blob: 30386f7328006bfee12c117dba962cef4ed8a47c [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libANGLE/Program.h"
#include <algorithm>
#include "common/BitSetIterator.h"
#include "common/debug.h"
#include "common/platform.h"
#include "common/utilities.h"
#include "common/version.h"
#include "compiler/translator/blocklayout.h"
#include "libANGLE/Data.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/features.h"
#include "libANGLE/renderer/Renderer.h"
#include "libANGLE/renderer/ProgramImpl.h"
namespace gl
{
const char * const g_fakepath = "C:\\fakepath";
namespace
{
unsigned int ParseAndStripArrayIndex(std::string* name)
{
unsigned int subscript = GL_INVALID_INDEX;
// Strip any trailing array operator and retrieve the subscript
size_t open = name->find_last_of('[');
size_t close = name->find_last_of(']');
if (open != std::string::npos && close == name->length() - 1)
{
subscript = atoi(name->substr(open + 1).c_str());
name->erase(open);
}
return subscript;
}
}
AttributeBindings::AttributeBindings()
{
}
AttributeBindings::~AttributeBindings()
{
}
InfoLog::InfoLog()
{
}
InfoLog::~InfoLog()
{
}
size_t InfoLog::getLength() const
{
const std::string &logString = mStream.str();
return logString.empty() ? 0 : logString.length() + 1;
}
void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog)
{
size_t index = 0;
if (bufSize > 0)
{
const std::string str(mStream.str());
if (!str.empty())
{
index = std::min(static_cast<size_t>(bufSize) - 1, str.length());
memcpy(infoLog, str.c_str(), index);
}
infoLog[index] = '\0';
}
if (length)
{
*length = static_cast<GLsizei>(index);
}
}
// append a santized message to the program info log.
// The D3D compiler includes a fake file path in some of the warning or error
// messages, so lets remove all occurrences of this fake file path from the log.
void InfoLog::appendSanitized(const char *message)
{
std::string msg(message);
size_t found;
do
{
found = msg.find(g_fakepath);
if (found != std::string::npos)
{
msg.erase(found, strlen(g_fakepath));
}
}
while (found != std::string::npos);
mStream << message << std::endl;
}
void InfoLog::reset()
{
}
VariableLocation::VariableLocation()
: name(),
element(0),
index(0)
{
}
VariableLocation::VariableLocation(const std::string &name, unsigned int element, unsigned int index)
: name(name),
element(element),
index(index)
{
}
LinkedVarying::LinkedVarying()
{
}
LinkedVarying::LinkedVarying(const std::string &name, GLenum type, GLsizei size, const std::string &semanticName,
unsigned int semanticIndex, unsigned int semanticIndexCount)
: name(name), type(type), size(size), semanticName(semanticName), semanticIndex(semanticIndex), semanticIndexCount(semanticIndexCount)
{
}
Program::Data::Data()
: mAttachedFragmentShader(nullptr),
mAttachedVertexShader(nullptr),
mTransformFeedbackBufferMode(GL_NONE)
{
}
Program::Data::~Data()
{
if (mAttachedVertexShader != nullptr)
{
mAttachedVertexShader->release();
}
if (mAttachedFragmentShader != nullptr)
{
mAttachedFragmentShader->release();
}
}
Program::Program(rx::ImplFactory *factory, ResourceManager *manager, GLuint handle)
: mProgram(factory->createProgram(mData)),
mValidated(false),
mLinked(false),
mDeleteStatus(false),
mRefCount(0),
mResourceManager(manager),
mHandle(handle)
{
ASSERT(mProgram);
resetUniformBlockBindings();
unlink();
}
Program::~Program()
{
unlink(true);
SafeDelete(mProgram);
}
bool Program::attachShader(Shader *shader)
{
if (shader->getType() == GL_VERTEX_SHADER)
{
if (mData.mAttachedVertexShader)
{
return false;
}
mData.mAttachedVertexShader = shader;
mData.mAttachedVertexShader->addRef();
}
else if (shader->getType() == GL_FRAGMENT_SHADER)
{
if (mData.mAttachedFragmentShader)
{
return false;
}
mData.mAttachedFragmentShader = shader;
mData.mAttachedFragmentShader->addRef();
}
else UNREACHABLE();
return true;
}
bool Program::detachShader(Shader *shader)
{
if (shader->getType() == GL_VERTEX_SHADER)
{
if (mData.mAttachedVertexShader != shader)
{
return false;
}
shader->release();
mData.mAttachedVertexShader = nullptr;
}
else if (shader->getType() == GL_FRAGMENT_SHADER)
{
if (mData.mAttachedFragmentShader != shader)
{
return false;
}
shader->release();
mData.mAttachedFragmentShader = nullptr;
}
else UNREACHABLE();
return true;
}
int Program::getAttachedShadersCount() const
{
return (mData.mAttachedVertexShader ? 1 : 0) + (mData.mAttachedFragmentShader ? 1 : 0);
}
void AttributeBindings::bindAttributeLocation(GLuint index, const char *name)
{
if (index < MAX_VERTEX_ATTRIBS)
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mAttributeBinding[i].erase(name);
}
mAttributeBinding[index].insert(name);
}
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
mAttributeBindings.bindAttributeLocation(index, name);
}
// Links the HLSL code of the vertex and pixel shader by matching up their varyings,
// compiling them into binaries, determining the attribute mappings, and collecting
// a list of uniforms
Error Program::link(const gl::Data &data)
{
unlink(false);
mInfoLog.reset();
resetUniformBlockBindings();
if (!mData.mAttachedFragmentShader || !mData.mAttachedFragmentShader->isCompiled())
{
return Error(GL_NO_ERROR);
}
