blob: a74df84deb49b70bcdb99f441d3783c2f08dcb59 [file] [log] [blame]
/*=============================================================================
Boost.Wave: A Standard compliant C++ preprocessor library
Definition of the preprocessor iterator
http://www.boost.org/
Copyright (c) 2001-2011 Hartmut Kaiser. Distributed under the Boost
Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
#if !defined(CPP_ITERATOR_HPP_175CA88F_7273_43FA_9039_BCF7459E1F29_INCLUDED)
#define CPP_ITERATOR_HPP_175CA88F_7273_43FA_9039_BCF7459E1F29_INCLUDED
#include <string>
#include <vector>
#include <list>
#include <cstdlib>
#include <cctype>
#include <boost/assert.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/filesystem/operations.hpp>
#include <boost/spirit/include/classic_multi_pass.hpp>
#include <boost/spirit/include/classic_parse_tree_utils.hpp>
#include <boost/wave/wave_config.hpp>
#include <boost/pool/pool_alloc.hpp>
#include <boost/wave/util/insert_whitespace_detection.hpp>
#include <boost/wave/util/macro_helpers.hpp>
#include <boost/wave/util/cpp_macromap_utils.hpp>
#include <boost/wave/util/interpret_pragma.hpp>
#include <boost/wave/util/transform_iterator.hpp>
#include <boost/wave/util/functor_input.hpp>
#include <boost/wave/util/filesystem_compatibility.hpp>
#include <boost/wave/grammars/cpp_grammar_gen.hpp>
#include <boost/wave/grammars/cpp_expression_grammar_gen.hpp>
#if BOOST_WAVE_ENABLE_COMMANDLINE_MACROS != 0
#include <boost/wave/grammars/cpp_predef_macros_gen.hpp>
#endif
#include <boost/wave/whitespace_handling.hpp>
#include <boost/wave/cpp_iteration_context.hpp>
#include <boost/wave/cpp_exceptions.hpp>
#include <boost/wave/language_support.hpp>
// this must occur after all of the includes and before any code appears
#ifdef BOOST_HAS_ABI_HEADERS
#include BOOST_ABI_PREFIX
#endif
///////////////////////////////////////////////////////////////////////////////
namespace boost {
namespace wave {
namespace util {
///////////////////////////////////////////////////////////////////////////////
// retrieve the macro name from the parse tree
template <
typename ContextT, typename ParseNodeT, typename TokenT,
typename PositionT
>
inline bool
retrieve_macroname(ContextT& ctx, ParseNodeT const &node,
boost::spirit::classic::parser_id id, TokenT &macroname, PositionT& act_pos,
bool update_position)
{
ParseNodeT const *name_node = 0;
using boost::spirit::classic::find_node;
if (!find_node(node, id, &name_node))
{
// ill formed define statement (unexpected, should not happen)
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_define_statement,
"bad parse tree (unexpected)", act_pos);
return false;
}
typename ParseNodeT::children_t const &children = name_node->children;
if (0 == children.size() ||
children.front().value.begin() == children.front().value.end())
{
// ill formed define statement (unexpected, should not happen)
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_define_statement,
"bad parse tree (unexpected)", act_pos);
return false;
}
// retrieve the macro name
macroname = *children.front().value.begin();
if (update_position) {
macroname.set_position(act_pos);
act_pos.set_column(act_pos.get_column() + macroname.get_value().size());
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
// retrieve the macro parameters or the macro definition from the parse tree
template <typename ParseNodeT, typename ContainerT, typename PositionT>
inline bool
retrieve_macrodefinition(
ParseNodeT const &node, boost::spirit::classic::parser_id id,
ContainerT &macrodefinition, PositionT& act_pos, bool update_position)
{
using namespace boost::wave;
typedef typename ParseNodeT::const_tree_iterator const_tree_iterator;
// find macro parameters/macro definition inside the parse tree
std::pair<const_tree_iterator, const_tree_iterator> nodes;
using boost::spirit::classic::get_node_range;
if (get_node_range(node, id, nodes)) {
// copy all parameters to the supplied container
typename ContainerT::iterator last_nonwhite = macrodefinition.end();
const_tree_iterator end = nodes.second;
for (const_tree_iterator cit = nodes.first; cit != end; ++cit) {
if ((*cit).value.begin() != (*cit).value.end()) {
typename ContainerT::iterator inserted = macrodefinition.insert(
macrodefinition.end(), *(*cit).value.begin());
if (!IS_CATEGORY(macrodefinition.back(), WhiteSpaceTokenType) &&
T_NEWLINE != token_id(macrodefinition.back()) &&
T_EOF != token_id(macrodefinition.back()))
{
last_nonwhite = inserted;
}
if (update_position) {
(*inserted).set_position(act_pos);
act_pos.set_column(
act_pos.get_column() + (*inserted).get_value().size());
}
}
}
// trim trailing whitespace (leading whitespace is trimmed by the grammar)
if (last_nonwhite != macrodefinition.end()) {
if (update_position) {
act_pos.set_column((*last_nonwhite).get_position().get_column() +
(*last_nonwhite).get_value().size());
}
macrodefinition.erase(++last_nonwhite, macrodefinition.end());
}
return true;
}
return false;
}
#if BOOST_WAVE_ENABLE_COMMANDLINE_MACROS != 0
///////////////////////////////////////////////////////////////////////////////
// add an additional predefined macro given by a string (MACRO(x)=definition)
template <typename ContextT>
bool add_macro_definition(ContextT &ctx, std::string macrostring,
bool is_predefined, boost::wave::language_support language)
{
typedef typename ContextT::token_type token_type;
typedef typename ContextT::lexer_type lexer_type;
typedef typename token_type::position_type position_type;
typedef boost::wave::grammars::predefined_macros_grammar_gen<lexer_type>
predef_macros_type;
using namespace boost::wave;
using namespace std; // isspace is in std namespace for some systems
// skip leading whitespace
std::string::iterator begin = macrostring.begin();
std::string::iterator end = macrostring.end();
while(begin != end && isspace(*begin))
++begin;
// parse the macro definition
position_type act_pos("<command line>");
boost::spirit::classic::tree_parse_info<lexer_type> hit =
predef_macros_type::parse_predefined_macro(
lexer_type(begin, end, position_type(), language), lexer_type());
if (!hit.match || (!hit.full && T_EOF != token_id(*hit.stop))) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_macro_definition,
macrostring.c_str(), act_pos);
return false;
}
// retrieve the macro definition from the parse tree
token_type macroname;
std::vector<token_type> macroparameters;
typename ContextT::token_sequence_type macrodefinition;
bool has_parameters = false;
if (!boost::wave::util::retrieve_macroname(ctx, *hit.trees.begin(),
BOOST_WAVE_PLAIN_DEFINE_ID, macroname, act_pos, true))
return false;
has_parameters = boost::wave::util::retrieve_macrodefinition(*hit.trees.begin(),
BOOST_WAVE_MACRO_PARAMETERS_ID, macroparameters, act_pos, true);
boost::wave::util::retrieve_macrodefinition(*hit.trees.begin(),
BOOST_WAVE_MACRO_DEFINITION_ID, macrodefinition, act_pos, true);
// If no macrodefinition is given, and the macro string does not end with a
// '=', then the macro should be defined with the value '1'
if (0 == macrodefinition.size() &&
'=' != macrostring[macrostring.size()-1])
{
macrodefinition.push_back(token_type(T_INTLIT, "1", act_pos));
}
// add the new macro to the macromap
return ctx.add_macro_definition(macroname, has_parameters, macroparameters,
macrodefinition, is_predefined);
}
#endif // BOOST_WAVE_ENABLE_COMMANDLINE_MACROS != 0
///////////////////////////////////////////////////////////////////////////////
} // namespace util
///////////////////////////////////////////////////////////////////////////////
// forward declaration
template <typename ContextT> class pp_iterator;
namespace impl {
///////////////////////////////////////////////////////////////////////////////
//
// pp_iterator_functor
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
class pp_iterator_functor {
public:
// interface to the boost::spirit::classic::iterator_policies::functor_input policy
typedef typename ContextT::token_type result_type;
// eof token
static result_type const eof;
private:
// type of a token sequence
typedef typename ContextT::token_sequence_type token_sequence_type;
typedef typename ContextT::lexer_type lexer_type;
typedef typename result_type::string_type string_type;
typedef typename result_type::position_type position_type;
typedef boost::wave::grammars::cpp_grammar_gen<lexer_type, token_sequence_type>
cpp_grammar_type;
// iteration context related types (an iteration context represents a current
// position in an included file)
typedef base_iteration_context<ContextT, lexer_type>
base_iteration_context_type;
typedef iteration_context<ContextT, lexer_type> iteration_context_type;
// parse tree related types
typedef typename cpp_grammar_type::node_factory_type node_factory_type;
typedef boost::spirit::classic::tree_parse_info<lexer_type, node_factory_type>
tree_parse_info_type;
typedef boost::spirit::classic::tree_match<lexer_type, node_factory_type>
parse_tree_match_type;
typedef typename parse_tree_match_type::node_t parse_node_type; // tree_node<node_val_data<> >
typedef typename parse_tree_match_type::parse_node_t parse_node_value_type; // node_val_data<>
typedef typename parse_tree_match_type::container_t parse_tree_type; // parse_node_type::children_t
public:
template <typename IteratorT>
pp_iterator_functor(ContextT &ctx_, IteratorT const &first_,
IteratorT const &last_, typename ContextT::position_type const &pos_)
: ctx(ctx_),
iter_ctx(new base_iteration_context_type(ctx,
lexer_type(first_, last_, pos_,
boost::wave::enable_prefer_pp_numbers(ctx.get_language())),
lexer_type(),
pos_.get_file().c_str()
)),
seen_newline(true), skipped_newline(false),
must_emit_line_directive(false), act_pos(ctx_.get_main_pos()),
whitespace(boost::wave::need_insert_whitespace(ctx.get_language()))
{
act_pos.set_file(pos_.get_file());
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
ctx_.set_current_filename(pos_.get_file().c_str());
#endif
iter_ctx->emitted_lines = (unsigned int)(-1); // force #line directive
}
// get the next preprocessed token
result_type const &operator()();
// get the last recognized token (for error processing etc.)
