blob: d54b300e9fe59fb702184d60d7e7c50be50212e2 [file] [log] [blame]
/*=============================================================================
Copyright (c) 2001-2007 Joel de Guzman
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#ifndef PHOENIX_DETAIL_TYPE_DEDUCTION_HPP
#define PHOENIX_DETAIL_TYPE_DEDUCTION_HPP
/*=============================================================================
Return Type Deduction
[JDG Sept. 15, 2003]
Before C++ adopts the typeof, there is currently no way to deduce the
result type of an expression such as x + y. This deficiency is a major
problem with template metaprogramming; for example, when writing
forwarding functions that attempt to capture the essence of an
expression inside a function. Consider the std::plus<T>:
template <typename T>
struct plus : public binary_function<T, T, T>
{
T operator()(T const& x, T const& y) const
{
return x + y;
}
};
What's wrong with this? Well, this functor does not accurately capture
the behavior of the plus operator. 1) It does not handle the case where
x and y are of different types (e.g. x is short and y is int). 2) It
assumes that the arguments and return type are the same (i.e. when
adding a short and an int, the return type ought to be an int). Due to
these shortcomings, std::plus<T>(x, y) is a poor substitute for x + y.
The case where x is short and y is int does not really expose the
problem. We can simply use std::plus<int> and be happy that the
operands x and y will simply be converted to an int. The problem
becomes evident when an operand is a user defined type such as bigint.
Here, the conversion to bigint is simply not acceptable. Even if the
unnecessary conversion is tolerable, in generic code, it is not always
possible to choose the right T type that can accomodate both x and y
operands.
To truly model the plus operator, what we need is a polymorphic functor
that can take arbitrary x and y operands. Here's a rough schematic:
struct plus
{
template <typename X, typename Y>
unspecified-type
operator()(X const& x, Y const& y) const
{
return x + y;
}
};
Now, we can handle the case where X and Y are arbitrary types. We've
solved the first problem. To solve the second problem, we need some
form of return type deduction mechanism. If we had the typeof, it would
be something like:
template <typename X, typename Y>
typeof(X() + Y())
operator()(X const& x, Y const& y) const
{
return x + y;
}
Without the typeof facility, it is only possible to wrap an expression
such as x + y in a function or functor if we are given a hint that
tells us what the actual result type of such an expression is. Such a
hint can be in the form of a metaprogram, that, given the types of the
arguments, will return the result type. Example:
template <typename X, typename Y>
struct result_of_plus
{
typedef unspecified-type type;
};
Given a result_of_plus metaprogram, we can complete our polymorphic
plus functor:
struct plus
{
template <typename X, typename Y>
typename result_of_plus<X, Y>::type
operator()(X const& x, Y const& y) const
{
return x + y;
}
};
The process is not automatic. We have to specialize the metaprogram for
specific argument types. Examples:
template <>
struct result_of_plus<short, int>
{
typedef int type;
};
template <typename T>
struct result_of_plus<std::complex<T>, std::complex<T> >
{
typedef std::complex<T> type;
};
To make it easier for the user, specializations are provided for common
types such as primitive c++ types (e.g. int, char, double, etc.), and
standard types (e.g. std::complex, iostream, std containers and
iterators).
To further improve the ease of use, for user defined classes, we can
supply a few more basic specializations through metaprogramming using
heuristics based on canonical operator rules (Such heuristics can be
found in the LL and Phoenix, for example). For example, it is rather
common that the result of x += y is X& or the result of x || y is a
bool. The client is out of luck if her classes do not follow the
canonical rules. She'll then have to supply her own specialization.
The type deduction mechanism demostrated below approaches the problem
not through specialization and heuristics, but through a limited form
of typeof mechanism. The code does not use heuristics, hence, no
guessing games. The code takes advantage of the fact that, in general,
the result type of an expression is related to one its arguments' type.
For example, x + y, where x has type int and y has type double, has the
result type double (the second operand type). Another example, x[y]
where x is a vector<T> and y is a std::size_t, has the result type
vector<T>::reference (the vector<T>'s reference type type).
The limited form of type deduction presented can detect common
relations if the result of a binary or unary operation, given arguments
x and y with types X and Y (respectively), is X, Y, X&, Y&, X*, Y*, X
const*, Y const*, bool, int, unsigned, double, container and iterator
elements (e.g the T, where X is: T[N], T*, vector<T>, map<T>,
vector<T>::iterator). More arguments/return type relationships can be
established if needed.