ASSERT(mData.mAttachedFragmentShader->getType() == GL_FRAGMENT_SHADER);
if (!mData.mAttachedVertexShader || !mData.mAttachedVertexShader->isCompiled())
{
return Error(GL_NO_ERROR);
}
ASSERT(mData.mAttachedVertexShader->getType() == GL_VERTEX_SHADER);
if (!linkAttributes(data, mInfoLog, mAttributeBindings, mData.mAttachedVertexShader))
{
return Error(GL_NO_ERROR);
}
if (!linkVaryings(mInfoLog, mData.mAttachedVertexShader, mData.mAttachedFragmentShader))
{
return Error(GL_NO_ERROR);
}
if (!linkUniforms(mInfoLog, *data.caps))
{
return Error(GL_NO_ERROR);
}
if (!linkUniformBlocks(mInfoLog, *data.caps))
{
return Error(GL_NO_ERROR);
}
const auto &mergedVaryings = getMergedVaryings();
if (!linkValidateTransformFeedback(mInfoLog, mergedVaryings, *data.caps))
{
return Error(GL_NO_ERROR);
}
linkOutputVariables();
rx::LinkResult result = mProgram->link(data, mInfoLog);
if (result.error.isError() || !result.linkSuccess)
{
return result.error;
}
gatherTransformFeedbackVaryings(mergedVaryings);
mLinked = true;
return gl::Error(GL_NO_ERROR);
}
int AttributeBindings::getAttributeBinding(const std::string &name) const
{
for (int location = 0; location < MAX_VERTEX_ATTRIBS; location++)
{
if (mAttributeBinding[location].find(name) != mAttributeBinding[location].end())
{
return location;
}
}
return -1;
}
// Returns the program object to an unlinked state, before re-linking, or at destruction
void Program::unlink(bool destroy)
{
if (destroy) // Object being destructed
{
if (mData.mAttachedFragmentShader)
{
mData.mAttachedFragmentShader->release();
mData.mAttachedFragmentShader = nullptr;
}
if (mData.mAttachedVertexShader)
{
mData.mAttachedVertexShader->release();
mData.mAttachedVertexShader = nullptr;
}
}
mData.mAttributes.clear();
mData.mActiveAttribLocationsMask.reset();
mData.mTransformFeedbackVaryingVars.clear();
mData.mOutputVariables.clear();
mProgram->reset();
mValidated = false;
mLinked = false;
}
bool Program::isLinked()
{
return mLinked;
}
Error Program::loadBinary(GLenum binaryFormat, const void *binary, GLsizei length)
{
unlink(false);
#if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED
return Error(GL_NO_ERROR);
#else
ASSERT(binaryFormat == mProgram->getBinaryFormat());
BinaryInputStream stream(binary, length);
GLenum format = stream.readInt<GLenum>();
if (format != mProgram->getBinaryFormat())
{
mInfoLog << "Invalid program binary format.";
return Error(GL_NO_ERROR);
}
int majorVersion = stream.readInt<int>();
int minorVersion = stream.readInt<int>();
if (majorVersion != ANGLE_MAJOR_VERSION || minorVersion != ANGLE_MINOR_VERSION)
{
mInfoLog << "Invalid program binary version.";
return Error(GL_NO_ERROR);
}
unsigned char commitString[ANGLE_COMMIT_HASH_SIZE];
stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE);
if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) != 0)
{
mInfoLog << "Invalid program binary version.";
return Error(GL_NO_ERROR);
}
static_assert(MAX_VERTEX_ATTRIBS <= sizeof(unsigned long) * 8,
"Too many vertex attribs for mask");
mData.mActiveAttribLocationsMask = stream.readInt<unsigned long>();
unsigned int attribCount = stream.readInt<unsigned int>();
ASSERT(mData.mAttributes.empty());
for (unsigned int attribIndex = 0; attribIndex < attribCount; ++attribIndex)
{
sh::Attribute attrib;
attrib.type = stream.readInt<GLenum>();
attrib.precision = stream.readInt<GLenum>();
attrib.name = stream.readString();
attrib.arraySize = stream.readInt<GLint>();
attrib.location = stream.readInt<int>();
attrib.staticUse = stream.readBool();
mData.mAttributes.push_back(attrib);
}
stream.readInt(&mData.mTransformFeedbackBufferMode);
unsigned int outputVarCount = stream.readInt<unsigned int>();
for (unsigned int outputIndex = 0; outputIndex < outputVarCount; ++outputIndex)
{
int locationIndex = stream.readInt<int>();
VariableLocation locationData;
locationData.element = stream.readInt<unsigned int>();
locationData.index = stream.readInt<unsigned int>();
locationData.name = stream.readString();
mData.mOutputVariables[locationIndex] = locationData;
}
rx::LinkResult result = mProgram->load(mInfoLog, &stream);
if (result.error.isError() || !result.linkSuccess)
{
return result.error;
}
mLinked = true;
return Error(GL_NO_ERROR);
#endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED
}
Error Program::saveBinary(GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length) const
{
if (binaryFormat)
{
*binaryFormat = mProgram->getBinaryFormat();
}
BinaryOutputStream stream;
stream.writeInt(mProgram->getBinaryFormat());
stream.writeInt(ANGLE_MAJOR_VERSION);
stream.writeInt(ANGLE_MINOR_VERSION);
stream.writeBytes(reinterpret_cast<const unsigned char*>(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE);
stream.writeInt(mData.mActiveAttribLocationsMask.to_ulong());
stream.writeInt(mData.mAttributes.size());
for (const sh::Attribute &attrib : mData.mAttributes)
{
stream.writeInt(attrib.type);
stream.writeInt(attrib.precision);
stream.writeString(attrib.name);
stream.writeInt(attrib.arraySize);
stream.writeInt(attrib.location);
stream.writeInt(attrib.staticUse);
}
stream.writeInt(mData.mTransformFeedbackBufferMode);
stream.writeInt(mData.mOutputVariables.size());