result_type const &current_token() const { return act_token; }
protected:
friend class pp_iterator<ContextT>;
bool on_include_helper(char const *t, char const *s, bool is_system,
bool include_next);
protected:
result_type const &get_next_token();
result_type const &pp_token();
template <typename IteratorT>
bool extract_identifier(IteratorT &it);
template <typename IteratorT>
bool ensure_is_last_on_line(IteratorT& it, bool call_hook = true);
template <typename IteratorT>
bool skip_to_eol_with_check(IteratorT &it, bool call_hook = true);
bool pp_directive();
template <typename IteratorT>
bool handle_pp_directive(IteratorT &it);
bool dispatch_directive(tree_parse_info_type const &hit,
result_type const& found_directive,
token_sequence_type const& found_eoltokens);
void replace_undefined_identifiers(token_sequence_type &expanded);
void on_include(string_type const &s, bool is_system, bool include_next);
void on_include(typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end, bool include_next);
void on_define(parse_node_type const &node);
void on_undefine(lexer_type const &it);
void on_ifdef(result_type const& found_directive, lexer_type const &it);
// typename parse_tree_type::const_iterator const &end);
void on_ifndef(result_type const& found_directive, lexer_type const& it);
// typename parse_tree_type::const_iterator const &end);
void on_else();
void on_endif();
void on_illformed(typename result_type::string_type s);
void on_line(typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end);
void on_if(result_type const& found_directive,
typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end);
void on_elif(result_type const& found_directive,
typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end);
void on_error(typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end);
#if BOOST_WAVE_SUPPORT_WARNING_DIRECTIVE != 0
void on_warning(typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end);
#endif
bool on_pragma(typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end);
bool emit_line_directive();
bool returned_from_include();
bool interpret_pragma(token_sequence_type const &pragma_body,
token_sequence_type &result);
private:
ContextT &ctx; // context, this iterator is associated with
boost::shared_ptr<base_iteration_context_type> iter_ctx;
bool seen_newline; // needed for recognizing begin of line
bool skipped_newline; // a newline has been skipped since last one
bool must_emit_line_directive; // must emit a line directive
result_type act_token; // current token
typename result_type::position_type &act_pos; // current fileposition (references the macromap)
token_sequence_type unput_queue; // tokens to be preprocessed again
token_sequence_type pending_queue; // tokens already preprocessed
// detect whether to insert additional whitespace in between two adjacent
// tokens, which otherwise would form a different token type, if
// re-tokenized
boost::wave::util::insert_whitespace_detection whitespace;
};
///////////////////////////////////////////////////////////////////////////////
// eof token
template <typename ContextT>
typename pp_iterator_functor<ContextT>::result_type const
pp_iterator_functor<ContextT>::eof;
///////////////////////////////////////////////////////////////////////////////
//
// returned_from_include()
//
// Tests if it is necessary to pop the include file context (eof inside
// a file was reached). If yes, it pops this context. Preprocessing will
// continue with the next outer file scope.
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::returned_from_include()
{
if (iter_ctx->first == iter_ctx->last && ctx.get_iteration_depth() > 0) {
// call the include policy trace function
#if BOOST_WAVE_USE_DEPRECIATED_PREPROCESSING_HOOKS != 0
ctx.get_hooks().returning_from_include_file();
#else
ctx.get_hooks().returning_from_include_file(ctx.derived());
#endif
// restore the previous iteration context after finishing the preprocessing
// of the included file
BOOST_WAVE_STRINGTYPE oldfile = iter_ctx->real_filename;
position_type old_pos (act_pos);
// if this file has include guards handle it as if it had a #pragma once
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
if (need_include_guard_detection(ctx.get_language())) {
std::string guard_name;
if (iter_ctx->first.has_include_guards(guard_name))
ctx.add_pragma_once_header(ctx.get_current_filename(), guard_name);
}
#endif
iter_ctx = ctx.pop_iteration_context();
must_emit_line_directive = true;
iter_ctx->emitted_lines = (unsigned int)(-1); // force #line directive
seen_newline = true;
// restore current file position
act_pos.set_file(iter_ctx->filename);
act_pos.set_line(iter_ctx->line);
act_pos.set_column(0);
// restore the actual current file and directory
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
namespace fs = boost::filesystem;
fs::path rfp(wave::util::create_path(iter_ctx->real_filename.c_str()));
std::string real_filename(rfp.string());
ctx.set_current_filename(real_filename.c_str());
#endif
ctx.set_current_directory(iter_ctx->real_filename.c_str());
ctx.set_current_relative_filename(iter_ctx->real_relative_filename.c_str());
// ensure the integrity of the #if/#endif stack
// report unbalanced #if/#endif now to make it possible to recover properly
if (iter_ctx->if_block_depth != ctx.get_if_block_depth()) {
using boost::wave::util::impl::escape_lit;
BOOST_WAVE_STRINGTYPE msg(escape_lit(oldfile));
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, unbalanced_if_endif,
msg.c_str(), old_pos);
}
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
//
// operator()(): get the next preprocessed token
//
// throws a preprocess_exception, if appropriate
//
///////////////////////////////////////////////////////////////////////////////
namespace impl {
// It may be necessary to emit a #line directive either
// - when comments need to be preserved: if the current token is not a
// whitespace, except comments
// - when comments are to be skipped: if the current token is not a
// whitespace token.
template <typename ContextT>
bool consider_emitting_line_directive(ContextT const& ctx, token_id id)
{
if (need_preserve_comments(ctx.get_language())) {
if (!IS_CATEGORY(id, EOLTokenType) && !IS_CATEGORY(id, EOFTokenType))
{
return true;
}
}
if (!IS_CATEGORY(id, WhiteSpaceTokenType) &&
!IS_CATEGORY(id, EOLTokenType) && !IS_CATEGORY(id, EOFTokenType))
{
return true;
}
return false;
}
}
template <typename ContextT>
inline typename pp_iterator_functor<ContextT>::result_type const &
pp_iterator_functor<ContextT>::operator()()
{
using namespace boost::wave;
// make sure the cwd has been initialized
ctx.init_context();
// loop over skip able whitespace until something significant is found
bool was_seen_newline = seen_newline;
token_id id = T_UNKNOWN;
try { // catch lexer exceptions
do {
// get_next_token assigns result to act_token member
if (skipped_newline)
seen_newline = true;
get_next_token();
// if comments shouldn't be preserved replace them with newlines
id = token_id(act_token);
if (!need_preserve_comments(ctx.get_language()) &&
(T_CPPCOMMENT == id || context_policies::util::ccomment_has_newline(act_token)))
{
act_token.set_token_id(id = T_NEWLINE);
act_token.set_value("\n");
}
} while (ctx.get_hooks().may_skip_whitespace(ctx.derived(), act_token, skipped_newline));
}
catch (boost::wave::cpplexer::lexing_exception const& e) {
// dispatch any lexer exceptions to the context hook function
ctx.get_hooks().throw_exception(ctx.derived(), e);
return act_token;
}
// if there were skipped any newlines, we must emit a #line directive
if ((must_emit_line_directive || (was_seen_newline && skipped_newline)) &&
impl::consider_emitting_line_directive(ctx, id))
{
// must emit a #line directive
if (need_emit_line_directives(ctx.get_language()) && emit_line_directive())
{
skipped_newline = false;
ctx.get_hooks().may_skip_whitespace(ctx.derived(), act_token, skipped_newline); // feed ws eater FSM
id = token_id(act_token);
}
}
// cleanup of certain tokens required
seen_newline = false;
switch (static_cast<unsigned int>(id)) {
case T_NONREPLACABLE_IDENTIFIER:
act_token.set_token_id(id = T_IDENTIFIER);
break;
case T_GENERATEDNEWLINE: // was generated by emit_line_directive()
act_token.set_token_id(id = T_NEWLINE);
++iter_ctx->emitted_lines;
seen_newline = true;
break;
case T_NEWLINE:
case T_CPPCOMMENT:
seen_newline = true;
++iter_ctx->emitted_lines;
break;
#if BOOST_WAVE_SUPPORT_CPP0X != 0
case T_RAWSTRINGLIT:
iter_ctx->emitted_lines +=
context_policies::util::rawstring_count_newlines(act_token);
break;
#endif
case T_CCOMMENT: // will come here only if whitespace is preserved
iter_ctx->emitted_lines +=
context_policies::util::ccomment_count_newlines(act_token);
break;
case T_PP_NUMBER: // re-tokenize the pp-number
{
token_sequence_type rescanned;
std::string pp_number(
util::to_string<std::string>(act_token.get_value()));
lexer_type it = lexer_type(pp_number.begin(),
pp_number.end(), act_token.get_position(),
ctx.get_language());
lexer_type end = lexer_type();
for (/**/; it != end && T_EOF != token_id(*it); ++it)
rescanned.push_back(*it);
pending_queue.splice(pending_queue.begin(), rescanned);
act_token = pending_queue.front();
id = token_id(act_token);
pending_queue.pop_front();
}
break;
case T_EOF:
seen_newline = true;
break;
default: // make sure whitespace at line begin keeps seen_newline status
if (IS_CATEGORY(id, WhiteSpaceTokenType))
seen_newline = was_seen_newline;
break;
}
if (whitespace.must_insert(id, act_token.get_value())) {
// must insert some whitespace into the output stream to avoid adjacent
// tokens, which would form different (and wrong) tokens
whitespace.shift_tokens(T_SPACE);
pending_queue.push_front(act_token); // push this token back
return act_token = result_type(T_SPACE,
typename result_type::string_type(" "),
act_token.get_position());
}
whitespace.shift_tokens(id);
return ctx.get_hooks().generated_token(ctx.derived(), act_token);
}
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline typename pp_iterator_functor<ContextT>::result_type const &
pp_iterator_functor<ContextT>::get_next_token()
{
using namespace boost::wave;
// if there is something in the unput_queue, then return the next token from
// there (all tokens in the queue are preprocessed already)
if (!pending_queue.empty() || !unput_queue.empty())
return pp_token(); // return next token
// test for EOF, if there is a pending input context, pop it back and continue
// parsing with it
bool returned_from_include_file = returned_from_include();
// try to generate the next token
if (iter_ctx->first != iter_ctx->last) {
do {
// If there are pending tokens in the queue, we'll have to return
// these. This may happen from a #pragma directive, which got replaced
// by some token sequence.
