blob: 9f22388a27202e470968b2d10a900220fa99af81 [file] [log] [blame]
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Clocks and power management settings */
#include "chipset.h"
#include "clock.h"
#include "clock-f.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "hooks.h"
#include "hwtimer.h"
#include "registers.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_CLOCK, outstr)
#define CPRINTS(format, args...) cprints(CC_CLOCK, format, ## args)
/* use 48Mhz USB-synchronized High-speed oscillator */
#define HSI48_CLOCK 48000000
/* use PLL at 38.4MHz as system clock. */
#define PLL_CLOCK 38400000
/* Low power idle statistics */
#ifdef CONFIG_LOW_POWER_IDLE
static int idle_sleep_cnt;
static int idle_dsleep_cnt;
static uint64_t idle_dsleep_time_us;
static int dsleep_recovery_margin_us = 1000000;
/*
* minimum delay to enter stop mode
* STOP_MODE_LATENCY: max time to wake up from STOP mode with regulator in low
* power mode is 5 us + PLL locking time is 200us.
* SET_RTC_MATCH_DELAY: max time to set RTC match alarm. if we set the alarm
* in the past, it will never wake up and cause a watchdog.
* For STM32F3, we are using HSE, which requires additional time to start up.
* Therefore, the latency for STM32F3 is set longer.
*/
#ifdef CHIP_VARIANT_STM32F373
#define STOP_MODE_LATENCY 500 /* us */
#elif defined(CHIP_VARIANT_STM32F05X)
#define STOP_MODE_LATENCY 300 /* us */
#elif (CPU_CLOCK == PLL_CLOCK)
#define STOP_MODE_LATENCY 300 /* us */
#else
#define STOP_MODE_LATENCY 50 /* us */
#endif
#define SET_RTC_MATCH_DELAY 200 /* us */
#endif /* CONFIG_LOW_POWER_IDLE */
/*
* RTC clock frequency (connected to LSI clock)
*
* TODO(crosbug.com/p/12281): Calibrate LSI frequency on a per-chip basis. The
* LSI on any given chip can be between 30 kHz to 60 kHz. Without calibration,
* LSI frequency may be off by as much as 50%. Fortunately, we don't do any
* high-precision delays based solely on LSI.
*/
/*
* Set synchronous clock freq to LSI/2 (20kHz) to maximize subsecond
* resolution. Set asynchronous clock to 1 Hz.
*/
#define RTC_FREQ (40000 / 2) /* Hz */
#define RTC_PREDIV_S (RTC_FREQ - 1)
#define RTC_PREDIV_A 1
#define US_PER_RTC_TICK (1000000 / RTC_FREQ)
int32_t rtcss_to_us(uint32_t rtcss)
{
return ((RTC_PREDIV_S - rtcss) * US_PER_RTC_TICK);
}
uint32_t us_to_rtcss(int32_t us)
{
return (RTC_PREDIV_S - (us / US_PER_RTC_TICK));
}
void config_hispeed_clock(void)
{
#ifdef CHIP_FAMILY_STM32F3
/* Ensure that HSE is ON */
if (!(STM32_RCC_CR & (1 << 17))) {
/* Enable HSE */
STM32_RCC_CR |= 1 << 16;
/* Wait for HSE to be ready */
while (!(STM32_RCC_CR & (1 << 17)))
;
}
/*
* HSE = 24MHz, no prescalar, no MCO, with PLL *2 => 48MHz SYSCLK
* HCLK = SYSCLK, PCLK = HCLK / 2 = 24MHz
* ADCCLK = PCLK / 6 = 4MHz
* USB uses SYSCLK = 48MHz
*/
STM32_RCC_CFGR = 0x0041a400;
/* Enable the PLL */
STM32_RCC_CR |= 0x01000000;
/* Wait until the PLL is ready */
while (!(STM32_RCC_CR & 0x02000000))
;
/* Switch SYSCLK to PLL */
STM32_RCC_CFGR |= 0x2;
/* Wait until the PLL is the clock source */
while ((STM32_RCC_CFGR & 0xc) != 0x8)
;
/* F03X and F05X and F070 don't have HSI48 */
#elif defined(CHIP_VARIANT_STM32F03X) || \
defined(CHIP_VARIANT_STM32F05X) || \
defined(CHIP_VARIANT_STM32F070)
/* If PLL is the clock source, PLL has already been set up. */
if ((STM32_RCC_CFGR & 0xc) == 0x8)
return;
/* Ensure that HSI is ON */
if (!(STM32_RCC_CR & (1<<1))) {
/* Enable HSI */
STM32_RCC_CR |= (1<<0);
/* Wait for HSI to be ready */
while (!(STM32_RCC_CR & (1<<1)))
;
}
/*
* HSI = 8MHz, HSI/2 with PLL *12 = ~48 MHz
* therefore PCLK = FCLK = SYSCLK = 48MHz
*/
/* Switch the PLL source to HSI/2 */
STM32_RCC_CFGR &= ~(0x00018000);
/*
* Specify HSI/2 clock as input clock to PLL and set PLL (*12).