for (const auto &outputPair : mData.mOutputVariables)
{
stream.writeInt(outputPair.first);
stream.writeInt(outputPair.second.element);
stream.writeInt(outputPair.second.index);
stream.writeString(outputPair.second.name);
}
gl::Error error = mProgram->save(&stream);
if (error.isError())
{
return error;
}
GLsizei streamLength = static_cast<GLsizei>(stream.length());
const void *streamData = stream.data();
if (streamLength > bufSize)
{
if (length)
{
*length = 0;
}
// TODO: This should be moved to the validation layer but computing the size of the binary before saving
// it causes the save to happen twice. It may be possible to write the binary to a separate buffer, validate
// sizes and then copy it.
return Error(GL_INVALID_OPERATION);
}
if (binary)
{
char *ptr = reinterpret_cast<char*>(binary);
memcpy(ptr, streamData, streamLength);
ptr += streamLength;
ASSERT(ptr - streamLength == binary);
}
if (length)
{
*length = streamLength;
}
return Error(GL_NO_ERROR);
}
GLint Program::getBinaryLength() const
{
GLint length;
Error error = saveBinary(nullptr, nullptr, std::numeric_limits<GLint>::max(), &length);
if (error.isError())
{
return 0;
}
return length;
}
void Program::release()
{
mRefCount--;
if (mRefCount == 0 && mDeleteStatus)
{
mResourceManager->deleteProgram(mHandle);
}
}
void Program::addRef()
{
mRefCount++;
}
unsigned int Program::getRefCount() const
{
return mRefCount;
}
int Program::getInfoLogLength() const
{
return static_cast<int>(mInfoLog.getLength());
}
void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog)
{
return mInfoLog.getLog(bufSize, length, infoLog);
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders)
{
int total = 0;
if (mData.mAttachedVertexShader)
{
if (total < maxCount)
{
shaders[total] = mData.mAttachedVertexShader->getHandle();
}
total++;
}
if (mData.mAttachedFragmentShader)
{
if (total < maxCount)
{
shaders[total] = mData.mAttachedFragmentShader->getHandle();
}
total++;
}
if (count)
{
*count = total;
}
}
GLuint Program::getAttributeLocation(const std::string &name)
{
for (const sh::Attribute &attribute : mData.mAttributes)
{
if (attribute.name == name && attribute.staticUse)
{
return attribute.location;
}
}
return static_cast<GLuint>(-1);
}
bool Program::isAttribLocationActive(size_t attribLocation) const
{
ASSERT(attribLocation < mData.mActiveAttribLocationsMask.size());
return mData.mActiveAttribLocationsMask[attribLocation];
}
void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
if (!mLinked)
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*type = GL_NONE;
*size = 1;
return;
}
size_t attributeIndex = 0;
for (const sh::Attribute &attribute : mData.mAttributes)
{
// Skip over inactive attributes
if (attribute.staticUse)
{
if (static_cast<size_t>(index) == attributeIndex)
{
break;
}
attributeIndex++;
}
}
ASSERT(index == attributeIndex && attributeIndex < mData.mAttributes.size());
const sh::Attribute &attrib = mData.mAttributes[attributeIndex];
if (bufsize > 0)
{
const char *string = attrib.name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(name));
}
}
// Always a single 'type' instance
*size = 1;
*type = attrib.type;
}
GLint Program::getActiveAttributeCount()
{
if (!mLinked)
{
return 0;
}
GLint count = 0;
for (const sh::Attribute &attrib : mData.mAttributes)
{
count += (attrib.staticUse ? 1 : 0);
}
return count;
}
GLint Program::getActiveAttributeMaxLength()
{
if (!mLinked)
{
return 0;
}
size_t maxLength = 0;
for (const sh::Attribute &attrib : mData.mAttributes)
{
if (attrib.staticUse)
{
maxLength = std::max(attrib.name.length() + 1, maxLength);
}
}
return static_cast<GLint>(maxLength);
}
GLint Program::getFragDataLocation(const std::string &name) const
{
std::string baseName(name);
unsigned int arrayIndex = ParseAndStripArrayIndex(&baseName);
for (auto outputPair : mData.mOutputVariables)
{
const VariableLocation &outputVariable = outputPair.second;
if (outputVariable.name == baseName && (arrayIndex == GL_INVALID_INDEX || arrayIndex == outputVariable.element))
{
return static_cast<GLint>(outputPair.first);
}
}
return -1;
}
void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
if (mLinked)
{
ASSERT(index < mProgram->getUniforms().size()); // index must be smaller than getActiveUniformCount()
LinkedUniform *uniform = mProgram->getUniforms()[index];
if (bufsize > 0)
{
std::string string = uniform->name;
if (uniform->isArray())
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(name));
}
}
*size = uniform->elementCount();
*type = uniform->type;
}
else
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*size = 0;
*type = GL_NONE;
}
}
GLint Program::getActiveUniformCount()
{
if (mLinked)
{
return static_cast<GLint>(mProgram->getUniforms().size());
}
else
{
return 0;
}
}
GLint Program::getActiveUniformMaxLength()
{
int maxLength = 0;
if (mLinked)
{
unsigned int numUniforms = static_cast<unsigned int>(mProgram->getUniforms().size());
for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if (!mProgram->getUniforms()[uniformIndex]->name.empty())
{
int length = (int)(mProgram->getUniforms()[uniformIndex]->name.length() + 1);
if (mProgram->getUniforms()[uniformIndex]->isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