if (!pending_queue.empty()) {
util::on_exit::pop_front<token_sequence_type>
pop_front_token(pending_queue);
return act_token = pending_queue.front();
}
// adjust the current position (line and column)
bool was_seen_newline = seen_newline || returned_from_include_file;
// fetch the current token
act_token = *iter_ctx->first;
act_pos = act_token.get_position();
// act accordingly on the current token
token_id id = token_id(act_token);
if (T_EOF == id) {
// returned from an include file, continue with the next token
whitespace.shift_tokens(T_EOF);
++iter_ctx->first;
// now make sure this line has a newline
if ((!seen_newline || act_pos.get_column() > 1) &&
!need_single_line(ctx.get_language()))
{
// warn, if this file does not end with a newline
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
last_line_not_terminated, "", act_pos);
}
continue; // if this is the main file, the while loop breaks
}
else if (T_NEWLINE == id || T_CPPCOMMENT == id) {
// a newline is to be returned ASAP, a C++ comment too
// (the C++ comment token includes the trailing newline)
seen_newline = true;
++iter_ctx->first;
if (!ctx.get_if_block_status()) {
// skip this token because of the disabled #if block
whitespace.shift_tokens(id); // whitespace controller
util::impl::call_skipped_token_hook(ctx, act_token);
continue;
}
return act_token;
}
seen_newline = false;
if (was_seen_newline && pp_directive()) {
// a pp directive was found
// pending_queue.push_back(result_type(T_NEWLINE, "\n", act_pos));
// seen_newline = true;
// must_emit_line_directive = true;
// loop to the next token to analyze
// simply fall through, since the iterator was already adjusted
// correctly
}
else if (ctx.get_if_block_status()) {
// preprocess this token, eat up more, if appropriate, return
// the next preprocessed token
return pp_token();
}
else {
// compilation condition is false: if the current token is a
// newline, account for it, otherwise discard the actual token and
// try the next one
if (T_NEWLINE == token_id(act_token)) {
seen_newline = true;
must_emit_line_directive = true;
}
// next token
util::impl::call_skipped_token_hook(ctx, act_token);
++iter_ctx->first;
}
} while ((iter_ctx->first != iter_ctx->last) ||
(returned_from_include_file = returned_from_include()));
// overall eof reached
if (ctx.get_if_block_depth() > 0 && !need_single_line(ctx.get_language()))
{
// missing endif directive(s)
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
missing_matching_endif, "", act_pos);
}
}
else {
act_token = eof; // this is the last token
}
// whitespace.shift_tokens(T_EOF); // whitespace controller
return act_token; // return eof token
}
///////////////////////////////////////////////////////////////////////////////
//
// emit_line_directive(): emits a line directive from the act_token data
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::emit_line_directive()
{
using namespace boost::wave;
typename ContextT::position_type pos = act_token.get_position();
// if (must_emit_line_directive &&
// iter_ctx->emitted_lines+1 == act_pos.get_line() &&
// iter_ctx->filename == act_pos.get_file())
// {
// must_emit_line_directive = false;
// return false;
// }
if (must_emit_line_directive ||
iter_ctx->emitted_lines+1 != act_pos.get_line())
{
// unput the current token
pending_queue.push_front(act_token);
pos.set_line(act_pos.get_line());
if (iter_ctx->emitted_lines+2 == act_pos.get_line()) {
// prefer to output a single newline instead of the #line directive
// whitespace.shift_tokens(T_NEWLINE);
act_token = result_type(T_NEWLINE, "\n", pos);
}
else {
// account for the newline emitted here
act_pos.set_line(act_pos.get_line()-1);
iter_ctx->emitted_lines = act_pos.get_line()-1;
token_sequence_type pending;
if (!ctx.get_hooks().emit_line_directive(ctx, pending, act_token))
{
unsigned int column = 6;
// the hook did not generate anything, emit default #line
pos.set_column(1);
pending.push_back(result_type(T_PP_LINE, "#line", pos));
pos.set_column(column); // account for '#line'
pending.push_back(result_type(T_SPACE, " ", pos));
// 21 is the max required size for a 64 bit integer represented as a
// string
char buffer[22];
using namespace std; // for some systems sprintf is in namespace std
sprintf (buffer, "%d", pos.get_line());
pos.set_column(++column); // account for ' '
pending.push_back(result_type(T_INTLIT, buffer, pos));
pos.set_column(column += (unsigned int)strlen(buffer)); // account for <number>
pending.push_back(result_type(T_SPACE, " ", pos));
pos.set_column(++column); // account for ' '
std::string file("\"");
boost::filesystem::path filename(
wave::util::create_path(act_pos.get_file().c_str()));
using wave::util::impl::escape_lit;
file += escape_lit(wave::util::native_file_string(filename)) + "\"";
pending.push_back(result_type(T_STRINGLIT, file.c_str(), pos));
pos.set_column(column += (unsigned int)file.size()); // account for filename
pending.push_back(result_type(T_GENERATEDNEWLINE, "\n", pos));
}
// if there is some replacement text, insert it into the pending queue
if (!pending.empty()) {
pending_queue.splice(pending_queue.begin(), pending);
act_token = pending_queue.front();
pending_queue.pop_front();
}
}
must_emit_line_directive = false; // we are now in sync
return true;
}
must_emit_line_directive = false; // we are now in sync
return false;
}
///////////////////////////////////////////////////////////////////////////////
//
// pptoken(): return the next preprocessed token
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline typename pp_iterator_functor<ContextT>::result_type const &
pp_iterator_functor<ContextT>::pp_token()
{
using namespace boost::wave;
token_id id = token_id(*iter_ctx->first);
// eat all T_PLACEHOLDER tokens, eventually slipped through out of the
// macro engine
do {
if (!pending_queue.empty()) {
// if there are pending tokens in the queue, return the first one
act_token = pending_queue.front();
pending_queue.pop_front();
act_pos = act_token.get_position();
}
else if (!unput_queue.empty()
|| T_IDENTIFIER == id
|| IS_CATEGORY(id, KeywordTokenType)
|| IS_EXTCATEGORY(id, OperatorTokenType|AltExtTokenType)
|| IS_CATEGORY(id, BoolLiteralTokenType))
{
// call the lexer, preprocess the required number of tokens, put them
// into the unput queue
act_token = ctx.expand_tokensequence(iter_ctx->first,
iter_ctx->last, pending_queue, unput_queue, skipped_newline);
}
else {
// simply return the next token
act_token = *iter_ctx->first;
++iter_ctx->first;
}
id = token_id(act_token);
} while (T_PLACEHOLDER == id);
return act_token;
}
///////////////////////////////////////////////////////////////////////////////
//
// pp_directive(): recognize a preprocessor directive
//
///////////////////////////////////////////////////////////////////////////////
namespace impl {
// call 'found_directive' preprocessing hook
template <typename ContextT>
bool call_found_directive_hook(ContextT& ctx,
typename ContextT::token_type const& found_directive)
{
#if BOOST_WAVE_USE_DEPRECIATED_PREPROCESSING_HOOKS != 0
ctx.get_hooks().found_directive(found_directive);
#else
if (ctx.get_hooks().found_directive(ctx.derived(), found_directive))
return true; // skip this directive and return newline only
#endif
return false;
}
// // call 'skipped_token' preprocessing hook
// template <typename ContextT>
// void call_skipped_token_hook(ContextT& ctx,
// typename ContextT::token_type const& skipped)
// {
// #if BOOST_WAVE_USE_DEPRECIATED_PREPROCESSING_HOOKS != 0
// ctx.get_hooks().skipped_token(skipped);
// #else
// ctx.get_hooks().skipped_token(ctx.derived(), skipped);
// #endif
// }
template <typename ContextT, typename IteratorT>
bool next_token_is_pp_directive(ContextT &ctx, IteratorT &it, IteratorT const &end)
{
using namespace boost::wave;
token_id id = T_UNKNOWN;
for (/**/; it != end; ++it) {
id = token_id(*it);
if (!IS_CATEGORY(id, WhiteSpaceTokenType))
break; // skip leading whitespace
if (IS_CATEGORY(id, EOLTokenType) || IS_CATEGORY(id, EOFTokenType))
break; // do not enter a new line
if (T_CPPCOMMENT == id ||
context_policies::util::ccomment_has_newline(*it))
{
break;
}
// this token gets skipped
util::impl::call_skipped_token_hook(ctx, *it);
}