*/
STM32_RCC_CFGR |= 0x00280000;
/* Enable the PLL. */
STM32_RCC_CR |= 0x01000000;
/* Wait until PLL is ready. */
while (!(STM32_RCC_CR & 0x02000000))
;
/* Switch SYSCLK to PLL. */
STM32_RCC_CFGR |= 0x2;
/* wait until the PLL is the clock source */
while ((STM32_RCC_CFGR & 0xc) != 0x8)
;
#else
/* Ensure that HSI48 is ON */
if (!(STM32_RCC_CR2 & (1 << 17))) {
/* Enable HSI */
STM32_RCC_CR2 |= 1 << 16;
/* Wait for HSI to be ready */
while (!(STM32_RCC_CR2 & (1 << 17)))
;
}
#if (CPU_CLOCK == HSI48_CLOCK)
/*
* HSI48 = 48MHz, no prescaler, no MCO, no PLL
* therefore PCLK = FCLK = SYSCLK = 48MHz
* USB uses HSI48 = 48MHz
*/
#ifdef CONFIG_USB
/*
* Configure and enable Clock Recovery System
*
* Since we are running from the internal RC HSI48 clock, the CSR
* is needed to guarantee an accurate 48MHz clock for USB.
*
* The default values configure the CRS to use the periodic USB SOF
* as the SYNC signal for calibrating the HSI48.
*
*/
/* Enable Clock Recovery System */
STM32_RCC_APB1ENR |= STM32_RCC_PB1_CRS;
/* Enable automatic trimming */
STM32_CRS_CR |= STM32_CRS_CR_AUTOTRIMEN;
/* Enable oscillator clock for the frequency error counter */
STM32_CRS_CR |= STM32_CRS_CR_CEN;
#endif
/* switch SYSCLK to HSI48 */
STM32_RCC_CFGR = 0x00000003;
/* wait until the HSI48 is the clock source */
while ((STM32_RCC_CFGR & 0xc) != 0xc)
;
#elif (CPU_CLOCK == PLL_CLOCK)
/*
* HSI48 = 48MHz, no prescalar, no MCO, with PLL *4/5 => 38.4MHz SYSCLK
* therefore PCLK = FCLK = SYSCLK = 38.4MHz
* USB uses HSI48 = 48MHz
*/
/* If PLL is the clock source, PLL has already been set up. */
if ((STM32_RCC_CFGR & 0xc) == 0x8)
return;
/*
* Specify HSI48 clock as input clock to PLL and set PLL multiplier
* and divider.
*/
STM32_RCC_CFGR = 0x00098000;
STM32_RCC_CFGR2 = 0x4;
/* Enable the PLL. */
STM32_RCC_CR |= 0x01000000;
/* Wait until PLL is ready. */
while (!(STM32_RCC_CR & 0x02000000))
;
/* Switch SYSCLK to PLL. */
STM32_RCC_CFGR |= 0x2;
/* wait until the PLL is the clock source */
while ((STM32_RCC_CFGR & 0xc) != 0x8)
;
#else
#error "CPU_CLOCK must be either 48MHz or 38.4MHz"
#endif
#endif
}
#ifdef CONFIG_HIBERNATE
void __enter_hibernate(uint32_t seconds, uint32_t microseconds)
{
uint32_t rtc, rtcss;
if (seconds || microseconds)
set_rtc_alarm(seconds, microseconds, &rtc, &rtcss);
/* interrupts off now */
asm volatile("cpsid i");
#ifdef CONFIG_HIBERNATE_WAKEUP_PINS
/* enable the wake up pins */
STM32_PWR_CSR |= CONFIG_HIBERNATE_WAKEUP_PINS;
#endif
STM32_PWR_CR |= 0xe;
CPU_SCB_SYSCTRL |= 0x4;
/* go to Standby mode */
asm("wfi");
/* we should never reach that point */
while (1)
;
}
#endif
#ifdef CONFIG_LOW_POWER_IDLE
void clock_refresh_console_in_use(void)
{
}
#ifdef CONFIG_FORCE_CONSOLE_RESUME
#define UARTN_BASE STM32_USART_BASE(CONFIG_UART_CONSOLE)
static void enable_serial_wakeup(int enable)
{
if (enable) {
/*
* Allow UART wake up from STOP mode. Note, UART clock must
* be HSI(8MHz) for wakeup to work.
