blob: 5eff53e14e04ddf596fc5f6278a8a71370279204 [file] [log] [blame]
// Copyright 2005 Daniel Wallin.
// Copyright 2005 Joel de Guzman.
// Copyright 2005 Dan Marsden.
// Copyright 2008 Hartmut Kaiser.
//
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Modeled after range_ex, Copyright 2004 Eric Niebler
#ifndef PHOENIX_ALGORITHM_QUERYING_HPP
#define PHOENIX_ALGORITHM_QUERYING_HPP
#include <algorithm>
#include <boost/spirit/home/phoenix/stl/algorithm/detail/has_find.hpp>
#include <boost/spirit/home/phoenix/stl/algorithm/detail/has_lower_bound.hpp>
#include <boost/spirit/home/phoenix/stl/algorithm/detail/has_upper_bound.hpp>
#include <boost/spirit/home/phoenix/stl/algorithm/detail/has_equal_range.hpp>
#include <boost/spirit/home/phoenix/stl/algorithm/detail/begin.hpp>
#include <boost/spirit/home/phoenix/stl/algorithm/detail/end.hpp>
#include <boost/spirit/home/phoenix/stl/algorithm/detail/decay_array.hpp>
#include <boost/spirit/home/phoenix/function/function.hpp>
#include <boost/range/result_iterator.hpp>
#include <boost/range/difference_type.hpp>
namespace boost { namespace phoenix {
namespace impl
{
struct find
{
template<class R, class T>
struct result : range_result_iterator<R>
{};
template<class R, class T>
typename result<R, T>::type execute(R& r, T const& x, mpl::true_) const
{
return r.find(x);
}
template<class R, class T>
typename result<R, T>::type execute(R& r, T const& x, mpl::false_) const
{
return std::find(detail::begin_(r), detail::end_(r), x);
}
template<class R, class T>
typename result<R, T>::type operator()(R& r, T const& x) const
{
return execute(r, x, has_find<R>());
}
};
struct find_if
{
template<class R, class P>
struct result : range_result_iterator<R>
{};
template<class R, class P>
typename result<R, P>::type operator()(R& r, P p) const
{
return std::find_if(detail::begin_(r), detail::end_(r), p);
}
};
struct find_end
{
template<class R, class R2, class P = void>
struct result : range_result_iterator<R>
{};
template<class R, class R2>
typename result<R, R2>::type operator()(R& r, R2& r2) const
{
return std::find_end(
detail::begin_(r)
, detail::end_(r)
, detail::begin_(r2)
, detail::end_(r2)
);
}
template<class R, class R2, class P>
typename result<R, R2, P>::type operator()(R& r, R2& r2, P p) const
{
return std::find_end(
detail::begin_(r)
, detail::end_(r)
, detail::begin_(r2)
, detail::end_(r2)
, p
);
}
};
struct find_first_of
{
template<class R, class R2, class P = void>
struct result : range_result_iterator<R>
{};
template<class R, class R2>
typename result<R, R2>::type operator()(R& r, R2& r2) const
{
return std::find_first_of(
detail::begin_(r)
, detail::end_(r)
, detail::begin_(r2)
, detail::end_(r2)
);
}
template<class R, class R2, class P>
typename result<R, R2, P>::type operator()(R& r, R2& r2, P p) const
{
return std::find_first_of(
detail::begin_(r)
, detail::end_(r)
, detail::begin_(r2)
, detail::end_(r2)
, p
);
}
};
struct adjacent_find
{
template<class R, class P = void>
struct result : range_result_iterator<R>
{};
template<class R>
typename result<R>::type operator()(R& r) const
{
return std::adjacent_find(detail::begin_(r), detail::end_(r));
}
template<class R, class P>
typename result<R, P>::type operator()(R& r, P p) const
{
return std::adjacent_find(detail::begin_(r), detail::end_(r), p);
}
};
struct count
{
template<class R, class T>
struct result : range_difference<R>
{};
template<class R, class T>
typename result<R, T>::type operator()(R& r, T const& x) const
{
return std::count(detail::begin_(r), detail::end_(r), x);
}
};
struct count_if
{
template<class R, class P>
struct result : range_difference<R>
{};
template<class R, class P>
typename result<R, P>::type operator()(R& r, P p) const