BOOST_ASSERT(it == end || id != T_UNKNOWN);
return it != end && IS_CATEGORY(id, PPTokenType);
}
// verify that there isn't anything significant left on the line
template <typename ContextT, typename IteratorT>
bool pp_is_last_on_line(ContextT &ctx, IteratorT &it, IteratorT const &end,
bool call_hook = true)
{
using namespace boost::wave;
// this token gets skipped
if (call_hook)
util::impl::call_skipped_token_hook(ctx, *it);
for (++it; it != end; ++it) {
token_id id = token_id(*it);
if (T_CPPCOMMENT == id || T_NEWLINE == id ||
context_policies::util::ccomment_has_newline(*it))
{
if (call_hook)
util::impl::call_skipped_token_hook(ctx, *it);
++it; // skip eol/C/C++ comment
return true; // no more significant tokens on this line
}
if (!IS_CATEGORY(id, WhiteSpaceTokenType))
break;
// this token gets skipped
if (call_hook)
util::impl::call_skipped_token_hook(ctx, *it);
}
return false;
}
///////////////////////////////////////////////////////////////////////////
template <typename ContextT, typename IteratorT>
bool skip_to_eol(ContextT &ctx, IteratorT &it, IteratorT const &end,
bool call_hook = true)
{
using namespace boost::wave;
for (/**/; it != end; ++it) {
token_id id = token_id(*it);
if (T_CPPCOMMENT == id || T_NEWLINE == id ||
context_policies::util::ccomment_has_newline(*it))
{
// always call hook for eol
util::impl::call_skipped_token_hook(ctx, *it);
++it; // skip eol/C/C++ comment
return true; // found eol
}
if (call_hook)
util::impl::call_skipped_token_hook(ctx, *it);
}
return false;
}
///////////////////////////////////////////////////////////////////////////
template <typename ContextT, typename ContainerT>
inline void
remove_leading_whitespace(ContextT &ctx, ContainerT& c, bool call_hook = true)
{
typename ContainerT::iterator it = c.begin();
while (IS_CATEGORY(*it, WhiteSpaceTokenType)) {
typename ContainerT::iterator save = it++;
if (call_hook)
util::impl::call_skipped_token_hook(ctx, *save);
c.erase(save);
}
}
}
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
template <typename IteratorT>
inline bool
pp_iterator_functor<ContextT>::extract_identifier(IteratorT &it)
{
token_id id = util::impl::skip_whitespace(it, iter_ctx->last);
if (T_IDENTIFIER == id || IS_CATEGORY(id, KeywordTokenType) ||
IS_EXTCATEGORY(id, OperatorTokenType|AltExtTokenType) ||
IS_CATEGORY(id, BoolLiteralTokenType))
{
IteratorT save = it;
if (impl::pp_is_last_on_line(ctx, save, iter_ctx->last, false))
return true;
}
// report the ill formed directive
impl::skip_to_eol(ctx, it, iter_ctx->last);
string_type str(util::impl::as_string<string_type>(iter_ctx->first, it));
seen_newline = true;
iter_ctx->first = it;
on_illformed(str);
return false;
}
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
template <typename IteratorT>
inline bool
pp_iterator_functor<ContextT>::ensure_is_last_on_line(IteratorT& it, bool call_hook)
{
if (!impl::pp_is_last_on_line(ctx, it, iter_ctx->last, call_hook))
{
// enable error recovery (start over with the next line)
impl::skip_to_eol(ctx, it, iter_ctx->last);
string_type str(util::impl::as_string<string_type>(
iter_ctx->first, it));
seen_newline = true;
iter_ctx->first = it;
// report an invalid directive
on_illformed(str);
return false;
}
if (it == iter_ctx->last && !need_single_line(ctx.get_language()))
{
// The line doesn't end with an eol but eof token.
seen_newline = true; // allow to resume after warning
iter_ctx->first = it;
// Trigger a warning that the last line was not terminated with a
// newline.
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
last_line_not_terminated, "", act_pos);
return false;
}
return true;
}
template <typename ContextT>
template <typename IteratorT>
inline bool
pp_iterator_functor<ContextT>::skip_to_eol_with_check(IteratorT &it, bool call_hook)
{
typename ContextT::string_type value ((*it).get_value());
if (!impl::skip_to_eol(ctx, it, iter_ctx->last, call_hook) &&
!need_single_line(ctx.get_language()))
{
// The line doesn't end with an eol but eof token.
seen_newline = true; // allow to resume after warning
iter_ctx->first = it;
// Trigger a warning, that the last line was not terminated with a
// newline.
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
last_line_not_terminated, "", act_pos);
return false;
}
// normal line ending reached, adjust iterator and flag
seen_newline = true;
iter_ctx->first = it;
return true;
}
///////////////////////////////////////////////////////////////////////////////
// handle_pp_directive: handle certain pp_directives
template <typename ContextT>
template <typename IteratorT>
inline bool
pp_iterator_functor<ContextT>::handle_pp_directive(IteratorT &it)
{
token_id id = token_id(*it);
bool can_exit = true;
bool call_hook_in_skip = true;
if (!ctx.get_if_block_status()) {
if (IS_EXTCATEGORY(*it, PPConditionalTokenType)) {
// simulate the if block hierarchy
switch (static_cast<unsigned int>(id)) {
case T_PP_IFDEF: // #ifdef
case T_PP_IFNDEF: // #ifndef
case T_PP_IF: // #if
ctx.enter_if_block(false);
break;
case T_PP_ELIF: // #elif
if (!ctx.get_enclosing_if_block_status()) {
if (!ctx.enter_elif_block(false)) {
// #else without matching #if
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
missing_matching_if, "#elif", act_pos);
return true; // do not analyze this directive any further
}
}
else {
can_exit = false; // #elif is not always safe to skip
}
break;
case T_PP_ELSE: // #else
case T_PP_ENDIF: // #endif
{
// handle this directive
if (T_PP_ELSE == token_id(*it))
on_else();
else
on_endif();
// make sure, there are no (non-whitespace) tokens left on
// this line
ensure_is_last_on_line(it);
// we skipped to the end of this line already
seen_newline = true;
iter_ctx->first = it;
}
return true;
default: // #something else
on_illformed((*it).get_value());
break;
}
}
else {
util::impl::call_skipped_token_hook(ctx, *it);
++it;
}
}
else {
// try to handle the simple pp directives without parsing
result_type directive = *it;
bool include_next = false;
switch (static_cast<unsigned int>(id)) {
case T_PP_QHEADER: // #include "..."
#if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
case T_PP_QHEADER_NEXT:
#endif
include_next = (T_PP_QHEADER_NEXT == id) ? true : false;
if (!impl::call_found_directive_hook(ctx, *it))
{
string_type dir((*it).get_value());
// make sure, there are no (non-whitespace) tokens left on
// this line
if (ensure_is_last_on_line(it))
{
seen_newline = true;
iter_ctx->first = it;
on_include (dir, false, include_next);
}
return true;
}
break;
case T_PP_HHEADER: // #include <...>
#if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
case T_PP_HHEADER_NEXT:
#endif
include_next = (T_PP_HHEADER_NEXT == id) ? true : false;
if (!impl::call_found_directive_hook(ctx, *it))
{
string_type dir((*it).get_value());
// make sure, there are no (non-whitespace) tokens left on
// this line
if (ensure_is_last_on_line(it))
{
seen_newline = true;
iter_ctx->first = it;
on_include (dir, true, include_next);
}
return true;
}
break;
case T_PP_ELSE: // #else
case T_PP_ENDIF: // #endif
if (!impl::call_found_directive_hook(ctx, *it))
{
// handle this directive
if (T_PP_ELSE == token_id(*it))
on_else();
else
on_endif();
// make sure, there are no (non-whitespace) tokens left on
// this line
ensure_is_last_on_line(it);
// we skipped to the end of this line already
seen_newline = true;
iter_ctx->first = it;
return true;
}
break;
// extract everything on this line as arguments
// case T_PP_IF: // #if
// case T_PP_ELIF: // #elif
// case T_PP_ERROR: // #error
// case T_PP_WARNING: // #warning
// case T_PP_PRAGMA: // #pragma
// case T_PP_LINE: // #line
// break;
// extract first non-whitespace token as argument
case T_PP_UNDEF: // #undef
if (!impl::call_found_directive_hook(ctx, *it) &&
extract_identifier(it))
{
on_undefine(it);
}
call_hook_in_skip = false;
break;
case T_PP_IFDEF: // #ifdef
if (!impl::call_found_directive_hook(ctx, *it) &&
extract_identifier(it))
{
on_ifdef(directive, it);
}
call_hook_in_skip = false;
break;
case T_PP_IFNDEF: // #ifndef
if (!impl::call_found_directive_hook(ctx, *it) &&
extract_identifier(it))
{
on_ifndef(directive, it);
}
call_hook_in_skip = false;
break;
#if BOOST_WAVE_SUPPORT_MS_EXTENSIONS != 0
// case T_MSEXT_PP_REGION: // #region ...