A set of overloaded test(T) functions capture these argument related
types. Each test(T) function returns a distinct type that can be used
to determine the exact type of an expression.
Consider:
template <typename X, typename Y>
x_value_type
test(X const&);
template <typename X, typename Y>
y_value_type
test(Y const&);
Given an expression x + y, where x is int and y is double, the call to:
test<int, double>(x + y)
will return a y_value_type.
Now, if we rig x_value_type and y_value_type such that both have unique
sizes, we can use sizeof(test<X, Y>(x + y)) to determine if the result
type is either X or Y.
For example, if:
sizeof(test<X, Y>(x + y)) == sizeof(y_value_type)
then, we know for sure that the result of x + y has type Y.
The same basic scheme can be used to detect more argument-dependent
return types where the sizeof the test(T) return type is used to index
through a boost::mpl vector which holds each of the corresponding
result types.
==============================================================================*/
#include <boost/mpl/vector/vector20.hpp>
#include <boost/mpl/at.hpp>
#include <boost/mpl/not.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <boost/type_traits/add_reference.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/is_reference.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_array.hpp>
#include <boost/type_traits/is_pointer.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/static_assert.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/spirit/home/phoenix/detail/local_reference.hpp>
namespace boost
{
struct error_cant_deduce_type {};
}
namespace boost { namespace type_deduction_detail
{
typedef char(&bool_value_type)[1];
typedef char(&int_value_type)[2];
typedef char(&uint_value_type)[3];
typedef char(&double_value_type)[4];
typedef char(&bool_reference_type)[5];
typedef char(&int_reference_type)[6];
typedef char(&uint_reference_type)[7];
typedef char(&double_reference_type)[8];
typedef char(&x_value_type)[9];
typedef char(&x_reference_type)[10];
typedef char(&x_const_pointer_type)[11];
typedef char(&x_pointer_type)[12];
typedef char(&y_value_type)[13];
typedef char(&y_reference_type)[14];
typedef char(&y_const_pointer_type)[15];
typedef char(&y_pointer_type)[16];
typedef char(&container_reference_type)[17];
typedef char(&container_const_reference_type)[18];
typedef char(&container_mapped_type)[19];
typedef char(&cant_deduce_type)[20];
template <typename T, typename Plain = typename remove_cv<T>::type>
struct is_basic
: mpl::or_<
is_same<Plain, bool>
, is_same<Plain, int>
, is_same<Plain, unsigned>
, is_same<Plain, double>
> {};
template <typename C>
struct reference_type
{
typedef typename C::reference type;
};
template <typename T>
struct reference_type<T const>
: reference_type<T> {};
template <typename T, std::size_t N>
struct reference_type<T[N]>
{
typedef T& type;
};
template <typename T>
struct reference_type<T*>
{
typedef T& type;
};
template <typename T>
struct reference_type<T* const>
{
typedef T const& type;
};
template <typename C>
struct const_reference_type
{
typedef typename C::const_reference type;
};
template <typename C>
struct mapped_type
{
typedef typename C::mapped_type type;
};
struct asymmetric;
template <typename X, typename Y>
cant_deduce_type
test(...); // The black hole !!!