}
return maxLength;
}
GLint Program::getActiveUniformi(GLuint index, GLenum pname) const
{
const gl::LinkedUniform& uniform = *mProgram->getUniforms()[index];
switch (pname)
{
case GL_UNIFORM_TYPE: return static_cast<GLint>(uniform.type);
case GL_UNIFORM_SIZE: return static_cast<GLint>(uniform.elementCount());
case GL_UNIFORM_NAME_LENGTH: return static_cast<GLint>(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0));
case GL_UNIFORM_BLOCK_INDEX: return uniform.blockIndex;
case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset;
case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride;
case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride;
case GL_UNIFORM_IS_ROW_MAJOR: return static_cast<GLint>(uniform.blockInfo.isRowMajorMatrix);
default:
UNREACHABLE();
break;
}
return 0;
}
bool Program::isValidUniformLocation(GLint location) const
{
const auto &uniformIndices = mProgram->getUniformIndices();
ASSERT(rx::IsIntegerCastSafe<GLint>(uniformIndices.size()));
return (location >= 0 && uniformIndices.find(location) != uniformIndices.end());
}
LinkedUniform *Program::getUniformByLocation(GLint location) const
{
return mProgram->getUniformByLocation(location);
}
LinkedUniform *Program::getUniformByName(const std::string &name) const
{
return mProgram->getUniformByName(name);
}
GLint Program::getUniformLocation(const std::string &name)
{
return mProgram->getUniformLocation(name);
}
GLuint Program::getUniformIndex(const std::string &name)
{
return mProgram->getUniformIndex(name);
}
void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
mProgram->setUniform1fv(location, count, v);
}
void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
mProgram->setUniform2fv(location, count, v);
}
void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
mProgram->setUniform3fv(location, count, v);
}
void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
mProgram->setUniform4fv(location, count, v);
}
void Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
mProgram->setUniform1iv(location, count, v);
}
void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
mProgram->setUniform2iv(location, count, v);
}
void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
mProgram->setUniform3iv(location, count, v);
}
void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
mProgram->setUniform4iv(location, count, v);
}
void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
mProgram->setUniform1uiv(location, count, v);
}
void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
mProgram->setUniform2uiv(location, count, v);
}
void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
mProgram->setUniform3uiv(location, count, v);
}
void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
mProgram->setUniform4uiv(location, count, v);
}
void Program::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
mProgram->setUniformMatrix2fv(location, count, transpose, v);
}
void Program::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
mProgram->setUniformMatrix3fv(location, count, transpose, v);
}
void Program::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
mProgram->setUniformMatrix4fv(location, count, transpose, v);
}
void Program::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
mProgram->setUniformMatrix2x3fv(location, count, transpose, v);
}
void Program::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
mProgram->setUniformMatrix2x4fv(location, count, transpose, v);
}
void Program::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
mProgram->setUniformMatrix3x2fv(location, count, transpose, v);
}
void Program::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
mProgram->setUniformMatrix3x4fv(location, count, transpose, v);
}
void Program::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
mProgram->setUniformMatrix4x2fv(location, count, transpose, v);
}
void Program::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *v)
{
mProgram->setUniformMatrix4x3fv(location, count, transpose, v);
}
void Program::getUniformfv(GLint location, GLfloat *v)
{
mProgram->getUniformfv(location, v);
}
void Program::getUniformiv(GLint location, GLint *v)
{
mProgram->getUniformiv(location, v);
}
void Program::getUniformuiv(GLint location, GLuint *v)
{
mProgram->getUniformuiv(location, v);
}
void Program::flagForDeletion()
{
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
return mDeleteStatus;
}
void Program::validate(const Caps &caps)
{
mInfoLog.reset();
if (mLinked)
{
mValidated = (mProgram->validate(caps, &mInfoLog) == GL_TRUE);
}
else
{
mInfoLog << "Program has not been successfully linked.";
}
}
bool Program::validateSamplers(InfoLog *infoLog, const Caps &caps)
{
return mProgram->validateSamplers(infoLog, caps);
}
bool Program::isValidated() const
{
return mValidated;
}
GLuint Program::getActiveUniformBlockCount()
{
return static_cast<GLuint>(mProgram->getUniformBlocks().size());
}
void Program::getActiveUniformBlockName(GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) const
{
ASSERT(uniformBlockIndex < mProgram->getUniformBlocks().size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = *mProgram->getUniformBlocks()[uniformBlockIndex];