// break;
//
// case T_MSEXT_PP_ENDREGION: // #endregion
// break;
#endif
default:
can_exit = false;
break;
}
}
// start over with the next line, if only possible
if (can_exit) {
skip_to_eol_with_check(it, call_hook_in_skip);
return true; // may be safely ignored
}
return false; // do not ignore this pp directive
}
///////////////////////////////////////////////////////////////////////////////
// pp_directive(): recognize a preprocessor directive
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::pp_directive()
{
using namespace cpplexer;
// test, if the next non-whitespace token is a pp directive
lexer_type it = iter_ctx->first;
if (!impl::next_token_is_pp_directive(ctx, it, iter_ctx->last)) {
// skip null pp directive (no need to do it via the parser)
if (it != iter_ctx->last && T_POUND == BASE_TOKEN(token_id(*it))) {
if (impl::pp_is_last_on_line(ctx, it, iter_ctx->last)) {
// start over with the next line
seen_newline = true;
iter_ctx->first = it;
return true;
}
else if (ctx.get_if_block_status()) {
// report invalid pp directive
impl::skip_to_eol(ctx, it, iter_ctx->last);
seen_newline = true;
string_type str(boost::wave::util::impl::as_string<string_type>(
iter_ctx->first, it));
token_sequence_type faulty_line;
for (/**/; iter_ctx->first != it; ++iter_ctx->first)
faulty_line.push_back(*iter_ctx->first);
token_sequence_type pending;
if (ctx.get_hooks().found_unknown_directive(ctx, faulty_line, pending))
{
// if there is some replacement text, insert it into the pending queue
if (!pending.empty())
pending_queue.splice(pending_queue.begin(), pending);
return true;
}
// default behavior is to throw an exception
on_illformed(str);
}
}
// this line does not contain a pp directive, so simply return
return false;
}
// found eof
if (it == iter_ctx->last)
return false;
// ignore/handle all pp directives not related to conditional compilation while
// if block status is false
if (handle_pp_directive(it)) {
// we may skip pp directives only if the current if block status is
// false or if it was a #include directive we could handle directly
return true; // the pp directive has been handled/skipped
}
// found a pp directive, so try to identify it, start with the pp_token
bool found_eof = false;
result_type found_directive;
token_sequence_type found_eoltokens;
tree_parse_info_type hit = cpp_grammar_type::parse_cpp_grammar(
it, iter_ctx->last, act_pos, found_eof, found_directive, found_eoltokens);
if (hit.match) {
// position the iterator past the matched sequence to allow
// resynchronization, if an error occurs
iter_ctx->first = hit.stop;
seen_newline = true;
must_emit_line_directive = true;
// found a valid pp directive, dispatch to the correct function to handle
// the found pp directive
bool result = dispatch_directive (hit, found_directive, found_eoltokens);
if (found_eof && !need_single_line(ctx.get_language())) {
// The line was terminated with an end of file token.
// So trigger a warning, that the last line was not terminated with a
// newline.
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
last_line_not_terminated, "", act_pos);
}
return result;
}
else if (token_id(found_directive) != T_EOF) {
// recognized invalid directive
impl::skip_to_eol(ctx, it, iter_ctx->last);
seen_newline = true;
string_type str(boost::wave::util::impl::as_string<string_type>(
iter_ctx->first, it));
iter_ctx->first = it;
// report the ill formed directive
on_illformed(str);
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
//
// dispatch_directive(): dispatch a recognized preprocessor directive
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::dispatch_directive(
tree_parse_info_type const &hit, result_type const& found_directive,
token_sequence_type const& found_eoltokens)
{
using namespace cpplexer;
typedef typename parse_tree_type::const_iterator const_child_iterator_t;
// this iterator points to the root node of the parse tree
const_child_iterator_t begin = hit.trees.begin();
// decide, which preprocessor directive was found
parse_tree_type const &root = (*begin).children;
parse_node_value_type const &nodeval = get_first_leaf(*root.begin()).value;
//long node_id = nodeval.id().to_long();
const_child_iterator_t begin_child_it = (*root.begin()).children.begin();
const_child_iterator_t end_child_it = (*root.begin()).children.end();
token_id id = token_id(found_directive);
// call preprocessing hook
if (impl::call_found_directive_hook(ctx, found_directive))
return true; // skip this directive and return newline only
switch (static_cast<unsigned int>(id)) {
// case T_PP_QHEADER: // #include "..."
// #if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
// case T_PP_QHEADER_NEXT: // #include_next "..."
// #endif
// on_include ((*nodeval.begin()).get_value(), false,
// T_PP_QHEADER_NEXT == id);
// break;
// case T_PP_HHEADER: // #include <...>
// #if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
// case T_PP_HHEADER_NEXT: // #include_next <...>
// #endif
// on_include ((*nodeval.begin()).get_value(), true,
// T_PP_HHEADER_NEXT == id);
// break;
case T_PP_INCLUDE: // #include ...
#if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
case T_PP_INCLUDE_NEXT: // #include_next ...
#endif
on_include (begin_child_it, end_child_it, T_PP_INCLUDE_NEXT == id);
break;
case T_PP_DEFINE: // #define
on_define (*begin);
break;
// case T_PP_UNDEF: // #undef
// on_undefine(*nodeval.begin());
// break;
//
// case T_PP_IFDEF: // #ifdef
// on_ifdef(found_directive, begin_child_it, end_child_it);
// break;
//
// case T_PP_IFNDEF: // #ifndef
// on_ifndef(found_directive, begin_child_it, end_child_it);
// break;
case T_PP_IF: // #if
on_if(found_directive, begin_child_it, end_child_it);
break;
case T_PP_ELIF: // #elif
on_elif(found_directive, begin_child_it, end_child_it);
break;
// case T_PP_ELSE: // #else
// on_else();
// break;
// case T_PP_ENDIF: // #endif
// on_endif();
// break;
case T_PP_LINE: // #line
on_line(begin_child_it, end_child_it);
break;
case T_PP_ERROR: // #error
on_error(begin_child_it, end_child_it);
break;
#if BOOST_WAVE_SUPPORT_WARNING_DIRECTIVE != 0
case T_PP_WARNING: // #warning
on_warning(begin_child_it, end_child_it);
break;
#endif
case T_PP_PRAGMA: // #pragma
return on_pragma(begin_child_it, end_child_it);
#if BOOST_WAVE_SUPPORT_MS_EXTENSIONS != 0
case T_MSEXT_PP_REGION:
case T_MSEXT_PP_ENDREGION:
break; // ignore these
#endif
default: // #something else
on_illformed((*nodeval.begin()).get_value());
// if we end up here, we have been instructed to ignore the error, so
// we simply copy the whole construct to the output
{
token_sequence_type expanded;
get_token_value<result_type, parse_node_type> get_value;
std::copy(make_ref_transform_iterator(begin_child_it, get_value),
make_ref_transform_iterator(end_child_it, get_value),
std::inserter(expanded, expanded.end()));
pending_queue.splice(pending_queue.begin(), expanded);
}
break;
}
// properly skip trailing newline for all directives
typename token_sequence_type::const_iterator eol = found_eoltokens.begin();
impl::skip_to_eol(ctx, eol, found_eoltokens.end());
return true; // return newline only
}
///////////////////////////////////////////////////////////////////////////////
//
// on_include: handle #include <...> or #include "..." directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_include (string_type const &s,
bool is_system, bool include_next)
{
BOOST_ASSERT(ctx.get_if_block_status());
// strip quotes first, extract filename
typename string_type::size_type pos_end = s.find_last_of(is_system ? '>' : '\"');
if (string_type::npos == pos_end) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_include_statement,
s.c_str(), act_pos);
return;
}
typename string_type::size_type pos_begin =
s.find_last_of(is_system ? '<' : '\"', pos_end-1);
if (string_type::npos == pos_begin) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_include_statement,
s.c_str(), act_pos);
return;
}
std::string file_token(s.substr(pos_begin, pos_end-pos_begin+1).c_str());
std::string file_path(s.substr(pos_begin+1, pos_end-pos_begin-1).c_str());
// finally include the file
on_include_helper(file_token.c_str(), file_path.c_str(), is_system,
include_next);
}
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::on_include_helper (char const *f, char const *s,
bool is_system, bool include_next)
{
namespace fs = boost::filesystem;
// try to locate the given file, searching through the include path lists
std::string file_path(s);
std::string dir_path;
#if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
char const *current_name = include_next ? iter_ctx->real_filename.c_str() : 0;
#else
char const *current_name = 0; // never try to match current file name
#endif
// call the 'found_include_directive' hook function
#if BOOST_WAVE_USE_DEPRECIATED_PREPROCESSING_HOOKS != 0
ctx.get_hooks().found_include_directive(f, include_next);
#else
if (ctx.get_hooks().found_include_directive(ctx.derived(), f, include_next))
return true; // client returned false: skip file to include
#endif
file_path = util::impl::unescape_lit(file_path);
if (!ctx.find_include_file (file_path, dir_path, is_system, current_name)) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_include_file,
file_path.c_str(), act_pos);
return false;
}
fs::path native_path(wave::util::create_path(file_path));
if (!fs::exists(native_path)) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_include_file,
file_path.c_str(), act_pos);
return false;
}
// test, if this file is known through a #pragma once directive
std::string native_path_str(wave::util::native_file_string(native_path));
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
if (!ctx.has_pragma_once(native_path.string()))
#endif
{
// the new include file determines the actual current directory
ctx.set_current_directory(native_path_str.c_str());
// preprocess the opened file
boost::shared_ptr<base_iteration_context_type> new_iter_ctx (
new iteration_context_type(ctx, native_path_str.c_str(), act_pos,
boost::wave::enable_prefer_pp_numbers(ctx.get_language()),
is_system ? base_iteration_context_type::system_header :
base_iteration_context_type::user_header));
// call the include policy trace function
#if BOOST_WAVE_USE_DEPRECIATED_PREPROCESSING_HOOKS != 0
ctx.get_hooks().opened_include_file(dir_path, file_path,
ctx.get_iteration_depth(), is_system);
#else
ctx.get_hooks().opened_include_file(ctx.derived(), dir_path, file_path,
is_system);
#endif
// store current file position
iter_ctx->real_relative_filename = ctx.get_current_relative_filename().c_str();
iter_ctx->filename = act_pos.get_file();
iter_ctx->line = act_pos.get_line();
iter_ctx->if_block_depth = ctx.get_if_block_depth();
iter_ctx->emitted_lines = (unsigned int)(-1); // force #line directive
// push the old iteration context onto the stack and continue with the new
ctx.push_iteration_context(act_pos, iter_ctx);
iter_ctx = new_iter_ctx;
seen_newline = true; // fake a newline to trigger pp_directive
must_emit_line_directive = true;
act_pos.set_file(iter_ctx->filename); // initialize file position
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
fs::path rfp(wave::util::create_path(iter_ctx->real_filename.c_str()));
std::string real_filename(rfp.string());
ctx.set_current_filename(real_filename.c_str());
#endif
ctx.set_current_relative_filename(dir_path.c_str());
iter_ctx->real_relative_filename = dir_path.c_str();
act_pos.set_line(iter_ctx->line);
act_pos.set_column(0);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
//
// on_include(): handle #include ... directives
//
///////////////////////////////////////////////////////////////////////////////
namespace impl {
// trim all whitespace from the beginning and the end of the given string
template <typename StringT>
inline StringT
trim_whitespace(StringT const &s)
{
typedef typename StringT::size_type size_type;
size_type first = s.find_first_not_of(" \t\v\f");
if (StringT::npos == first)
return StringT();
size_type last = s.find_last_not_of(" \t\v\f");
return s.substr(first, last-first+1);
}
}
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_include(
typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end, bool include_next)
{
BOOST_ASSERT(ctx.get_if_block_status());
// preprocess the given token sequence (the body of the #include directive)
get_token_value<result_type, parse_node_type> get_value;
token_sequence_type expanded;
token_sequence_type toexpand;
std::copy(make_ref_transform_iterator(begin, get_value),
make_ref_transform_iterator(end, get_value),
std::inserter(toexpand, toexpand.end()));
typename token_sequence_type::iterator begin2 = toexpand.begin();
ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded,
false);
// now, include the file
string_type s (impl::trim_whitespace(boost::wave::util::impl::as_string(expanded)));
bool is_system = '<' == s[0] && '>' == s[s.size()-1];
if (!is_system && !('\"' == s[0] && '\"' == s[s.size()-1])) {
// should resolve into something like <...> or "..."
