_parser_parse<result_t>(this->subject(),
scanner.change_policies(policies_t(scanner,match_policy(),scanner)),
scanner);
if (hit)
return result_t(hit.length(),
factory_t::create_node(from, scanner.first, true));
else
return result_t(hit.length());
}
};
struct leaf_node_parser_gen
{
template <typename T>
struct result {
typedef leaf_node_parser<T> type;
};
template <typename T>
static leaf_node_parser<T>
generate(parser<T> const& s)
{
return leaf_node_parser<T>(s.derived());
}
template <typename T>
leaf_node_parser<T>
operator[](parser<T> const& s) const
{
return leaf_node_parser<T>(s.derived());
}
};
const leaf_node_parser_gen leaf_node_d = leaf_node_parser_gen();
const leaf_node_parser_gen token_node_d = leaf_node_parser_gen();
//////////////////////////////////
namespace impl {
template <typename MatchPolicyT>
struct tree_policy_selector
{
typedef tree_policy type;
};
} // namespace impl
//////////////////////////////////
template <typename NodeParserT>
struct node_parser_gen;
template <typename T, typename NodeParserT>
struct node_parser
: public unary<T, parser<node_parser<T, NodeParserT> > >
{
typedef node_parser<T, NodeParserT> self_t;
typedef node_parser_gen<NodeParserT> parser_generator_t;
typedef unary_parser_category parser_category_t;
node_parser(T const& a)
: unary<T, parser<node_parser<T, NodeParserT> > >(a) {}
template <typename ScannerT>
struct result
{
typedef typename parser_result<T, ScannerT>::type type;
};
template <typename ScannerT>
typename parser_result<self_t, ScannerT>::type
parse(ScannerT const& scanner) const
{
typename parser_result<self_t, ScannerT>::type hit = this->subject().parse(scanner);
if (hit)
{
impl::tree_policy_selector<typename ScannerT::match_policy_t>::type::apply_op_to_match(NodeParserT(), hit);
}
return hit;
}
};
template <typename NodeParserT>
struct node_parser_gen
{
template <typename T>
struct result {
typedef node_parser<T, NodeParserT> type;
};
template <typename T>
static node_parser<T, NodeParserT>
generate(parser<T> const& s)
{
return node_parser<T, NodeParserT>(s.derived());
}
template <typename T>
node_parser<T, NodeParserT>
operator[](parser<T> const& s) const
{
return node_parser<T, NodeParserT>(s.derived());
}
};
//////////////////////////////////
struct reduced_node_op
{
template <typename MatchT>
void operator()(MatchT& m) const
{
if (m.trees.size() == 1)
{
m.trees.begin()->children.clear();
}
else if (m.trees.size() > 1)
{
typedef typename MatchT::node_factory_t node_factory_t;
m = MatchT(m.length(), node_factory_t::group_nodes(m.trees));
}
}
};
const node_parser_gen<reduced_node_op> reduced_node_d =
node_parser_gen<reduced_node_op>();
struct discard_node_op
{
template <typename MatchT>
void operator()(MatchT& m) const
{
m.trees.clear();
}
};
const node_parser_gen<discard_node_op> discard_node_d =
node_parser_gen<discard_node_op>();
struct infix_node_op
{
template <typename MatchT>
void operator()(MatchT& m) const
{
typedef typename MatchT::container_t container_t;
typedef typename MatchT::container_t::iterator iter_t;
typedef typename MatchT::container_t::value_type value_t;
using std::swap;
using boost::swap;
using BOOST_SPIRIT_CLASSIC_NS::swap;
// copying the tree nodes is expensive, since it may copy a whole
// tree. swapping them is cheap, so swap the nodes we want into
// a new container of children.
container_t new_children;
std::size_t length = 0;
std::size_t tree_size = m.trees.size();
// the infix_node_d[] make no sense for nodes with no subnodes
BOOST_SPIRIT_ASSERT(tree_size >= 1);
bool keep = true;
#if !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
new_children.reserve((tree_size+1)/2);
#endif
iter_t i_end = m.trees.end();
for (iter_t i = m.trees.begin(); i != i_end; ++i)
{
if (keep) {
// adjust the length
length += std::distance((*i).value.begin(), (*i).value.end());
// move the child node
new_children.push_back(value_t());
swap(new_children.back(), *i);
keep = false;
}
else {
// ignore this child node
keep = true;
}
}
m = MatchT(length, new_children);
}
};
const node_parser_gen<infix_node_op> infix_node_d =
node_parser_gen<infix_node_op>();
struct discard_first_node_op
{
template <typename MatchT>
void operator()(MatchT& m) const
{
typedef typename MatchT::container_t container_t;
typedef typename MatchT::container_t::iterator iter_t;
typedef typename MatchT::container_t::value_type value_t;
using std::swap;
using boost::swap;
using BOOST_SPIRIT_CLASSIC_NS::swap;
// copying the tree nodes is expensive, since it may copy a whole
// tree. swapping them is cheap, so swap the nodes we want into
// a new container of children, instead of saying
// m.trees.erase(m.trees.begin()) because, on a container_t that will
// cause all the nodes afterwards to be copied into the previous
// position.