if (bufSize > 0)
{
std::string string = uniformBlock.name;
if (uniformBlock.isArrayElement())
{
string += ArrayString(uniformBlock.elementIndex);
}
strncpy(uniformBlockName, string.c_str(), bufSize);
uniformBlockName[bufSize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(uniformBlockName));
}
}
}
void Program::getActiveUniformBlockiv(GLuint uniformBlockIndex, GLenum pname, GLint *params) const
{
ASSERT(uniformBlockIndex < mProgram->getUniformBlocks().size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = *mProgram->getUniformBlocks()[uniformBlockIndex];
switch (pname)
{
case GL_UNIFORM_BLOCK_DATA_SIZE:
*params = static_cast<GLint>(uniformBlock.dataSize);
break;
case GL_UNIFORM_BLOCK_NAME_LENGTH:
*params = static_cast<GLint>(uniformBlock.name.size() + 1 + (uniformBlock.isArrayElement() ? 3 : 0));
break;
case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS:
*params = static_cast<GLint>(uniformBlock.memberUniformIndexes.size());
break;
case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES:
{
for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++)
{
params[blockMemberIndex] = static_cast<GLint>(uniformBlock.memberUniformIndexes[blockMemberIndex]);
}
}
break;
case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER:
*params = static_cast<GLint>(uniformBlock.isReferencedByVertexShader());
break;
case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER:
*params = static_cast<GLint>(uniformBlock.isReferencedByFragmentShader());
break;
default: UNREACHABLE();
}
}
GLint Program::getActiveUniformBlockMaxLength()
{
int maxLength = 0;
if (mLinked)
{
unsigned int numUniformBlocks =
static_cast<unsigned int>(mProgram->getUniformBlocks().size());
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++)
{
const UniformBlock &uniformBlock = *mProgram->getUniformBlocks()[uniformBlockIndex];
if (!uniformBlock.name.empty())
{
const int length = static_cast<int>(uniformBlock.name.length()) + 1;
// Counting in "[0]".
const int arrayLength = (uniformBlock.isArrayElement() ? 3 : 0);
maxLength = std::max(length + arrayLength, maxLength);
}
}
}
return maxLength;
}
GLuint Program::getUniformBlockIndex(const std::string &name)
{
return mProgram->getUniformBlockIndex(name);
}
const UniformBlock *Program::getUniformBlockByIndex(GLuint index) const
{
return mProgram->getUniformBlockByIndex(index);
}
void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding)
{
mData.mUniformBlockBindings[uniformBlockIndex] = uniformBlockBinding;
}
GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const
{
return mData.getUniformBlockBinding(uniformBlockIndex);
}
void Program::resetUniformBlockBindings()
{
for (unsigned int blockId = 0; blockId < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; blockId++)
{
mData.mUniformBlockBindings[blockId] = 0;
}
}
void Program::setTransformFeedbackVaryings(GLsizei count, const GLchar *const *varyings, GLenum bufferMode)
{
mData.mTransformFeedbackVaryingNames.resize(count);
for (GLsizei i = 0; i < count; i++)
{
mData.mTransformFeedbackVaryingNames[i] = varyings[i];
}
mData.mTransformFeedbackBufferMode = bufferMode;
}
void Program::getTransformFeedbackVarying(GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) const
{
if (mLinked)
{
ASSERT(index < mData.mTransformFeedbackVaryingVars.size());
const sh::Varying &varying = mData.mTransformFeedbackVaryingVars[index];
GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varying.name.length()));
if (length)
{
*length = lastNameIdx;
}
if (size)
{
*size = varying.elementCount();
}
if (type)
{
*type = varying.type;
}
if (name)
{
memcpy(name, varying.name.c_str(), lastNameIdx);
name[lastNameIdx] = '\0';
}
}
}
GLsizei Program::getTransformFeedbackVaryingCount() const
{
if (mLinked)
{
return static_cast<GLsizei>(mData.mTransformFeedbackVaryingVars.size());
}
else
{
return 0;
}
}
GLsizei Program::getTransformFeedbackVaryingMaxLength() const
{
if (mLinked)
{
GLsizei maxSize = 0;
for (const sh::Varying &varying : mData.mTransformFeedbackVaryingVars)
{
maxSize = std::max(maxSize, static_cast<GLsizei>(varying.name.length() + 1));
}
return maxSize;
}
else
{
return 0;
}
}
GLenum Program::getTransformFeedbackBufferMode() const
{
return mData.mTransformFeedbackBufferMode;
}
// static
bool Program::linkVaryings(InfoLog &infoLog,
const Shader *vertexShader,
const Shader *fragmentShader)
{
const std::vector<sh::Varying> &vertexVaryings = vertexShader->getVaryings();
const std::vector<sh::Varying> &fragmentVaryings = fragmentShader->getVaryings();
for (const sh::Varying &output : fragmentVaryings)
{
bool matched = false;
// Built-in varyings obey special rules
if (output.isBuiltIn())
{
continue;
}
for (const sh::Varying &input : vertexVaryings)
{
if (output.name == input.name)
{
ASSERT(!input.isBuiltIn());
if (!linkValidateVaryings(infoLog, output.name, input, output))
{
return false;
}
matched = true;
break;
}
}
// We permit unmatched, unreferenced varyings
if (!matched && output.staticUse)
{
infoLog << "Fragment varying " << output.name << " does not match any vertex varying";
return false;
}
}
// TODO(jmadill): verify no unmatched vertex varyings?