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_include_statement,
s.c_str(), act_pos);
return;
}
on_include(s, is_system, include_next);
}
///////////////////////////////////////////////////////////////////////////////
//
// on_define(): handle #define directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_define (parse_node_type const &node)
{
BOOST_ASSERT(ctx.get_if_block_status());
// retrieve the macro definition from the parse tree
result_type macroname;
std::vector<result_type> macroparameters;
token_sequence_type macrodefinition;
bool has_parameters = false;
position_type pos(act_token.get_position());
if (!boost::wave::util::retrieve_macroname(ctx, node,
BOOST_WAVE_PLAIN_DEFINE_ID, macroname, pos, false))
return;
has_parameters = boost::wave::util::retrieve_macrodefinition(node,
BOOST_WAVE_MACRO_PARAMETERS_ID, macroparameters, pos, false);
boost::wave::util::retrieve_macrodefinition(node,
BOOST_WAVE_MACRO_DEFINITION_ID, macrodefinition, pos, false);
if (has_parameters) {
#if BOOST_WAVE_SUPPORT_VARIADICS_PLACEMARKERS != 0
if (boost::wave::need_variadics(ctx.get_language())) {
// test whether ellipsis are given, and if yes, if these are placed as the
// last argument, test if __VA_ARGS__ is used as a macro parameter name
using namespace cpplexer;
typedef typename std::vector<result_type>::iterator
parameter_iterator_t;
bool seen_ellipses = false;
parameter_iterator_t end = macroparameters.end();
for (parameter_iterator_t pit = macroparameters.begin();
pit != end; ++pit)
{
if (seen_ellipses) {
// ellipses are not the last given formal argument
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
bad_define_statement, macroname.get_value().c_str(),
(*pit).get_position());
return;
}
if (T_ELLIPSIS == token_id(*pit))
seen_ellipses = true;
// can't use __VA_ARGS__ as a argument name
if ("__VA_ARGS__" == (*pit).get_value()) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
bad_define_statement_va_args,
macroname.get_value().c_str(), (*pit).get_position());
return;
}
}
// if there wasn't an ellipsis, then there shouldn't be a __VA_ARGS__
// placeholder in the definition too [C99 Standard 6.10.3.5]
if (!seen_ellipses) {
typedef typename token_sequence_type::iterator definition_iterator_t;
bool seen_va_args = false;
definition_iterator_t pend = macrodefinition.end();
for (definition_iterator_t dit = macrodefinition.begin();
dit != pend; ++dit)
{
if (T_IDENTIFIER == token_id(*dit) &&
"__VA_ARGS__" == (*dit).get_value())
{
seen_va_args = true;
}
}
if (seen_va_args) {
// must not have seen __VA_ARGS__ placeholder
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
bad_define_statement_va_args,
macroname.get_value().c_str(), act_token.get_position());
return;
}
}
}
else
#endif // BOOST_WAVE_SUPPORT_VARIADICS_PLACEMARKERS != 0
{
// test, that there is no T_ELLIPSES given
using namespace cpplexer;
typedef typename std::vector<result_type>::iterator
parameter_iterator_t;
parameter_iterator_t end = macroparameters.end();
for (parameter_iterator_t pit = macroparameters.begin();
pit != end; ++pit)
{
if (T_ELLIPSIS == token_id(*pit)) {
// if variadics are disabled, no ellipses should be given
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
bad_define_statement, macroname.get_value().c_str(),
(*pit).get_position());
return;
}
}
}
}
// add the new macro to the macromap
ctx.add_macro_definition(macroname, has_parameters, macroparameters,
macrodefinition);
}
///////////////////////////////////////////////////////////////////////////////
//
// on_undefine(): handle #undef directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_undefine (lexer_type const &it)
{
BOOST_ASSERT(ctx.get_if_block_status());
// retrieve the macro name to undefine from the parse tree
ctx.remove_macro_definition((*it).get_value()); // throws for predefined macros
}
///////////////////////////////////////////////////////////////////////////////
//
// on_ifdef(): handle #ifdef directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_ifdef(
result_type const& found_directive, lexer_type const &it)
// typename parse_tree_type::const_iterator const &it)
// typename parse_tree_type::const_iterator const &end)
{
// get_token_value<result_type, parse_node_type> get_value;
// token_sequence_type toexpand;
//
// std::copy(make_ref_transform_iterator((*begin).children.begin(), get_value),
// make_ref_transform_iterator((*begin).children.end(), get_value),
// std::inserter(toexpand, toexpand.end()));
bool is_defined = false;
token_sequence_type directive;
directive.insert(directive.end(), *it);
#if BOOST_WAVE_USE_DEPRECIATED_PREPROCESSING_HOOKS != 0
is_defined = ctx.is_defined_macro((*it).get_value()); // toexpand.begin(), toexpand.end());
ctx.get_hooks().evaluated_conditional_expression(directive, is_defined);
#else
do {
is_defined = ctx.is_defined_macro((*it).get_value()); // toexpand.begin(), toexpand.end());
} while (ctx.get_hooks().evaluated_conditional_expression(ctx.derived(),
found_directive, directive, is_defined));
#endif
ctx.enter_if_block(is_defined);
}
///////////////////////////////////////////////////////////////////////////////
//
// on_ifndef(): handle #ifndef directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_ifndef(
result_type const& found_directive, lexer_type const &it)
// typename parse_tree_type::const_iterator const &it)
// typename parse_tree_type::const_iterator const &end)
{
// get_token_value<result_type, parse_node_type> get_value;
// token_sequence_type toexpand;
//
// std::copy(make_ref_transform_iterator((*begin).children.begin(), get_value),
// make_ref_transform_iterator((*begin).children.end(), get_value),
// std::inserter(toexpand, toexpand.end()));
bool is_defined = false;
token_sequence_type directive;
directive.insert(directive.end(), *it);
#if BOOST_WAVE_USE_DEPRECIATED_PREPROCESSING_HOOKS != 0
is_defined = ctx.is_defined_macro((*it).get_value()); // toexpand.begin(), toexpand.end());
ctx.get_hooks().evaluated_conditional_expression(directive, is_defined);
#else
do {
is_defined = ctx.is_defined_macro((*it).get_value()); // toexpand.begin(), toexpand.end());
} while (ctx.get_hooks().evaluated_conditional_expression(ctx.derived(),
found_directive, directive, is_defined));
#endif
ctx.enter_if_block(!is_defined);
}
///////////////////////////////////////////////////////////////////////////////
//
// on_else(): handle #else directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_else()
{
if (!ctx.enter_else_block()) {
// #else without matching #if
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, missing_matching_if,
"#else", act_pos);
}
}
///////////////////////////////////////////////////////////////////////////////
//
// on_endif(): handle #endif directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_endif()
{
if (!ctx.exit_if_block()) {
// #endif without matching #if
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, missing_matching_if,
"#endif", act_pos);
}
}
///////////////////////////////////////////////////////////////////////////////
// replace all remaining (== undefined) identifiers with an integer literal '0'
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::replace_undefined_identifiers(
token_sequence_type &expanded)
{
typename token_sequence_type::iterator exp_end = expanded.end();
for (typename token_sequence_type::iterator exp_it = expanded.begin();
exp_it != exp_end; ++exp_it)
{
using namespace boost::wave;
token_id id = token_id(*exp_it);
if (IS_CATEGORY(id, IdentifierTokenType) ||
IS_CATEGORY(id, KeywordTokenType))
{
(*exp_it).set_token_id(T_INTLIT);
(*exp_it).set_value("0");
}
}
}
///////////////////////////////////////////////////////////////////////////////
//
// on_if(): handle #if directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_if(
result_type const& found_directive,
typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end)
{
// preprocess the given sequence into the provided list
get_token_value<result_type, parse_node_type> get_value;
token_sequence_type toexpand;
std::copy(make_ref_transform_iterator(begin, get_value),
make_ref_transform_iterator(end, get_value),