template <typename X, typename Y>
bool_value_type
test(bool const&);
template <typename X, typename Y>
int_value_type
test(int const&);
template <typename X, typename Y>
uint_value_type
test(unsigned const&);
template <typename X, typename Y>
double_value_type
test(double const&);
template <typename X, typename Y>
bool_reference_type
test(bool&);
template <typename X, typename Y>
int_reference_type
test(int&);
template <typename X, typename Y>
uint_reference_type
test(unsigned&);
template <typename X, typename Y>
double_reference_type
test(double&);
template <typename X, typename Y>
typename disable_if<
mpl::or_<is_basic<X>, is_const<X> >
, x_value_type
>::type
test(X const&);
template <typename X, typename Y>
typename disable_if<
is_basic<X>
, x_reference_type
>::type
test(X&);
template <typename X, typename Y>
typename disable_if<
mpl::or_<
is_basic<X>
, is_const<X>
>
, x_const_pointer_type
>::type
test(X const*);
template <typename X, typename Y>
x_pointer_type
test(X*);
template <typename X, typename Y>
typename disable_if<
mpl::or_<
is_basic<Y>
, is_same<Y, asymmetric>
, is_const<Y>
, is_same<X, Y>
>
, y_value_type
>::type
test(Y const&);
template <typename X, typename Y>
typename disable_if<
mpl::or_<
is_basic<Y>
, is_same<Y, asymmetric>
, is_same<X, Y>
>
, y_reference_type
>::type
test(Y&);
template <typename X, typename Y>
typename disable_if<
mpl::or_<
is_same<Y, asymmetric>
, is_const<Y>
, is_same<X, Y>
>
, y_const_pointer_type
>::type
test(Y const*);
template <typename X, typename Y>
typename disable_if<
mpl::or_<
is_same<Y, asymmetric>
, is_same<X, Y>
>
, y_pointer_type
>::type
test(Y*);
template <typename X, typename Y>
typename disable_if<
mpl::or_<
is_basic<typename X::value_type>
, is_same<typename add_reference<X>::type, typename X::reference>
>
, container_reference_type
>::type
test(typename X::reference);
template <typename X, typename Y, typename Z>
typename enable_if<
mpl::and_<
mpl::or_<is_array<X>, is_pointer<X> >
, mpl::not_<is_basic<Z> >
, mpl::not_<is_same<X, Z> >
>
, container_reference_type
>::type
test(Z&);
template <typename X, typename Y>
typename disable_if<
mpl::or_<
is_basic<typename X::value_type>
, is_same<typename add_reference<X>::type, typename X::const_reference>
>
, container_const_reference_type
>::type
test(typename X::const_reference);
template <typename X, typename Y>
typename disable_if<
is_basic<typename X::mapped_type>
, container_mapped_type
>::type
test(typename X::mapped_type);
template <typename X, typename Y>
struct base_result_of
{
typedef typename phoenix::detail::unwrap_local_reference<X>::type x_type_;
typedef typename phoenix::detail::unwrap_local_reference<Y>::type y_type_;
typedef typename remove_reference<x_type_>::type x_type;
typedef typename remove_reference<y_type_>::type y_type;
typedef mpl::vector20<
mpl::identity<bool>
, mpl::identity<int>
, mpl::identity<unsigned>
, mpl::identity<double>
, mpl::identity<bool&>
, mpl::identity<int&>
, mpl::identity<unsigned&>
, mpl::identity<double&>
, mpl::identity<x_type>
, mpl::identity<x_type&>
, mpl::identity<x_type const*>
, mpl::identity<x_type*>
, mpl::identity<y_type>
, mpl::identity<y_type&>
, mpl::identity<y_type const*>
, mpl::identity<y_type*>
, reference_type<x_type>
, const_reference_type<x_type>
, mapped_type<x_type>
, mpl::identity<error_cant_deduce_type>
>
types;
};
}} // namespace boost::type_deduction_detail
#define BOOST_RESULT_OF_COMMON(expr, name, Y, SYMMETRY) \
struct name \
{ \
typedef type_deduction_detail::base_result_of<X, Y> base_type; \
static typename base_type::x_type x; \
static typename base_type::y_type y; \
\
BOOST_STATIC_CONSTANT(int, \
size = sizeof( \
type_deduction_detail::test< \
typename base_type::x_type \
, SYMMETRY \
>(expr) \
)); \
\
BOOST_STATIC_CONSTANT(int, index = (size / sizeof(char)) - 1); \
\
typedef typename mpl::at_c< \
typename base_type::types, index>::type id; \
typedef typename id::type type; \
};
#define BOOST_UNARY_RESULT_OF(expr, name) \
template <typename X> \
BOOST_RESULT_OF_COMMON(expr, name, \
type_deduction_detail::asymmetric, type_deduction_detail::asymmetric)
#define BOOST_BINARY_RESULT_OF(expr, name) \
template <typename X, typename Y> \
BOOST_RESULT_OF_COMMON(expr, name, Y, typename base_type::y_type)
#define BOOST_ASYMMETRIC_BINARY_RESULT_OF(expr, name) \
template <typename X, typename Y> \
BOOST_RESULT_OF_COMMON(expr, name, Y, type_deduction_detail::asymmetric)
#endif