{
return std::count_if(detail::begin_(r), detail::end_(r), p);
}
};
struct distance
{
template<class R>
struct result : range_difference<R>
{};
template<class R>
typename result<R>::type operator()(R& r) const
{
return std::distance(detail::begin_(r), detail::end_(r));
}
};
struct equal
{
template<class R, class I, class P = void>
struct result
{
typedef bool type;
};
template<class R, class I>
bool operator()(R& r, I i) const
{
return std::equal(detail::begin_(r), detail::end_(r), i);
}
template<class R, class I, class P>
bool operator()(R& r, I i, P p) const
{
return std::equal(detail::begin_(r), detail::end_(r), i, p);
}
};
struct search
{
template<class R, class R2, class P = void>
struct result : range_result_iterator<R>
{};
template<class R, class R2>
typename result<R, R2>::type operator()(R& r, R2& r2) const
{
return std::search(
detail::begin_(r)
, detail::end_(r)
, detail::begin_(r2)
, detail::end_(r2)
);
}
template<class R, class R2, class P>
typename result<R, R2, P>::type operator()(R& r, R2& r2, P p) const
{
return std::search(
detail::begin_(r)
, detail::end_(r)
, detail::begin_(r2)
, detail::end_(r2)
, p
);
}
};
struct lower_bound
{
template<class R, class T, class C = void>
struct result : range_result_iterator<R>
{};
template<class R, class T>
typename result<R, T>::type execute(R& r, T const& val, mpl::true_) const
{
return r.lower_bound(val);
}
template<class R, class T>
typename result<R, T>::type execute(R& r, T const& val, mpl::false_) const
{
return std::lower_bound(detail::begin_(r), detail::end_(r), val);
}
template<class R, class T>
typename result<R, T>::type operator()(R& r, T const& val) const
{
return execute(r, val, has_lower_bound<R>());
}
template<class R, class T, class C>
typename result<R, T>::type operator()(R& r, T const& val, C c) const
{
return std::lower_bound(detail::begin_(r), detail::end_(r), val, c);
}
};
struct upper_bound
{
template<class R, class T, class C = void>
struct result : range_result_iterator<R>
{};
template<class R, class T>
typename result<R, T>::type execute(R& r, T const& val, mpl::true_) const
{
return r.upper_bound(val);
}
template<class R, class T>
typename result<R, T>::type execute(R& r, T const& val, mpl::false_) const
{
return std::upper_bound(detail::begin_(r), detail::end_(r), val);
}
template<class R, class T>
typename result<R, T>::type operator()(R& r, T const& val) const
{
return execute(r, val, has_upper_bound<R>());
}
template<class R, class T, class C>
typename result<R, T>::type operator()(R& r, T const& val, C c) const
{
return std::upper_bound(detail::begin_(r), detail::end_(r), val, c);
}
};
struct equal_range
{
template<class R, class T, class C = void>
struct result
{
typedef std::pair<
typename range_result_iterator<R>::type
, typename range_result_iterator<R>::type
> type;
};
template<class R, class T>
typename result<R, T>::type execute(R& r, T const& val, mpl::true_) const
{
return r.equal_range(val);
}
template<class R, class T>
typename result<R, T>::type execute(R& r, T const& val, mpl::false_) const
{
return std::equal_range(detail::begin_(r), detail::end_(r), val);
}
template<class R, class T>
typename result<R, T>::type operator()(R& r, T const& val) const
{
return execute(r, val, has_equal_range<R>());
}
template<class R, class T, class C>
typename result<R, T>::type operator()(R& r, T const& val, C c) const
{
return std::equal_range(detail::begin_(r), detail::end_(r), val, c);
}
};
struct mismatch
{
template<class R, class I, class P = void>
struct result
{
typedef std::pair<
typename range_result_iterator<R>::type
, typename detail::decay_array<I>::type
> type;
};
template<class R, class I>
typename result<R, I>::type operator()(R& r, I i) const