std::inserter(toexpand, toexpand.end()));
impl::remove_leading_whitespace(ctx, toexpand);
bool if_status = false;
grammars::value_error status = grammars::error_noerror;
token_sequence_type expanded;
do {
expanded.clear();
typename token_sequence_type::iterator begin2 = toexpand.begin();
ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded);
// replace all remaining (== undefined) identifiers with an integer literal '0'
replace_undefined_identifiers(expanded);
#if BOOST_WAVE_DUMP_CONDITIONAL_EXPRESSIONS != 0
{
string_type outstr(boost::wave::util::impl::as_string(toexpand));
outstr += "(" + boost::wave::util::impl::as_string(expanded) + ")";
BOOST_WAVE_DUMP_CONDITIONAL_EXPRESSIONS_OUT << "#if " << outstr
<< std::endl;
}
#endif
try {
// parse the expression and enter the #if block
if_status = grammars::expression_grammar_gen<result_type>::
evaluate(expanded.begin(), expanded.end(), act_pos,
ctx.get_if_block_status(), status);
}
catch (boost::wave::preprocess_exception const& e) {
// any errors occurred have to be dispatched to the context hooks
ctx.get_hooks().throw_exception(ctx.derived(), e);
break;
}
#if BOOST_WAVE_USE_DEPRECIATED_PREPROCESSING_HOOKS != 0
ctx.get_hooks().evaluated_conditional_expression(toexpand, if_status);
} while (false);
#else
} while (ctx.get_hooks().evaluated_conditional_expression(ctx.derived(),
found_directive, toexpand, if_status)
&& status == grammars::error_noerror);
#endif
ctx.enter_if_block(if_status);
if (grammars::error_noerror != status) {
// division or other error by zero occurred
string_type expression = util::impl::as_string(expanded);
if (0 == expression.size())
expression = "<empty expression>";
if (grammars::error_division_by_zero & status) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, division_by_zero,
expression.c_str(), act_pos);
}
else if (grammars::error_integer_overflow & status) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, integer_overflow,
expression.c_str(), act_pos);
}
else if (grammars::error_character_overflow & status) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
character_literal_out_of_range, expression.c_str(), act_pos);
}
}
}
///////////////////////////////////////////////////////////////////////////////
//
// on_elif(): handle #elif directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_elif(
result_type const& found_directive,
typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end)
{
// preprocess the given sequence into the provided list
get_token_value<result_type, parse_node_type> get_value;
token_sequence_type toexpand;
std::copy(make_ref_transform_iterator(begin, get_value),
make_ref_transform_iterator(end, get_value),
std::inserter(toexpand, toexpand.end()));
impl::remove_leading_whitespace(ctx, toexpand);
// check current if block status
if (ctx.get_if_block_some_part_status()) {
if (!ctx.enter_elif_block(false)) {
// #else without matching #if
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
missing_matching_if, "#elif", act_pos);
// fall through...
}
// skip all the expression and the trailing whitespace
typename token_sequence_type::iterator begin2 = toexpand.begin();
impl::skip_to_eol(ctx, begin2, toexpand.end());
return; // one of previous #if/#elif was true, so don't enter this #elif
}
// preprocess the given sequence into the provided list
bool if_status = false;
grammars::value_error status = grammars::error_noerror;
token_sequence_type expanded;
do {
expanded.clear();
typename token_sequence_type::iterator begin2 = toexpand.begin();
ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded);
// replace all remaining (== undefined) identifiers with an integer literal '0'
replace_undefined_identifiers(expanded);
#if BOOST_WAVE_DUMP_CONDITIONAL_EXPRESSIONS != 0
{
string_type outstr(boost::wave::util::impl::as_string(toexpand));
outstr += "(" + boost::wave::util::impl::as_string(expanded) + ")";
BOOST_WAVE_DUMP_CONDITIONAL_EXPRESSIONS_OUT << "#elif " << outstr << std::endl;
}
#endif
try {
// parse the expression and enter the #elif block
if_status = grammars::expression_grammar_gen<result_type>::
evaluate(expanded.begin(), expanded.end(), act_pos,
ctx.get_if_block_status(), status);
}
catch (boost::wave::preprocess_exception const& e) {
// any errors occurred have to be dispatched to the context hooks
ctx.get_hooks().throw_exception(ctx.derived(), e);
}
#if BOOST_WAVE_USE_DEPRECIATED_PREPROCESSING_HOOKS != 0
ctx.get_hooks().evaluated_conditional_expression(toexpand, if_status);
} while (false);
#else
} while (ctx.get_hooks().evaluated_conditional_expression(ctx.derived(),
found_directive, toexpand, if_status)
&& status == grammars::error_noerror);
#endif
if (!ctx.enter_elif_block(if_status)) {
// #elif without matching #if
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, missing_matching_if,
"#elif", act_pos);
return;
}
if (grammars::error_noerror != status) {
// division or other error by zero occurred
string_type expression = util::impl::as_string(expanded);
if (0 == expression.size())
expression = "<empty expression>";
if (grammars::error_division_by_zero & status) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, division_by_zero,
expression.c_str(), act_pos);
}
else if (grammars::error_integer_overflow & status) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
integer_overflow, expression.c_str(), act_pos);
}
else if (grammars::error_character_overflow & status) {
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
character_literal_out_of_range, expression.c_str(), act_pos);
}
}
}
///////////////////////////////////////////////////////////////////////////////
//
// on_illformed(): handles the illegal directive
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_illformed(
typename result_type::string_type s)
{
BOOST_ASSERT(ctx.get_if_block_status());
// some messages have more than one newline at the end
typename string_type::size_type p = s.find_last_not_of('\n');
if (string_type::npos != p)
s = s.substr(0, p+1);
// throw the exception
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, ill_formed_directive,
s.c_str(), act_pos);
}
///////////////////////////////////////////////////////////////////////////////
//
// on_line(): handle #line directives
//
///////////////////////////////////////////////////////////////////////////////
namespace impl {
template <typename IteratorT, typename StringT>
bool retrieve_line_info (IteratorT first, IteratorT const &last,
unsigned int &line, StringT &file,
boost::wave::preprocess_exception::error_code& error)
{
using namespace boost::wave;
token_id id = token_id(*first);
if (T_PP_NUMBER == id || T_INTLIT == id) {
// extract line number
using namespace std; // some systems have atoi in namespace std
line = (unsigned int)atoi((*first).get_value().c_str());
if (0 == line)
error = preprocess_exception::bad_line_number;
// re-extract line number with spirit to diagnose overflow
using namespace boost::spirit::classic;
if (!parse((*first).get_value().c_str(), int_p).full)
error = preprocess_exception::bad_line_number;
// extract file name (if it is given)
while (++first != last && IS_CATEGORY(*first, WhiteSpaceTokenType))
/**/; // skip whitespace
if (first != last) {
if (T_STRINGLIT != token_id(*first)) {
error = preprocess_exception::bad_line_filename;
return false;
}
StringT const &file_lit = (*first).get_value();
if ('L' == file_lit[0]) {
error = preprocess_exception::bad_line_filename;
return false; // shouldn't be a wide character string
}
file = file_lit.substr(1, file_lit.size()-2);
// test if there is other junk on this line
while (++first != last && IS_CATEGORY(*first, WhiteSpaceTokenType))
/**/; // skip whitespace
}
return first == last;
}
error = preprocess_exception::bad_line_statement;
return false;
}
}
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_line(
typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end)
{
BOOST_ASSERT(ctx.get_if_block_status());
// Try to extract the line number and file name from the given token list
// directly. If that fails, preprocess the whole token sequence and try again
// to extract this information.