*/
STM32_USART_CR1(UARTN_BASE) |= STM32_USART_CR1_UESM;
STM32_USART_CR3(UARTN_BASE) |= STM32_USART_CR3_WUFIE;
} else {
/* Disable wake up from STOP mode. */
STM32_USART_CR1(UARTN_BASE) &= ~STM32_USART_CR1_UESM;
}
}
#else
static void enable_serial_wakeup(int enable)
{
}
#endif
void __idle(void)
{
timestamp_t t0;
int next_delay, margin_us, rtc_diff;
uint32_t rtc0, rtc0ss, rtc1, rtc1ss;
while (1) {
asm volatile("cpsid i");
t0 = get_time();
next_delay = __hw_clock_event_get() - t0.le.lo;
if (DEEP_SLEEP_ALLOWED &&
(next_delay > (STOP_MODE_LATENCY + SET_RTC_MATCH_DELAY))) {
/* deep-sleep in STOP mode */
idle_dsleep_cnt++;
enable_serial_wakeup(1);
/* set deep sleep bit */
CPU_SCB_SYSCTRL |= 0x4;
set_rtc_alarm(0, next_delay - STOP_MODE_LATENCY,
&rtc0, &rtc0ss);
asm("wfi");
CPU_SCB_SYSCTRL &= ~0x4;
enable_serial_wakeup(0);
/*
* By default only HSI 8MHz is enabled here. Re-enable
* high-speed clock if in use.
*/
config_hispeed_clock();
/* fast forward timer according to RTC counter */
reset_rtc_alarm(&rtc1, &rtc1ss);
rtc_diff = get_rtc_diff(rtc0, rtc0ss, rtc1, rtc1ss);
t0.val = t0.val + rtc_diff;
force_time(t0);
/* Record time spent in deep sleep. */
idle_dsleep_time_us += rtc_diff;
/* Calculate how close we were to missing deadline */
margin_us = next_delay - rtc_diff;
if (margin_us < 0)
/* Use CPUTS to save stack space */
CPUTS("Idle overslept!\n");
/* Record the closest to missing a deadline. */
if (margin_us < dsleep_recovery_margin_us)
dsleep_recovery_margin_us = margin_us;
} else {
idle_sleep_cnt++;
/* normal idle : only CPU clock stopped */
asm("wfi");
}
asm volatile("cpsie i");
}
}
#endif /* CONFIG_LOW_POWER_IDLE */
int clock_get_freq(void)
{
return CPU_CLOCK;
}
void clock_wait_bus_cycles(enum bus_type bus, uint32_t cycles)
{
volatile uint32_t dummy __attribute__((unused));
if (bus == BUS_AHB) {
while (cycles--)
dummy = STM32_DMA1_REGS->isr;
} else { /* APB */
while (cycles--)
dummy = STM32_USART_BRR(STM32_USART1_BASE);
}
}
void clock_enable_module(enum module_id module, int enable)
{
}
void rtc_init(void)
{
rtc_unlock_regs();
/* Enter RTC initialize mode */
STM32_RTC_ISR |= STM32_RTC_ISR_INIT;
while (!(STM32_RTC_ISR & STM32_RTC_ISR_INITF))
;
/* Set clock prescalars */
STM32_RTC_PRER = (RTC_PREDIV_A << 16) | RTC_PREDIV_S;
/* Start RTC timer */
STM32_RTC_ISR &= ~STM32_RTC_ISR_INIT;
while (STM32_RTC_ISR & STM32_RTC_ISR_INITF)
;
/* Enable RTC alarm interrupt */
STM32_RTC_CR |= STM32_RTC_CR_ALRAIE | STM32_RTC_CR_BYPSHAD;
STM32_EXTI_RTSR |= EXTI_RTC_ALR_EVENT;
task_enable_irq(STM32_IRQ_RTC_ALARM);
rtc_lock_regs();
}
#if defined(CONFIG_LOW_POWER_IDLE) && defined(CONFIG_COMMON_RUNTIME)
#ifdef CONFIG_CMD_IDLE_STATS
/**
* Print low power idle statistics
*/
static int command_idle_stats(int argc, char **argv)
{
timestamp_t ts = get_time();
ccprintf("Num idle calls that sleep: %d\n", idle_sleep_cnt);
ccprintf("Num idle calls that deep-sleep: %d\n", idle_dsleep_cnt);
ccprintf("Time spent in deep-sleep: %.6lds\n",
idle_dsleep_time_us);
ccprintf("Total time on: %.6lds\n", ts.val);
ccprintf("Deep-sleep closest to wake deadline: %dus\n",
dsleep_recovery_margin_us);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(idlestats, command_idle_stats,
"",
"Print last idle stats");
#endif /* CONFIG_CMD_IDLE_STATS */
#endif