return true;
}
bool Program::linkUniforms(gl::InfoLog &infoLog, const gl::Caps & /*caps*/) const
{
const std::vector<sh::Uniform> &vertexUniforms = mData.mAttachedVertexShader->getUniforms();
const std::vector<sh::Uniform> &fragmentUniforms = mData.mAttachedFragmentShader->getUniforms();
// Check that uniforms defined in the vertex and fragment shaders are identical
std::map<std::string, const sh::Uniform *> linkedUniforms;
for (const sh::Uniform &vertexUniform : vertexUniforms)
{
linkedUniforms[vertexUniform.name] = &vertexUniform;
}
for (const sh::Uniform &fragmentUniform : fragmentUniforms)
{
auto entry = linkedUniforms.find(fragmentUniform.name);
if (entry != linkedUniforms.end())
{
const sh::Uniform &vertexUniform = *entry->second;
const std::string &uniformName = "uniform '" + vertexUniform.name + "'";
if (!linkValidateUniforms(infoLog, uniformName, vertexUniform, fragmentUniform))
{
return false;
}
}
}
// TODO(jmadill): check sampler uniforms with caps
return true;
}
bool Program::linkValidateInterfaceBlockFields(InfoLog &infoLog, const std::string &uniformName, const sh::InterfaceBlockField &vertexUniform, const sh::InterfaceBlockField &fragmentUniform)
{
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true))
{
return false;
}
if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout)
{
infoLog << "Matrix packings for " << uniformName << " differ between vertex and fragment shaders";
return false;
}
return true;
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool Program::linkAttributes(const gl::Data &data,
InfoLog &infoLog,
const AttributeBindings &attributeBindings,
const Shader *vertexShader)
{
unsigned int usedLocations = 0;
mData.mAttributes = vertexShader->getActiveAttributes();
GLuint maxAttribs = data.caps->maxVertexAttributes;
// TODO(jmadill): handle aliasing robustly
if (mData.mAttributes.size() > maxAttribs)
{
infoLog << "Too many vertex attributes.";
return false;
}
std::vector<sh::Attribute *> usedAttribMap(data.caps->maxVertexAttributes, nullptr);
// Link attributes that have a binding location
for (sh::Attribute &attribute : mData.mAttributes)
{
// TODO(jmadill): do staticUse filtering step here, or not at all
ASSERT(attribute.staticUse);
int bindingLocation = attributeBindings.getAttributeBinding(attribute.name);
if (attribute.location == -1 && bindingLocation != -1)
{
attribute.location = bindingLocation;
}
if (attribute.location != -1)
{
// Location is set by glBindAttribLocation or by location layout qualifier
const int regs = VariableRegisterCount(attribute.type);
if (static_cast<GLuint>(regs + attribute.location) > maxAttribs)
{
infoLog << "Active attribute (" << attribute.name << ") at location "
<< attribute.location << " is too big to fit";
return false;
}
for (int reg = 0; reg < regs; reg++)
{
const int regLocation = attribute.location + reg;
sh::ShaderVariable *linkedAttribute = usedAttribMap[regLocation];
// In GLSL 3.00, attribute aliasing produces a link error
// In GLSL 1.00, attribute aliasing is allowed, but ANGLE currently has a bug
if (linkedAttribute)
{
// TODO(jmadill): fix aliasing on ES2
// if (mProgram->getShaderVersion() >= 300)
{
infoLog << "Attribute '" << attribute.name << "' aliases attribute '"
<< linkedAttribute->name << "' at location " << regLocation;
return false;
}
}
else
{
usedAttribMap[regLocation] = &attribute;
}
usedLocations |= 1 << regLocation;
}
}
}
// Link attributes that don't have a binding location
for (sh::Attribute &attribute : mData.mAttributes)
{
ASSERT(attribute.staticUse);
// Not set by glBindAttribLocation or by location layout qualifier
if (attribute.location == -1)
{
int regs = VariableRegisterCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, regs, maxAttribs);
if (availableIndex == -1 || static_cast<GLuint>(availableIndex + regs) > maxAttribs)
{
infoLog << "Too many active attributes (" << attribute.name << ")";
return false;
}
attribute.location = availableIndex;
}
}
for (const sh::Attribute &attribute : mData.mAttributes)
{
ASSERT(attribute.staticUse);
ASSERT(attribute.location != -1);
int regs = VariableRegisterCount(attribute.type);
for (int r = 0; r < regs; r++)
{
mData.mActiveAttribLocationsMask.set(attribute.location + r);
}
}
return true;
}
bool Program::linkUniformBlocks(InfoLog &infoLog, const Caps &caps)
{
const Shader &vertexShader = *mData.mAttachedVertexShader;
const Shader &fragmentShader = *mData.mAttachedFragmentShader;
const std::vector<sh::InterfaceBlock> &vertexInterfaceBlocks = vertexShader.getInterfaceBlocks();
const std::vector<sh::InterfaceBlock> &fragmentInterfaceBlocks = fragmentShader.getInterfaceBlocks();