token_sequence_type expanded;
get_token_value<result_type, parse_node_type> get_value;
typedef typename ref_transform_iterator_generator<
get_token_value<result_type, parse_node_type>,
typename parse_tree_type::const_iterator
>::type const_tree_iterator_t;
const_tree_iterator_t first = make_ref_transform_iterator(begin, get_value);
const_tree_iterator_t last = make_ref_transform_iterator(end, get_value);
// try to interpret the #line body as a number followed by an optional
// string literal
unsigned int line = 0;
preprocess_exception::error_code error = preprocess_exception::no_error;
string_type file_name;
token_sequence_type toexpand;
std::copy(first, last, std::inserter(toexpand, toexpand.end()));
if (!impl::retrieve_line_info(first, last, line, file_name, error)) {
// preprocess the body of this #line message
typename token_sequence_type::iterator begin2 = toexpand.begin();
ctx.expand_whole_tokensequence(begin2, toexpand.end(),
expanded, false);
error = preprocess_exception::no_error;
if (!impl::retrieve_line_info(expanded.begin(), expanded.end(),
line, file_name, error))
{
typename ContextT::string_type msg(
boost::wave::util::impl::as_string(expanded));
BOOST_WAVE_THROW_VAR_CTX(ctx, preprocess_exception, error,
msg.c_str(), act_pos);
return;
}
// call the corresponding pp hook function
ctx.get_hooks().found_line_directive(ctx.derived(), expanded, line,
file_name.c_str());
}
else {
// call the corresponding pp hook function
ctx.get_hooks().found_line_directive(ctx.derived(), toexpand, line,
file_name.c_str());
}
// the queues should be empty at this point
BOOST_ASSERT(unput_queue.empty());
BOOST_ASSERT(pending_queue.empty());
// make sure error recovery starts on the next line
must_emit_line_directive = true;
// diagnose possible error in detected line directive
if (error != preprocess_exception::no_error) {
typename ContextT::string_type msg(
boost::wave::util::impl::as_string(expanded));
BOOST_WAVE_THROW_VAR_CTX(ctx, preprocess_exception, error,
msg.c_str(), act_pos);
return;
}
// set new line number/filename only if ok
if (!file_name.empty()) { // reuse current file name
using boost::wave::util::impl::unescape_lit;
act_pos.set_file(unescape_lit(file_name).c_str());
}
act_pos.set_line(line);
iter_ctx->first.set_position(act_pos);
}
///////////////////////////////////////////////////////////////////////////////
//
// on_error(): handle #error directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_error(
typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end)
{
BOOST_ASSERT(ctx.get_if_block_status());
// preprocess the given sequence into the provided list
token_sequence_type expanded;
get_token_value<result_type, parse_node_type> get_value;
typename ref_transform_iterator_generator<
get_token_value<result_type, parse_node_type>,
typename parse_tree_type::const_iterator
>::type first = make_ref_transform_iterator(begin, get_value);
#if BOOST_WAVE_PREPROCESS_ERROR_MESSAGE_BODY != 0
// preprocess the body of this #error message
token_sequence_type toexpand;
std::copy(first, make_ref_transform_iterator(end, get_value),
std::inserter(toexpand, toexpand.end()));
typename token_sequence_type::iterator begin2 = toexpand.begin();
ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded,
false);
if (!ctx.get_hooks().found_error_directive(ctx.derived(), toexpand))
#else
// simply copy the body of this #error message to the issued diagnostic
// message
std::copy(first, make_ref_transform_iterator(end, get_value),
std::inserter(expanded, expanded.end()));
if (!ctx.get_hooks().found_error_directive(ctx.derived(), expanded))
#endif
{
// report the corresponding error
BOOST_WAVE_STRINGTYPE msg(boost::wave::util::impl::as_string(expanded));
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, error_directive,
msg.c_str(), act_pos);
}
}
#if BOOST_WAVE_SUPPORT_WARNING_DIRECTIVE != 0
///////////////////////////////////////////////////////////////////////////////
//
// on_warning(): handle #warning directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_warning(
typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end)
{
BOOST_ASSERT(ctx.get_if_block_status());
// preprocess the given sequence into the provided list
token_sequence_type expanded;
get_token_value<result_type, parse_node_type> get_value;
typename ref_transform_iterator_generator<
get_token_value<result_type, parse_node_type>,
typename parse_tree_type::const_iterator
>::type first = make_ref_transform_iterator(begin, get_value);
#if BOOST_WAVE_PREPROCESS_ERROR_MESSAGE_BODY != 0
// preprocess the body of this #warning message
token_sequence_type toexpand;
std::copy(first, make_ref_transform_iterator(end, get_value),
std::inserter(toexpand, toexpand.end()));
typename token_sequence_type::iterator begin2 = toexpand.begin();
ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded,
false);
if (!ctx.get_hooks().found_warning_directive(ctx.derived(), toexpand))
#else
// simply copy the body of this #warning message to the issued diagnostic
// message
std::copy(first, make_ref_transform_iterator(end, get_value),
std::inserter(expanded, expanded.end()));
if (!ctx.get_hooks().found_warning_directive(ctx.derived(), expanded))
#endif
{
// report the corresponding error
BOOST_WAVE_STRINGTYPE msg(boost::wave::util::impl::as_string(expanded));
BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, warning_directive,
msg.c_str(), act_pos);
}
}
#endif // BOOST_WAVE_SUPPORT_WARNING_DIRECTIVE != 0
///////////////////////////////////////////////////////////////////////////////
//
// on_pragma(): handle #pragma directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::on_pragma(
typename parse_tree_type::const_iterator const &begin,
typename parse_tree_type::const_iterator const &end)
{
using namespace boost::wave;
BOOST_ASSERT(ctx.get_if_block_status());
// Look at the pragma token sequence and decide, if the first token is STDC
// (see C99 standard [6.10.6.2]), if it is, the sequence must _not_ be
// preprocessed.
token_sequence_type expanded;
get_token_value<result_type, parse_node_type> get_value;
typedef typename ref_transform_iterator_generator<
get_token_value<result_type, parse_node_type>,
typename parse_tree_type::const_iterator
>::type const_tree_iterator_t;
const_tree_iterator_t first = make_ref_transform_iterator(begin, get_value);
const_tree_iterator_t last = make_ref_transform_iterator(end, get_value);
expanded.push_back(result_type(T_PP_PRAGMA, "#pragma", act_token.get_position()));
expanded.push_back(result_type(T_SPACE, " ", act_token.get_position()));
while (++first != last && IS_CATEGORY(*first, WhiteSpaceTokenType))
expanded.push_back(*first); // skip whitespace
if (first != last) {
if (T_IDENTIFIER == token_id(*first) &&
boost::wave::need_c99(ctx.get_language()) &&
(*first).get_value() == "STDC")
{
// do _not_ preprocess the token sequence
std::copy(first, last, std::inserter(expanded, expanded.end()));
}
else {
#if BOOST_WAVE_PREPROCESS_PRAGMA_BODY != 0
// preprocess the given tokensequence
token_sequence_type toexpand;
std::copy(first, last, std::inserter(toexpand, toexpand.end()));
typename token_sequence_type::iterator begin2 = toexpand.begin();
ctx.expand_whole_tokensequence(begin2, toexpand.end(),
expanded, false);
#else
// do _not_ preprocess the token sequence
std::copy(first, last, std::inserter(expanded, expanded.end()));
#endif
}
}
expanded.push_back(result_type(T_NEWLINE, "\n", act_token.get_position()));
// the queues should be empty at this point
BOOST_ASSERT(unput_queue.empty());
BOOST_ASSERT(pending_queue.empty());
// try to interpret the expanded #pragma body
token_sequence_type pending;
if (interpret_pragma(expanded, pending)) {
// if there is some replacement text, insert it into the pending queue
if (!pending.empty())
pending_queue.splice(pending_queue.begin(), pending);
return true; // this #pragma was successfully recognized
}
#if BOOST_WAVE_EMIT_PRAGMA_DIRECTIVES != 0
// Move the resulting token sequence into the pending_queue, so it will be
// returned to the caller.
if (boost::wave::need_emit_pragma_directives(ctx.get_language())) {
pending_queue.splice(pending_queue.begin(), expanded);
return false; // return the whole #pragma directive
}
#endif
return true; // skip the #pragma at all
}
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::interpret_pragma(
token_sequence_type const &pragma_body, token_sequence_type &result)
{
using namespace cpplexer;
typename token_sequence_type::const_iterator end = pragma_body.end();
typename token_sequence_type::const_iterator it = pragma_body.begin();
for (++it; it != end && IS_CATEGORY(*it, WhiteSpaceTokenType); ++it)
/**/; // skip whitespace
if (it == end) // eof reached
return false;
return boost::wave::util::interpret_pragma(
ctx.derived(), act_token, it, end, result);
}
///////////////////////////////////////////////////////////////////////////////
} // namespace impl
///////////////////////////////////////////////////////////////////////////////
//
// pp_iterator
//
// The boost::wave::pp_iterator template is the iterator, through which
// the resulting preprocessed input stream is accessible.
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
class pp_iterator
: public boost::spirit::classic::multi_pass<
boost::wave::impl::pp_iterator_functor<ContextT>,
boost::wave::util::functor_input
>
{
public:
typedef boost::wave::impl::pp_iterator_functor<ContextT> input_policy_type;
private:
typedef
boost::spirit::classic::multi_pass<input_policy_type, boost::wave::util::functor_input>
base_type;
typedef pp_iterator<ContextT> self_type;
typedef boost::wave::util::functor_input functor_input_type;
public:
pp_iterator()
{}
template <typename IteratorT>
pp_iterator(ContextT &ctx, IteratorT const &first, IteratorT const &last,
typename ContextT::position_type const &pos)
: base_type(input_policy_type(ctx, first, last, pos))
{}
bool force_include(char const *path_, bool is_last)
{
bool result = this->get_functor().on_include_helper(path_, path_,
false, false);
if (is_last) {
this->functor_input_type::
template inner<input_policy_type>::advance_input();
}
return result;
}
};
///////////////////////////////////////////////////////////////////////////////
} // namespace wave
} // namespace boost
// the suffix header occurs after all of the code
#ifdef BOOST_HAS_ABI_HEADERS
#include BOOST_ABI_SUFFIX
#endif
#endif // !defined(CPP_ITERATOR_HPP_175CA88F_7273_43FA_9039_BCF7459E1F29_INCLUDED)