container_t new_children;
std::size_t length = 0;
std::size_t tree_size = m.trees.size();
// the discard_first_node_d[] make no sense for nodes with no subnodes
BOOST_SPIRIT_ASSERT(tree_size >= 1);
if (tree_size > 1) {
#if !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
new_children.reserve(tree_size - 1);
#endif
iter_t i = m.trees.begin(), i_end = m.trees.end();
for (++i; i != i_end; ++i)
{
// adjust the length
length += std::distance((*i).value.begin(), (*i).value.end());
// move the child node
new_children.push_back(value_t());
swap(new_children.back(), *i);
}
}
else {
// if there was a tree and now there isn't any, insert an empty node
iter_t i = m.trees.begin();
// This isn't entirely correct, since the empty node will reference
// the end of the discarded node, but I currently don't see any way to
// get at the begin of the node following this subnode.
// This should be safe anyway because the it shouldn't get dereferenced
// under any circumstances.
typedef typename value_t::parse_node_t::iterator_t iterator_type;
iterator_type it = (*i).value.end();
new_children.push_back(
value_t(typename value_t::parse_node_t(it, it)));
}
m = MatchT(length, new_children);
}
};
const node_parser_gen<discard_first_node_op> discard_first_node_d =
node_parser_gen<discard_first_node_op>();
struct discard_last_node_op
{
template <typename MatchT>
void operator()(MatchT& m) const
{
typedef typename MatchT::container_t container_t;
typedef typename MatchT::container_t::iterator iter_t;
typedef typename MatchT::container_t::value_type value_t;
using std::swap;
using boost::swap;
using BOOST_SPIRIT_CLASSIC_NS::swap;
// copying the tree nodes is expensive, since it may copy a whole
// tree. swapping them is cheap, so swap the nodes we want into
// a new container of children, instead of saying
// m.trees.erase(m.trees.begin()) because, on a container_t that will
// cause all the nodes afterwards to be copied into the previous
// position.
container_t new_children;
std::size_t length = 0;
std::size_t tree_size = m.trees.size();
// the discard_last_node_d[] make no sense for nodes with no subnodes
BOOST_SPIRIT_ASSERT(tree_size >= 1);
if (tree_size > 1) {
m.trees.pop_back();
#if !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
new_children.reserve(tree_size - 1);
#endif
iter_t i_end = m.trees.end();
for (iter_t i = m.trees.begin(); i != i_end; ++i)
{
// adjust the length
length += std::distance((*i).value.begin(), (*i).value.end());
// move the child node
new_children.push_back(value_t());
swap(new_children.back(), *i);
}
}
else {
// if there was a tree and now there isn't any, insert an empty node
iter_t i = m.trees.begin();
typedef typename value_t::parse_node_t::iterator_t iterator_type;
iterator_type it = (*i).value.begin();
new_children.push_back(
value_t(typename value_t::parse_node_t(it, it)));
}
m = MatchT(length, new_children);
}
};
const node_parser_gen<discard_last_node_op> discard_last_node_d =
node_parser_gen<discard_last_node_op>();
struct inner_node_op
{
template <typename MatchT>
void operator()(MatchT& m) const
{
typedef typename MatchT::container_t container_t;
typedef typename MatchT::container_t::iterator iter_t;
typedef typename MatchT::container_t::value_type value_t;
using std::swap;
using boost::swap;
using BOOST_SPIRIT_CLASSIC_NS::swap;
// copying the tree nodes is expensive, since it may copy a whole
// tree. swapping them is cheap, so swap the nodes we want into
// a new container of children, instead of saying
// m.trees.erase(m.trees.begin()) because, on a container_t that will
// cause all the nodes afterwards to be copied into the previous
// position.