{
return std::mismatch(detail::begin_(r), detail::end_(r), i);
}
template<class R, class I, class P>
typename result<R, I, P>::type operator()(R& r, I i, P p) const
{
return std::mismatch(detail::begin_(r), detail::end_(r), i, p);
}
};
struct binary_search
{
template<class R, class T, class C = void>
struct result
{
typedef bool type;
};
template<class R, class T>
bool operator()(R& r, T const& val) const
{
return std::binary_search(detail::begin_(r), detail::end_(r), val);
}
template<class R, class T, class C>
bool operator()(R& r, T const& val, C c) const
{
return std::binary_search(detail::begin_(r), detail::end_(r), val, c);
}
};
struct includes
{
template<class R1, class R2, class C = void>
struct result
{
typedef bool type;
};
template<class R1, class R2>
bool operator()(R1& r1, R2& r2) const
{
return std::includes(
detail::begin_(r1), detail::end_(r1)
, detail::begin_(r2), detail::end_(r2)
);
}
template<class R1, class R2, class C>
bool operator()(R1& r1, R2& r2, C c) const
{
return std::includes(
detail::begin_(r1), detail::end_(r1)
, detail::begin_(r2), detail::end_(r2)
, c
);
}
};
struct min_element
{
template<class R, class P = void>
struct result : range_result_iterator<R>
{};
template<class R>
typename result<R>::type operator()(R& r) const
{
return std::min_element(detail::begin_(r), detail::end_(r));
}
template<class R, class P>
typename result<R, P>::type operator()(R& r, P p) const
{
return std::min_element(detail::begin_(r), detail::end_(r), p);
}
};
struct max_element
{
template<class R, class P = void>
struct result : range_result_iterator<R>
{};
template<class R>
typename result<R>::type operator()(R& r) const
{
return std::max_element(detail::begin_(r), detail::end_(r));
}
template<class R, class P>
typename result<R, P>::type operator()(R& r, P p) const
{
return std::max_element(detail::begin_(r), detail::end_(r), p);
}
};
struct lexicographical_compare
{
template<class R1, class R2, class P = void>
struct result
{
typedef bool type;
};
template<class R1, class R2>
typename result<R1, R2>::type operator()(R1& r1, R2& r2) const
{
return std::lexicographical_compare(
detail::begin_(r1), detail::end_(r1)
, detail::begin_(r2), detail::end_(r2)
);
}
template<class R1, class R2, class P>
typename result<R1, R2>::type operator()(R1& r1, R2& r2, P p) const
{
return std::lexicographical_compare(
detail::begin_(r1), detail::end_(r1)
, detail::begin_(r2), detail::end_(r2)
, p
);
}
};
}
function<impl::find> const find = impl::find();
function<impl::find_if> const find_if = impl::find_if();
function<impl::find_end> const find_end = impl::find_end();
function<impl::find_first_of> const find_first_of = impl::find_first_of();
function<impl::adjacent_find> const adjacent_find = impl::adjacent_find();
function<impl::count> const count = impl::count();
function<impl::count_if> const count_if = impl::count_if();
function<impl::distance> const distance = impl::distance();
function<impl::equal> const equal = impl::equal();
function<impl::search> const search = impl::search();
function<impl::lower_bound> const lower_bound = impl::lower_bound();
function<impl::upper_bound> const upper_bound = impl::upper_bound();
function<impl::equal_range> const equal_range = impl::equal_range();
function<impl::mismatch> const mismatch = impl::mismatch();
function<impl::binary_search> const binary_search = impl::binary_search();
function<impl::includes> const includes = impl::includes();
function<impl::min_element> const min_element = impl::min_element();
function<impl::max_element> const max_element = impl::max_element();
function<impl::lexicographical_compare> const lexicographical_compare = impl::lexicographical_compare();
}}
#endif