// Check that interface blocks defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::InterfaceBlock*> UniformBlockMap;
UniformBlockMap linkedUniformBlocks;
GLuint vertexBlockCount = 0;
for (const sh::InterfaceBlock &vertexInterfaceBlock : vertexInterfaceBlocks)
{
linkedUniformBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock;
// Note: shared and std140 layouts are always considered active
if (vertexInterfaceBlock.staticUse || vertexInterfaceBlock.layout != sh::BLOCKLAYOUT_PACKED)
{
if (++vertexBlockCount > caps.maxVertexUniformBlocks)
{
infoLog << "Vertex shader uniform block count exceed GL_MAX_VERTEX_UNIFORM_BLOCKS ("
<< caps.maxVertexUniformBlocks << ")";
return false;
}
}
}
GLuint fragmentBlockCount = 0;
for (const sh::InterfaceBlock &fragmentInterfaceBlock : fragmentInterfaceBlocks)
{
auto entry = linkedUniformBlocks.find(fragmentInterfaceBlock.name);
if (entry != linkedUniformBlocks.end())
{
const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second;
if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock))
{
return false;
}
}
// Note: shared and std140 layouts are always considered active
if (fragmentInterfaceBlock.staticUse ||
fragmentInterfaceBlock.layout != sh::BLOCKLAYOUT_PACKED)
{
if (++fragmentBlockCount > caps.maxFragmentUniformBlocks)
{
infoLog
<< "Fragment shader uniform block count exceed GL_MAX_FRAGMENT_UNIFORM_BLOCKS ("
<< caps.maxFragmentUniformBlocks << ")";
return false;
}
}
}
return true;
}
bool Program::areMatchingInterfaceBlocks(gl::InfoLog &infoLog, const sh::InterfaceBlock &vertexInterfaceBlock,
const sh::InterfaceBlock &fragmentInterfaceBlock)
{
const char* blockName = vertexInterfaceBlock.name.c_str();
// validate blocks for the same member types
if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size())
{
infoLog << "Types for interface block '" << blockName
<< "' differ between vertex and fragment shaders";
return false;
}
if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize)
{
infoLog << "Array sizes differ for interface block '" << blockName
<< "' between vertex and fragment shaders";
return false;
}
if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout)
{
infoLog << "Layout qualifiers differ for interface block '" << blockName
<< "' between vertex and fragment shaders";
return false;
}
const unsigned int numBlockMembers =
static_cast<unsigned int>(vertexInterfaceBlock.fields.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex];
const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog << "Name mismatch for field " << blockMemberIndex
<< " of interface block '" << blockName
<< "': (in vertex: '" << vertexMember.name
<< "', in fragment: '" << fragmentMember.name << "')";
return false;
}
std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'";
if (!linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember))
{
return false;
}
}
return true;
}
bool Program::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable,
const sh::ShaderVariable &fragmentVariable, bool validatePrecision)
{
if (vertexVariable.type != fragmentVariable.type)
{
infoLog << "Types for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (vertexVariable.arraySize != fragmentVariable.arraySize)
{
infoLog << "Array sizes for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (validatePrecision && vertexVariable.precision != fragmentVariable.precision)
{
infoLog << "Precisions for " << variableName << " differ between vertex and fragment shaders";
return false;
}
if (vertexVariable.fields.size() != fragmentVariable.fields.size())
{
infoLog << "Structure lengths for " << variableName << " differ between vertex and fragment shaders";
return false;
}
const unsigned int numMembers = static_cast<unsigned int>(vertexVariable.fields.size());
for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++)
{
const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex];
const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog << "Name mismatch for field '" << memberIndex
<< "' of " << variableName
<< ": (in vertex: '" << vertexMember.name
<< "', in fragment: '" << fragmentMember.name << "')";
return false;
}
const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." +
vertexMember.name + "'";
if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision))
{
return false;
}
}
return true;
}
bool Program::linkValidateUniforms(InfoLog &infoLog, const std::string &uniformName, const sh::Uniform &vertexUniform, const sh::Uniform &fragmentUniform)
{
#if ANGLE_PROGRAM_LINK_VALIDATE_UNIFORM_PRECISION == ANGLE_ENABLED
const bool validatePrecision = true;
#else
const bool validatePrecision = false;
#endif
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, validatePrecision))