container_t new_children;
std::size_t length = 0;
std::size_t tree_size = m.trees.size();
// the inner_node_d[] make no sense for nodes with less then 2 subnodes
BOOST_SPIRIT_ASSERT(tree_size >= 2);
if (tree_size > 2) {
m.trees.pop_back(); // erase the last element
#if !defined(BOOST_SPIRIT_USE_LIST_FOR_TREES)
new_children.reserve(tree_size - 1);
#endif
iter_t i = m.trees.begin(); // skip over the first element
iter_t i_end = m.trees.end();
for (++i; i != i_end; ++i)
{
// adjust the length
length += std::distance((*i).value.begin(), (*i).value.end());
// move the child node
new_children.push_back(value_t());
swap(new_children.back(), *i);
}
}
else {
// if there was a tree and now there isn't any, insert an empty node
iter_t i = m.trees.begin(); // skip over the first element
typedef typename value_t::parse_node_t::iterator_t iterator_type;
iterator_type it = (*++i).value.begin();
new_children.push_back(
value_t(typename value_t::parse_node_t(it, it)));
}
m = MatchT(length, new_children);
}
};
const node_parser_gen<inner_node_op> inner_node_d =
node_parser_gen<inner_node_op>();
//////////////////////////////////
// action_directive_parser and action_directive_parser_gen
// are meant to be used as a template to create directives that
// generate action classes. For example access_match and
// access_node. The ActionParserT template parameter must be
// a class that has an innter class called action that is templated
// on the parser type and the action type.
template <typename ActionParserT>
struct action_directive_parser_gen;
template <typename T, typename ActionParserT>
struct action_directive_parser
: public unary<T, parser<action_directive_parser<T, ActionParserT> > >
{
typedef action_directive_parser<T, ActionParserT> self_t;
typedef action_directive_parser_gen<ActionParserT> parser_generator_t;
typedef unary_parser_category parser_category_t;
action_directive_parser(T const& a)
: unary<T, parser<action_directive_parser<T, ActionParserT> > >(a) {}
template <typename ScannerT>
struct result
{
typedef typename parser_result<T, ScannerT>::type type;
};
template <typename ScannerT>
typename parser_result<self_t, ScannerT>::type
parse(ScannerT const& scanner) const
{
return this->subject().parse(scanner);
}
template <typename ActionT>
typename ActionParserT::template action<action_directive_parser<T, ActionParserT>, ActionT>
operator[](ActionT const& actor) const
{
typedef typename
ActionParserT::template action<action_directive_parser, ActionT>
action_t;
return action_t(*this, actor);
}
};
//////////////////////////////////
template <typename ActionParserT>
struct action_directive_parser_gen
{
template <typename T>
struct result {
typedef action_directive_parser<T, ActionParserT> type;
};
template <typename T>
static action_directive_parser<T, ActionParserT>
generate(parser<T> const& s)
{
return action_directive_parser<T, ActionParserT>(s.derived());
}
template <typename T>
action_directive_parser<T, ActionParserT>
operator[](parser<T> const& s) const
{
return action_directive_parser<T, ActionParserT>(s.derived());
}
};
//////////////////////////////////
// Calls the attached action passing it the match from the parser
// and the first and last iterators.
// The inner template class is used to simulate template-template parameters
// (declared in common_fwd.hpp).
template <typename ParserT, typename ActionT>
struct access_match_action::action
: public unary<ParserT, parser<access_match_action::action<ParserT, ActionT> > >
{
typedef action_parser_category parser_category;
typedef action<ParserT, ActionT> self_t;
template <typename ScannerT>
struct result
{
typedef typename parser_result<ParserT, ScannerT>::type type;
};
action( ParserT const& subject,
ActionT const& actor_);
template <typename ScannerT>
typename parser_result<self_t, ScannerT>::type
parse(ScannerT const& scanner) const;
ActionT const &predicate() const;
private:
ActionT actor;
};
//////////////////////////////////
template <typename ParserT, typename ActionT>
access_match_action::action<ParserT, ActionT>::action(
ParserT const& subject,
ActionT const& actor_)
: unary<ParserT, parser<access_match_action::action<ParserT, ActionT> > >(subject)
, actor(actor_)
{}
//////////////////////////////////
template <typename ParserT, typename ActionT>
template <typename ScannerT>
typename parser_result<access_match_action::action<ParserT, ActionT>, ScannerT>::type
access_match_action::action<ParserT, ActionT>::
parse(ScannerT const& scan) const
{
typedef typename ScannerT::iterator_t iterator_t;
typedef typename parser_result<self_t, ScannerT>::type result_t;
if (!scan.at_end())
{
iterator_t save = scan.first;
result_t hit = this->subject().parse(scan);
actor(hit, save, scan.first);
return hit;
}
return scan.no_match();
}
//////////////////////////////////
template <typename ParserT, typename ActionT>
ActionT const &access_match_action::action<ParserT, ActionT>::predicate() const
{
return actor;
}
//////////////////////////////////
const action_directive_parser_gen<access_match_action> access_match_d
= action_directive_parser_gen<access_match_action>();
//////////////////////////////////
// Calls the attached action passing it the node from the parser
// and the first and last iterators
// The inner template class is used to simulate template-template parameters
// (declared in common_fwd.hpp).