{
return false;
}
return true;
}
bool Program::linkValidateVaryings(InfoLog &infoLog, const std::string &varyingName, const sh::Varying &vertexVarying, const sh::Varying &fragmentVarying)
{
if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false))
{
return false;
}
if (!sh::InterpolationTypesMatch(vertexVarying.interpolation, fragmentVarying.interpolation))
{
infoLog << "Interpolation types for " << varyingName << " differ between vertex and fragment shaders";
return false;
}
return true;
}
bool Program::linkValidateTransformFeedback(InfoLog &infoLog,
const std::vector<const sh::Varying *> &varyings,
const Caps &caps) const
{
size_t totalComponents = 0;
std::set<std::string> uniqueNames;
for (const std::string &tfVaryingName : mData.mTransformFeedbackVaryingNames)
{
bool found = false;
for (const sh::Varying *varying : varyings)
{
if (tfVaryingName == varying->name)
{
if (uniqueNames.count(tfVaryingName) > 0)
{
infoLog << "Two transform feedback varyings specify the same output variable ("
<< tfVaryingName << ").";
return false;
}
uniqueNames.insert(tfVaryingName);
// TODO(jmadill): Investigate implementation limits on D3D11
size_t componentCount = gl::VariableComponentCount(varying->type);
if (mData.mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS &&
componentCount > caps.maxTransformFeedbackSeparateComponents)
{
infoLog << "Transform feedback varying's " << varying->name << " components ("
<< componentCount << ") exceed the maximum separate components ("
<< caps.maxTransformFeedbackSeparateComponents << ").";
return false;
}
totalComponents += componentCount;
found = true;
break;
}
}
// TODO(jmadill): investigate if we can support capturing array elements.
if (tfVaryingName.find('[') != std::string::npos)
{
infoLog << "Capture of array elements not currently supported.";
return false;
}
// All transform feedback varyings are expected to exist since packVaryings checks for them.
ASSERT(found);
UNUSED_ASSERTION_VARIABLE(found);
}
if (mData.mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS &&
totalComponents > caps.maxTransformFeedbackInterleavedComponents)
{
infoLog << "Transform feedback varying total components (" << totalComponents
<< ") exceed the maximum interleaved components ("
<< caps.maxTransformFeedbackInterleavedComponents << ").";
return false;
}
return true;
}
void Program::gatherTransformFeedbackVaryings(const std::vector<const sh::Varying *> &varyings)
{
// Gather the linked varyings that are used for transform feedback, they should all exist.
mData.mTransformFeedbackVaryingVars.clear();
for (const std::string &tfVaryingName : mData.mTransformFeedbackVaryingNames)
{
for (const sh::Varying *varying : varyings)
{
if (tfVaryingName == varying->name)
{
mData.mTransformFeedbackVaryingVars.push_back(*varying);
break;
}
}
}
}
std::vector<const sh::Varying *> Program::getMergedVaryings() const
{
std::set<std::string> uniqueNames;
std::vector<const sh::Varying *> varyings;
for (const sh::Varying &varying : mData.mAttachedVertexShader->getVaryings())
{
if (uniqueNames.count(varying.name) == 0)
{
uniqueNames.insert(varying.name);
varyings.push_back(&varying);
}
}
for (const sh::Varying &varying : mData.mAttachedFragmentShader->getVaryings())
{
if (uniqueNames.count(varying.name) == 0)
{
uniqueNames.insert(varying.name);
varyings.push_back(&varying);
}
}
return varyings;
}
void Program::linkOutputVariables()
{
const Shader *fragmentShader = mData.mAttachedFragmentShader;
ASSERT(fragmentShader != nullptr);
// Skip this step for GLES2 shaders.
if (fragmentShader->getShaderVersion() == 100)
return;
const auto &shaderOutputVars = fragmentShader->getActiveOutputVariables();
// TODO(jmadill): any caps validation here?
for (unsigned int outputVariableIndex = 0; outputVariableIndex < shaderOutputVars.size();
outputVariableIndex++)
{
const sh::OutputVariable &outputVariable = shaderOutputVars[outputVariableIndex];
// Don't store outputs for gl_FragDepth, gl_FragColor, etc.
if (outputVariable.isBuiltIn())
continue;
// Since multiple output locations must be specified, use 0 for non-specified locations.
int baseLocation = (outputVariable.location == -1 ? 0 : outputVariable.location);
ASSERT(outputVariable.staticUse);
for (unsigned int elementIndex = 0; elementIndex < outputVariable.elementCount();
elementIndex++)
{
const int location = baseLocation + elementIndex;
ASSERT(mData.mOutputVariables.count(location) == 0);
unsigned int element = outputVariable.isArray() ? elementIndex : GL_INVALID_INDEX;
mData.mOutputVariables[location] =
VariableLocation(outputVariable.name, element, outputVariableIndex);
}
}
}
}