template <typename ParserT, typename ActionT>
struct access_node_action::action
: public unary<ParserT, parser<access_node_action::action<ParserT, ActionT> > >
{
typedef action_parser_category parser_category;
typedef action<ParserT, ActionT> self_t;
template <typename ScannerT>
struct result
{
typedef typename parser_result<ParserT, ScannerT>::type type;
};
action( ParserT const& subject,
ActionT const& actor_);
template <typename ScannerT>
typename parser_result<self_t, ScannerT>::type
parse(ScannerT const& scanner) const;
ActionT const &predicate() const;
private:
ActionT actor;
};
//////////////////////////////////
template <typename ParserT, typename ActionT>
access_node_action::action<ParserT, ActionT>::action(
ParserT const& subject,
ActionT const& actor_)
: unary<ParserT, parser<access_node_action::action<ParserT, ActionT> > >(subject)
, actor(actor_)
{}
//////////////////////////////////
template <typename ParserT, typename ActionT>
template <typename ScannerT>
typename parser_result<access_node_action::action<ParserT, ActionT>, ScannerT>::type
access_node_action::action<ParserT, ActionT>::
parse(ScannerT const& scan) const
{
typedef typename ScannerT::iterator_t iterator_t;
typedef typename parser_result<self_t, ScannerT>::type result_t;
if (!scan.at_end())
{
iterator_t save = scan.first;
result_t hit = this->subject().parse(scan);
if (hit && hit.trees.size() > 0)
actor(*hit.trees.begin(), save, scan.first);
return hit;
}
return scan.no_match();
}
//////////////////////////////////
template <typename ParserT, typename ActionT>
ActionT const &access_node_action::action<ParserT, ActionT>::predicate() const
{
return actor;
}
//////////////////////////////////
const action_directive_parser_gen<access_node_action> access_node_d
= action_directive_parser_gen<access_node_action>();
//////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//
// tree_parse_info
//
// Results returned by the tree parse functions:
//
// stop: points to the final parse position (i.e parsing
// processed the input up to this point).
//
// match: true if parsing is successful. This may be full:
// the parser consumed all the input, or partial:
// the parser consumed only a portion of the input.
//
// full: true when we have a full match (i.e the parser
// consumed all the input.
//
// length: The number of characters consumed by the parser.
// This is valid only if we have a successful match
// (either partial or full). A negative value means
// that the match is unsucessful.
//
// trees: Contains the root node(s) of the tree.
//
///////////////////////////////////////////////////////////////////////////////
template <
typename IteratorT,
typename NodeFactoryT,
typename T
>
struct tree_parse_info
{
IteratorT stop;
bool match;
bool full;
std::size_t length;
typename tree_match<IteratorT, NodeFactoryT, T>::container_t trees;
tree_parse_info()
: stop()
, match(false)
, full(false)
, length(0)
, trees()
{}
template <typename IteratorT2>
tree_parse_info(tree_parse_info<IteratorT2> const& pi)
: stop(pi.stop)
, match(pi.match)
, full(pi.full)
, length(pi.length)
, trees()
{
using std::swap;
using boost::swap;
using BOOST_SPIRIT_CLASSIC_NS::swap;
// use auto_ptr like ownership for the trees data member
swap(trees, pi.trees);
}
tree_parse_info(
IteratorT stop_,
bool match_,
bool full_,
std::size_t length_,
typename tree_match<IteratorT, NodeFactoryT, T>::container_t trees_)
: stop(stop_)
, match(match_)
, full(full_)
, length(length_)
, trees()
{
using std::swap;
using boost::swap;
using BOOST_SPIRIT_CLASSIC_NS::swap;
// use auto_ptr like ownership for the trees data member
swap(trees, trees_);
}
};
BOOST_SPIRIT_CLASSIC_NAMESPACE_END
}} // namespace BOOST_SPIRIT_CLASSIC_NS
#endif